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ON A SHEAF REPRESENTATION OF A CLASS OF NEAR-RINGS
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Abstract

It is proved that R is a near-ring with identity in which every element is a power of itself if
and only if it is isomorphic with a neaf-ring of sections of a sheaf of near-fields in which every
element is a power of itself. We also obtain that the Boolean spectrum is homeomorphic with the
space of all completely prime ideals of R with the Zariski topology.

1. Introduction

Grothendieck (1960) proved that a commutative ring is isomorphic with
the ring of sections of a sheaf of local rings. Then Dauns and Hofmann (1966),
Koh (1971), Lambek (1971) and Pierce (1967) obtained sheaf representations
for different classes of rings (commutative and noncommutative) and mod-
ules. A lot of applications of sheaf representations of an algebraic structure
have been found (Bergman (1971), DeMeyer (1972), Magid (1971), Pierce
(1967), and Villamayor and Zelinsky (1969)). The purpose of the present
paper is to show a sheaf representation for a class of near-rings in which every
element is a power of itself. The main result is the following: R is a near-ring
with identity in which every element is a power of itself if and only if it is
isomorphic with a near-ring of sections of a sheaf of near-fields in which every
element is a power of itself.

2. Preliminaries

Throughout, we assume that R is a near-ring with identity 1 such that
Or = 0 for all r in R, and that every nonzero element is a power of itself where
the power is greater than 1. For such an R, Bell (1970) has found the following
useful properties:
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(1) (R, +) is a commutative group (Bell (1970), Theorem 1).
(2) All idempotents are central (Bell (1970), Lemma 2).
(3) R contains a family of completely prime ideals with trivial intersec-

tion (Bell (1970), Lemma 3).

3. Ideals and topological spaces

Let II be the set of completely prime ideals of R (it is not a void set from
(3) in Section 2), and let V(I) = {p in Yl/Iltp}. We shall show that II is a
topological space with the basic open set, {F(7) for all ideals /} . From (1) and
(2) in Section 2, the set of idempotents B(R)ot R are central in R, so B(R) is
a commutative ring with identity 1. Hence B(R) is a Boolean ring under the
multiplication e • e' = ee' and addition e+ e' = e + e'- ee', and, as usual, the
set of maximal ideals of B(R) is a topological space SpecB(i?) with
kernel-hull topology. It is well known that SpecB(R) is totally disconnected,
compact and Hausdorff. In this section, we shall show that the two topological
spaces II and Spec B(R) are homeomorphic. We begin with some properties
of ideals of R. Recall that I is an ideal of the near-ring R if (1) (/, +) is a
normal subgroup of (R, + ), (2) RI C/, and (3) (x + a)y - xy is in I for all x, y
in R and a in /.

LEMMA 3.1. (1) / / / and V are ideals of R then IV and I CM' are ideals
of R.

(2) If Ia are ideals for a in an index set J, then lla for all a in J is an ideal
of R.

PROOF. Clearly, I D / ' is an ideal. For //', let S a ^ and Xa',b'i be elements
in IV with ah a\ in / and b,, b\ in /', we have 2a ,b , -2a 'b! =
Soifej + 1a',(- b[), which is in // ' (for (R, + ) is commutative under addition).
For an r in R, r(2ai/>;) = 2(ra,)ft,, an element in //'. Moreover, for z = Sa.fo, in
//', there exists an integer n such that z" = z, so z" ' is in B(R) C\ IV. Hence
the Pierce decomposition theorem implies that R = z""'i? + (1 - z"~l)R.
Denote z""1 by e. Then for all x, y in R,

(1 - e)((x + z)y - xy) = (1 - e)((x + ez)y - xy)= (1 - e)xy + (1 - «)(- xy)

This implies that ((x + z)y - xy) is in (eR), which is in // '.
Part (2) can be proved by the similar argument to part (1).
Following Pierce (1967), an ideal / is called regular if / = (/ D B(R))R.

LEMMA 3.2. Every ideal I of R is regular.

https://doi.org/10.1017/S1446788700017365 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017365


80 Representation of near-rings [3]

PROOF. For a / 0 in /, there exists an integer n > 1 such that a" = a, so
a""' is an idempotent. Hence it is central. In this way, each element r in R
induces an element e, in B(R). Clearly, / D 73(7?) = {e,/r in /}. Now, for an
r/0 in / with r" = r, r = e,r which is in {IC\B(R))R. Hence / C
( / D B ( i ? p . The other inclusion is immediate.

Now we show that a topology can be imposed on the set of completely
prime ideals.

THEOREM 3.3. Let II be the set of completely prime ideals of R and
T(J) = {p£ IT// an ideal of R with Iltp}. Then II is a topological space with a
basic open set F(7) for all ideals I of R.

PROOF. Since each p in F(7) is completely prime, it is easy to see that
F(7) n F(/') = F(//'), and that U F(7a) = F(27O), where la are ideals of R with
a in some index set /. From Lemma 3.1, 77' and 27a are ideals, so the proof is
complete.

Next we want to show that FI and Spec B(R) are homeomorphic.

THEOREM 3.4. The topological space II is homeomorphic with the Boolean
space SpecB(R) of R.

