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Throughout, (X, s ) denotes a partially ordered set (p.o. set), where X is assumed to
be finite. A subset Y of X is called a k-union if Y contains no chain of length fc + 1. In
particular, therefore, a 1-union is just an antichain; and it is readily seen that Y is a
k-union if and only if it is a union of fc antichains. (Dually, a subset Z of X is a k-counion
if Z contains no antichain of length k + X.) We denote by dk(X) the maximum cardinality
of a k-union in X, with a similar notation for other p.o. sets. Now let IS ={C 1 ; . . . , Q}^,
be any partition of X into chains, and write

q

j3fc(
<8)=Imin(k,|Cl|).

i = l

Since no k-union can intersect a chain in more than k elements, it follows at once that

A chain partition ^ for which

is called k-saturated. In [3], Greene and Kleitman have shown that k-saturated partitions
exist for every positive integer k and, in [4], Saks has provided a much simpler and very
elegant proof of this basic result. The case fc = 1 is, of course, Dilworth's theorem [1]. In
fact, Greene and Kleitman proved a stronger theorem, namely that there always exists a
chain partition of X which is simultaneously k- and (k + l)-saturated. It would appear that
the theory of counions depends on this stronger theorem, and it is our purpose in this
short note to point out how the method of Saks can easily be exploited to obtain this
generalization.

Following Saks, let us denote by [k] the p.o. set on {1 ,2 , . . . , fc} with the natural
ordering, and let Xx[k] be the usual product set, i.e. it consists of all pairs (x, i) with
xeX and 1 < i < k , and is made into a p.o. set with respect to componentwise order. In
this latter p.o. set, we shall say that an element (x, i) is at level i.

LEMMA 1. An antichain of length p (>d,(Xx[fc])) in the p.o. set Xx[fc + 1] contains
at least p-d,(Xx[fc]) elements at level 1.

For, let A be such an antichain containing just n elements at level 1, and let the set
of these elements be A'. Then A\A' is an antichain in Xx[fc + l ] \Xx[ l ] . But this p.o.
set is isomorphic to Xx[fc], and so

|A\A' |<d,(Xx[k]) ,
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from which we deduce that
n>p-d , (Xx[k] ) .

It is Lemma 2 below which is the crux of the argument. Before stating it we recall a
result on maximum-sized antichains. Let the set of all these in a given p.o. set be if. A
relation < defined on if by the rule

A < A ' O for each a e A, there exists a 'e A' with a <a!

is itself a p.o. on if, and with respect to < there exists a (unique) greatest member of if,
i.e. a 'top' antichain A+eif such that A < A+ for every A&if. (See, for example, [2].) In
the statement of the lemma, we write mk = d1(Xx[fc + l])-d,(Xx[fc]). Also, a chain
partition which contains as few chains as possible is called a minimum chain partition.

LEMMA 2. There exists a minimum chain partition of Xx [k + 1] which contains at least
(and so exactly) mk chains consisting entirely of elements at level 1.

Let % be a minimum chain partition of Xx[fc + 1] which contains just s chains
consisting entirely of elements at level 1. If s<mk, we shall show how to increase this
number by 1. Write % ={CU ...,CS, Cs+l,. .., Cq}#, where q = d,(Xx[k + l]) and where
C,, . . .,CS consist entirely of elements at level 1, and let X' = Xx[fc + l ] \ ( d U . . . UCS).
Now X' is covered by q — s chains and by no fewer; so any maximum antichain in X' has
length q-s (by Dilworth's theorem). Let A+ be the top maximum antichain in X'. By
Lemma 1, A+ contains at least (q-s)-dl(Xx[k]) = mk — s (>0) elements at level 1.
Suppose a is one of these and assume aeCs+l. Write Cs+1 = C7+1 (JCt+i, where Cj+i
consists of all elements of Cs+1 below and including a, and write X" = X'\CT+1. Now in
X" there can be no antichain of length q — s. For if A were such a one then A must
contain an element b (say) from C*+1, and, since A < A+, there exists ceA+ with b<c.
Since b>a, we have a<c, a,ceA+, which is a contradiction. Therefore X" can be
covered by q - s - 1 chains Cs'+2,..., Cq (say), and finally {C, , . . . , Cs, Cs~+1, Cs'+2,. . . , Cq}
is a minimum chain partition of Xx[k +1] with the first s +1 chains consisting entirely of
elements at level 1.

The proof of the general theorem of Greene and Kleitman now follows from the
sequence of immediately verifiable statements I-V below. We use the term 'special' for
those chain partitions of Xx[fc + 1] which Saks called 'associable'.

I. There exists a minimum special chain partition of Xx[fc + 1] in which mk chains
consist only of elements at level 1.

If <£ ={Ci , . . . , Cmk, Cm t + 1 , . . . , Cq}# is such a partition, where C , , . . . , Cmt consist
entirely of elements at level 1, then ^' = {C[,..., Cq}, where C'i = {(x,j): (x, j + V)eQ}
( l < i < q ) , is such that C[ = .. . = C^k = 0 - Denote by %" the collection of non-empty
members of tS'.

II. <g" is a chain partition of Xx[fc].
III. c€" is minimum.
IV. <<?" is special.
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V. If c€* is the chain partition of X which is associated (in the sense in which Saks
uses this term) with %, then ^ * is also associated with <£", and therefore

and ft+1(«*) = dk
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