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Abstract
This study considers a network formation model in which each dyad of agents strategically determines
the link status. Our model allows the agents to have unobserved group heterogeneity in the propensity of
link formation. For the model estimation, we propose a three-step maximum likelihood method, in which
the latent group structure is estimated using the binary segmentation algorithm in the second step. As an
empirical illustration, we focus on the network data of international visa-free travels. The results indicate
the presence of significant strategic complementarity and a certain level of degree heterogeneity in the
network formation behavior.
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1. Introduction
Empirical modeling of network formation is an important research topic that has been stud-
ied for several decades. While most of these models have been developed in the mathematical
statistics literature, as the importance of network structure in many economic activities has been
increasingly recognized, there is currently a growing number of econometric studies that focus on
network formation in conjunction with the significant advancement in the related econometric
techniques.1

Econometric studies on network formation can be classified into two types: those that attempt
to explicitly incorporate the interaction of individuals in the realizing network structure endoge-
nously affecting the network formation behavior (e.g., Leung, 2015; Mele, 2017; Sheng, 2020) and
those that do not account for such simultaneous interactions but emphasize modeling a flexible
form of individual heterogeneity (e.g., Graham, 2017; Jochmans, 2018; Dzemski, 2019). For the
former type, network formation is modeled as a game in which agents strategically form links to
maximize their payoffs. Although this game-theoretic approach is (economic) theoretically well-
underpinned, we often encounter serious analytical difficulties due to the presence of multiple
equilibria. To circumvent these difficulties, we typically need to introduce some ad hoc behav-
ioral assumptions into the network formation process, or we simply discontinue point-identifying
the models and resort to partial identification. Compared with the former, the latter is more
“descriptive” than “structural,” but has great flexibility in the model specification. These mod-
els are relatively easy to implement and, thus, are appealing to empirical researchers. However,

∗ For recent developments regarding econometric approaches for analyzing network formation, we refer readers to, for
example, Chandrasekhar (2016) and de Paula (2013).
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they are not suitable for analyzing the interactions of agents in network formation, which should
be an essential factor in economic and social network data.

These two types of econometric models have their own advantages. Hence, it is an ingenu-
ous idea to construct a new model by combining them. However, to my best knowledge, there
are only a few papers that address this way of model extension (e.g., Graham, 2016; Graham &
Pelican, 2020; Pelican & Graham, 2020). Graham (2016) considers the “dynamic” (rather than the
instantaneous) interdependencies in network formation. The latter two papers consider a quite
general framework that incorporates both a general form of strategic interaction and unobserved
degree heterogeneity into a single model. However, they mainly focus on testing the presence of
interactions, but not on the estimation of the models.

In this paper, we propose a new “pairwise” network formation model that is empirically
tractable while retaining the nice properties of the above-mentioned approaches. More specif-
ically, we assume that each link connection is determined by the strategic interaction solely
between the corresponding dyad of agents, without affecting or being affected by other dyads,
rather than regarding the realized network as a consequence of a large n-player game. Although
ignoring such network externalities limits the range of applications of our model, it would still
cover a fairly large number of interesting empirical situations, and, most importantly, the multiple
equilibria problem can be greatly mitigated. In addition, we allow each agent’s payoff to depend on
two unobserved preference parameters that represent his/her outgoing and incoming propensity,
which we refer to as the sender and the receiver effect, respectively.

For estimating our pairwise network formation model, assuming that the model error terms
follow some parametric distribution, we propose using the maximum likelihood (ML) method.
Although multiple equilibria can occur even in our binary game situation, we can address this
issue in the same manner as in Bresnahan & Reiss (1990) and Berry (1992). The agent-specific
preference heterogeneity parameters are treated as the fixed-effect parameters to be estimated.
Note that if we include these heterogeneity parameters directly into the model, as the dimension
of the parameters increases proportionally to the sample size, our ML estimator suffers from the
incidental parameter problem. As will be confirmed in the numerical simulations reported later,
the incidental parameter bias can be severe. Thus, to avoid the incidental parameter problem, as
a second novel part of this study, we focus on a situation where the individuals can be classified
into several unknown groups and their specific effects are homogeneous within each group. If the
number of the latent groups is fixed, we can expect that the ML estimator becomes asymptotically
unbiased at the parametric rate, and hence, the standard inference procedure can be applied.

