Atomic Oscillator Strengths for Atmospheric Models

Juliet C. Pickering and Matthew Ruffoni

Physics Department, Imperial College London, London SW7 2BZ, UK email: j.pickering@imperial.ac.uk

Abstract. We report new laboratory measurements of atomic oscillator strengths (log gfs) for stellar atmosphere models.

Keywords. atomic data, line: identification, line: profiles, stars: abundances

In order to correctly model stellar atmospheres, fundamental atomic data must be available to describe atomic lines observed in their spectra. Accurate, laboratory-measured oscillator strengths (f-values) for Fe peak elements in neutral or low-ionisation states are particularly important for determining chemical abundances (Pickering, *et al.* 2011). However, advances in stellar spectroscopy in recent decades have outpaced those in laboratory astrophysics, with the latter frequently being overlooked at the planning stages of new projects. As a result, numerous big-budget astronomy projects have been, and continue to be hindered by a lack of suitable, accurately-measured reference data to permit the analysis of expensive astronomical spectra (Nailing Fingerprints in the Stars, Nature Editorial Nov. 2013); a problem only likely to worsen in the coming decades as spectrographs at new facilities increasingly move to infrared wavelengths.

At Imperial College London - and in collaboration with NIST, Wisconsin University and Lund University - we have been working with the astronomy community in an effort to provide new accurately-measured *f*-values for a range of projects. In particular, we have been working closely with the Gaia-ESO (GES) and SDSS-III/APOGEE Galactic surveys, both of which have discovered that many lines that would make ideal candidates for inclusion in stellar analyses have poorly defined *f*-values, or are simply absent from the databases. Using high-resolution Fourier transform spectroscopy (R $\approx 2,000,000$) to provide atomic branching fractions, and combining these with level lifetimes measured with laser induced fluorescence, we have provided new laboratory-measured *f*-values for a range of Fe-peak elements, most recently including Fe I, Fe II, and V I (e.g. Ruffoni, *et al.* 2013, Ruffoni, *et al.* 2014). For strong unblended lines, uncertainties are as low as ± 0.02 dex. Details of challenges in these measurements can be found in the papers. We have produced accurate log *gfs* in the visible for the GES and in the IR H-band for the APOGEE surveys. We continue this work, and welcome requests from astronomers for specific atomic data needs. This work is supported by the STFC of the UK.

References

Pickering, J. C., Blackwell-Whitehead, R., Thorne, A. P., et al. 2011, Can.J.Phys, 89, 387
Editorial 2013, Nature, 503, 437 (27 November 2013) doi:10.1038/503437a
Ruffoni, M. P., Allende Prieto, C., Nave, G., & Pickering, J. C. 2013, ApJS, 779, 17
Ruffoni, M. P., Den Hartog, E. A., Lawler, J. E., et al. 2014, MNRAS, 441(4), 3127