PROOF. From Lemma 3.2, we have P = (P n B(R))R for each P in II.
Define a mapping F from II to Spec B (R) by F(P) = P n B (R). Since P is
completely prime, PDB(R) is prime in B(R), and so it is a point in
Spec B(R). Also, Lemma 3.2 implies that F is one to one. Let x be a point in
Spec B(R). We claim that xR is a completely prime ideal in 7?. In fact, let rr'
be in xR for any r, r' in 7?. If r and r' are not in xR, e, and er are not in JC (note
that xR is an ideal). But then ere, is not in x. Hence (e,e, + x)= B(R), so
1 = ere,s+ s' for some s and s' in 7?(7?) with s' in x. Thus e,e,7? + xR = R
contradicting to the fact that e,e,R Crr'R CxR. This proves that xR is in II
such that F(xR) = x in Spec B(R). So F is onto. Moreover, noting that II has
a basic open set F(r) for r in R and that F(r) = F(e,), we conclude that
F(F(e,)) = F0(e,), where F0(e,) = {x in Spec B(R)/er£ x}. But {F0(er)} is a basic
open set for SpecB(R), then F is a required homeomorphism.

4. A sheaf representation

As defined for a sheaf of rings (Pierce (1967)), a sheaf 2 of near-rings 7?,
for JC in a topological space X is a disjoint union of 7?, such that (1) for each x
in X, a near-ring 7?, is given with identity lx, (2) Rx 0 Ry = 0 , a void set for
x ^ y in X, (3) the projection TT from 2 to X maps r in 7?, to x for each r, (4) a
topology is imposed on 2 such that 1) if r is in 2, there exists an open set U in
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2 with r in U and N CX such that TJ- maps U homeomorphically on an open
set JV of X, 2) let 2 + 2 denote {(r, s)/7r(r) = TT(S)}, with the product topology
in 2 x 2, then the inverse map r —* — r, the addition map (r, 5)—» r + s and the
product map (r,s)—>rs are continuous, and 3) the constant map x—*\, is
continuous on X to 2.

The near-rings Rx are called stalks of the sheaf 2. For a subset 1/ of X,
\(U,2) is the collection of all continuous functions from U to 2, called
sections from U to 2. Now we take i?/p as Rp for each p in II. That is,
Rip = .R/xK by Lemma 3.2, where x = p D B(R). Then we have:

THEOREM 4.1. The disjoint union 2 of Rip is a sheaf with a basic open set
r(V(e)) for all e in B(R) and r in R, where r is a section such that f(p) = f in
Rip.

PROOF. For p in T{e') f~l F(e"), let r'(p) = r"(p) with r' and r" in R. Then
r'= f" in R/p. So, (r'— r") = e(r P-)S for some s in R and e^--r-> in p. Hence
r' = f" in R/p' for all p' in F(l - e(r-n). Denote (1 - eir^n) by e. We have
r '= r" in «/p for all p in F(e'e"e). Thus r'(e'f"<)CfT(e')D r'T(e"). This
proves that {rF(e)/r in R and e in B(R)} is a basic open set for a topology
imposed on 2. Now let p be a point in (r')(f'(T(c)) for r, r' in R and e in
B(R). Then f(p)= r\p) and p is in F(e). The above result implies that
f(p')= r'(p') in some open set f(F(e')) contained in r'(F(e)). Thus r is a
section for all r in R. Finally, it is routine to check that 2 is a sheaf of
near-rings R/p with the topology having a basic open set f(T(e)) for all e in
B(R) and r in R.

We say a near-ring has property P if every element is a power of itself.

THEOREM 4.2. The near-ring R has property P 'if and only if it is
isomorphic with the near-ring of sections of a sheaf of near-fields, each having
property P.

PROOF. Let R have property P. By Theorem 4.1, we know that f is
a section for each r in R. Now let f = 0. Then r = 0 in R/p for all p in 11.
Hence r = 0 by (3) in Section 2; and so the map: r—>r is one-to-one.
Moreover, since p is completely prime, i?/p has no non-trivial zero divisors.
But R has property P, so R/p is a near-field having property P. Next we claim
that the map: r —* f is onto from R to 2. Let / be a section of 2. Then /(p) is
in R/p, and so /(p) = r in R/p for some r in R. Hence / = f in a basic open
set F(e) for some e in B(R) by a standard property of sheaves. Let p vary
over II. Then II is covered by such F(e)'s. Thus by the partition property of
SpecB(R), there are a finite cover of II, F(e,) for i = 1,2, • • •, n such that e,
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are orthogonal idempotents summing to 1 and / = f, at each p in F(e>) for all i,
where r, are in R (see proposition 12-13 in Pierce (1967) for the partition
property of B(R) and hence of II). Therefore / = f with r = ine,.

Conversely, let r be a nonzero element in R. Then (r)" = r in Rip for
some p in n and an integer n>\ depending on p. That is, (f")=r.
Considering (r)" and r as sections of 2 , we have a basic open set F(e)
containing p such that (r)" = r over F(e). Now let p vary over FI. Then n is
covered with such F(e)'s. By the partition property of II, there is a finite cover
F(e,) for i = 1,2, • • •, k which is a refinement of the F(e)'s such that et are
orthogonal and summing to 1. Thus (6/)"' = etr for each i. Observing that
(e,r)"rl is an idempotent for each i, we let m = (n,- \){n2- 1)- • -(nk - 1)+ 1.
Then

r- = rr—1 = r(r • I)™"1 = r(l(rei))
m-\

We next claim that (S(re,))m ' = S(rcf)"""'. In fact, e, are central orthogonal
idempotents, so dRe, = 0 for iV/ . Hence

(ref + r'e,)2 = (ref + r'e;)re, + (re, + r'ei)r'e,

= e,(ret + r'e^re, + e^re, + r'e^r'e,

= (re, + 0 ) ^ +(0+r'el)r'ei)

= (reif+(r'eif.

By repeating this calculation, we have

because m - 1 = (n, - V)(n2- 1)- • -(nk - 1) and (re,)"-1 is an idempotent for
each i. But then

rm = lr(re,y<1 = X ^ ) " 1 = l(re.) = r(2(e,)) = r.

Thus the proof is complete.
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