Note that if one is interested only in the “common” parameters rather than in the latent group
heterogeneity, or believes that the agents are intrinsically heterogeneous and no such group struc-
ture exists, employing a conventional fixed-effect bias correction method such as those in Graham
(2017) and Yan et al. (2019) would be reasonable to address the incidental parameter problem.
However, there may be some empirical fields (e.g., international relations, marketing) where iden-
tifying some group structure itself has important policy implications. Another practical benefit of
grouping the observations is that, even when they are not exactly grouped into small groups in
reality, it can play the role of regularization to avoid overfitting to the data.

In the literature on statistical network data analysis, uncovering such latent group structures
in networks has been intensively studied (e.g., Newman & Girvan, 2004; Bickel & Chen, 2009;
Fortunato, 2010; Karrer & Newman, 2011; Rohe et al., 2011; Abbe, 2017). In panel data analysis
also, identification of unobserved grouped heterogeneity is one of the most active research areas
(e.g., Bonhomme &Manresa, 2015; Ke et al., 2016; Su et al., 2016;Wang et al., 2018). Although the
application of these grouping methods to econometric network models has been relatively limited
thus far, it is a promising approach, as discussed in Bonhomme (2020). In this study, among sev-
eral alternative methods, we adopt the binary segmentation (BS) method (see, e.g., Bai, 1997; Ke
et al., 2016; Lian et al., 2021; Wang & Su, 2021). Compared to the other grouping methods, the BS
method has several favorable properties including fast computation speed and robustness.
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The whole estimation procedure is divided into three steps. The first step is to obtain the ML
estimator without considering the latent group structures. Although this estimator suffers from
the incidental parameter bias, it is still possible to produce consistent estimates for the hetero-
geneity parameters. In the second step, we apply the BS method with respect to the estimated
sender effect parameters and the receiver effect parameters separately to identify each agent’s
group memberships. In the third step, we re-estimate the model using the ML method given the
estimated group structure. Under certain regularity conditions, we show that the proposed esti-
mator is asymptotically unbiased and normal at the parametric rate. Furthermore, the estimator is
asymptotically equivalent to the “oracle” estimator that is obtained based on the (unknown) true
group memberships.

To illustrate our model empirically, we investigate the formation of international visa-free
travel networks, where the dependent variable of interest is defined as follows: gi,j = 1 if coun-
try i allows the citizens in country j to visit i without visas and gi,j = 0 if not. We apply our model
framework to the network of 57 countries selected mainly from Asia, the Middle East, the former
USSR, and Oceania. As expected, we find the presence of a certain level of degree heterogeneity
in both the sender and the receiver effects. Interestingly, there seems to be a negative correla-
tion between the sender effects and the receiver effects; in other words, there is a tendency that a
country’s sender effect increases as its receiver effect decreases. Our estimation result also suggests
that there is a significant strategic complementarity in the network formation behavior. Another
interesting finding is that the countries are homophilous—tend to connect with similar others—in
terms of the political system.
Organization of the paper:The remainder of the paper is organized as follows. In Section 2, we
formally introduce the model investigated in this study. In this section, we demonstrate that our
pairwise model exhibits multiple equilibria and discuss the conditions under which the model can
be point-identified. Section 3 provides a detailed explanation about our three-step ML estimator.
We also investigate the asymptotic properties of the proposed estimator in this section. In Section
4, we present a set of Monte Carlo experiments to evaluate the finite sample performance of the
proposed estimator. Section 5 presents our empirical analysis, and, finally, Section 6 concludes.
All the technical details are relegated to Appendix.
Notation:For a natural number n, In denotes an n× n identity matrix. 1{·} denotes the indicator
function, which is one if its argument is true and zero otherwise. For a matrix A, we use ||A|| to
denote its Frobenius norm: ||A|| = √

tr{AA�}, where tr{·} is a trace of amatrix.WhenA is a square
matrix, we use λmin(A) to denote its smallest eigenvalue. For a vector a= (a1, . . . , ak)�, ||a||∞
denotes its maximum norm: ||a||∞ =max1≤i≤k |ai|. For a general set X , we use X int to denote its
interior. In addition, |X | denotes the cardinality ofX . c (possibly with subscript) denotes a generic
positive constant whose exact value may vary per case.

2. Model setup and identification
2.1 Pairwise strategic network formationmodel
Suppose that we have a sample of n agents that form social networks whose connections are rep-
resented by an n× n adjacency matrix Gn = (gi,j)1≤i,j≤n. These agents can be individuals, firms,
municipalities, or nations depending on the context. The network is directed; that is, regardless
of the value of gj,i, we observe gi,j = 1 if agent i links to j and gi,j = 0 otherwise. There are no self-
loops; that is, the diagonal elements of Gn are all zero. Throughout the paper, we assume that the
status of (gi,j, gj,i) is determined solely by the pair of agents (i, j), without considering the status of
other network links. Specifically, for each pair (i, j), suppose that i’s marginal payoff of forming a
link with j given gj,i = q is written as

ui,j(q)= Z�
i,jβ0 + α0q+A0,i + B0,j − εi,j, for i �= j.
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Here, Zi,j ∈R
dz is a vector of observed covariates, A0,i ∈R is agent i’s individual specific effect as

a “sender,” B0,j ∈R is j’s individual specific effect as a “receiver,” εi,j ∈R is an unobservable payoff
component, and β0 ∈R

dz and α0 ∈R are unknown coefficient vector and the interaction effect
parameter, respectively. The covariates Zi,j and Zj,i may contain common elements; however, in
the later discussion, we require that they must have some agent-specific elements that can vary
across the partners. The individual specific effects A0,i and B0,j, which we call the sender and the
receiver effect, respectively, can be interpreted as the level of i’s willingness to create connections
with others and the popularity of j, respectively, that generate degree heterogeneity across the
agents. We treat {(A0,i, B0,i)} as fixed-effect parameters to be estimated.

We assume that the agents have complete information; that is, the realizations of (Zi,j, Zj,i) and
(εi,j, εj,i) are common knowledge to both i and j. Then, if we assume that the observed network Gn
is formed by a collection of Nash equilibrium actions, we obtain the following econometric model:

gi,j = 1
{
Z�
i,jβ0 + α0gj,i +A0,i + B0,j ≥ εi,j

}

gj,i = 1
{
Z�
j,iβ0 + α0gi,j +A0,j + B0,i ≥ εi,j

}
, for i �= j

(1)

The following are the two examples to which the above framework can be potentially applied.

Example 2.1 (Online social networking). The analysis of online social networking behavior is an
active research topic in network science. For some social networking sites, users can easily estab-
lish links to others (become a follower) without mutual consent. In addition, whether a person
becomes a follower of someone is often irrelevant to who else they are following. This would be a
situation where our framework reasonably fits.

Example 2.2 (International visa-free network). In the research on international migration and
tourism, investigating the determinants and impacts of visa policies is one of the central interests
(e.g., Neiman & Swagel, 2009; Neumayer, 2010; McKay & Tekleselassie, 2018). As bilateral visa
policies are naturally observed as a consequence of strategic (economic and/or political) interac-
tions between the two countries, our model would be an appropriate analytical tool here. In our
empirical study presented in Section 5, by setting gi,j = 1 if country i allows visa-free entry for the
citizens of country j and gi,j = 0 if not, we will show that the magnitude of the bilateral interaction
in visa policies is significant.

In these examples, we can naturally imagine that the strategic interaction effect α0 is positive
(i.e., strategic complements). We assume that strategic complementarity would be reasonable for
most empirical situations of network formation games. Then, throughout the paper, we impose
this assumption: α0 > 0. Under strategic complementarity, each pair’s Nash equilibrium action
can be summarized in Figure 1. As shown in the figure, the space of (εi,j, εj,i) cannot be partitioned
into non-overlapping regions associated with the four alternative realizations of (gi,j, gj,i). That is,
both (gi,j, gj,i)= (1, 1) and (gi,j, gj,i)= (0, 0) can occur in the shaded area in the figure, and the link
status is not uniquely determined in this area (i.e., multiple equilibria). This non-uniqueness of
model-consistent decisions is called incompleteness and has been extensively studied in the liter-
ature on simultaneous equation models for discrete outcomes (e.g., Tamer, 2003; Lewbel, 2007;
Ciliberto & Tamer, 2009; Chesher & Rosen, 2020).

There are several approaches to handle this incompleteness issue in the literature.2 Among
them, this study adopts the traditional approach developed by Bresnahan&Reiss (1990) and Berry
(1992) that focuses only on the unique equilibrium outcomes. That is, we consider estimating the
model using only the information about “one-way links” in the network. Specifically, we develop
an ML estimator based on the probabilities of the three regions partitioned by the bold solid lines
in Figure 1.
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Figure 1. Pure strategy of Nash equilibrium.

In the following, we assume that {εi,j} are identically distributed with a known cumulative dis-
tribution function (CDF) F. Further, we assume that the pairs {(εi,j, εj,i)} are independent and
identically distributed (i.i.d.) across pairs, and their joint distribution is represented by H(·, ·; ρ0)
such that Pr (εi,j ≤ a1, εj,i ≤ a2)=H(a1, a2; ρ0), where ρ0 ∈R is a parameter controlling the corre-
lation between εi,j and εj,i. Define y(1,0)i,j ≡ 1{(gi,j, gj,i)= (1, 0)} and y(0,1)i,j ≡ 1{(gi,j, gj,i)= (0, 1)}. Let
χn,a be the a-th column of In, A0 = (A0,1, . . . ,A0,n)�, and B0 = (B0,1, . . . , B0,n)�, so that we can
write Z�

i,jβ0 +A0,i + B0,j =W�
i,j�0, where Wi,j = (Z�

i,j , χ�
n,i, χ�

n,j)� and �0 = (β�
0 ,A�

0 , B�
0 )

�. In
addition, we denote θ0 = (β�

0 , α0, ρ0)� and γ0 = (A�
0 , B�

0 )
�. Then, the probabilities of {y(1,0)i,j = 1}

and {y(0,1)i,j = 1} are respectively given as follows:

P(1,0)i,j (θ0, γ0)≡ F(W�
i,j�0)−H(W�

i,j�0,W�
j,i�0 + α0; ρ0),

P(0,1)i,j (θ0, γ0)≡ F(W�
j,i�0)−H(W�

i,j�0 + α0,W�
j,i�0; ρ0)

Here, note that the equalities y(1,0)i,j = y(0,1)j,i and P(1,0)i,j (θ , γ )= P(0,1)j,i (θ , γ ) hold. Thus, the likelihood
function can be concentrated with respect to (y(1,0)i,j , P(1,0)i,j (θ , γ )); hereinafter, we omit the super-
scripts and denote yi,j = y(1,0)i,j and Pi,j(θ , γ )= P(1,0)i,j (θ , γ ) when there is no confusion. Then, the
log-likelihood function can be written as

Ln(θ , γ )= 2
N

n∑
i=1

∑
j>i

[
yi,j ln Pi,j(θ , γ )+ yj,i ln Pj,i(θ , γ )+ (1− yi,j − yj,i) ln (1− Pi,j(θ , γ )− Pj,i(θ , γ ))

]

= 1
N

n∑
i=1

∑
j�=i

[
yi,j ln Pi,j(θ , γ )+ yj,i ln Pj,i(θ , γ )+ (1− yi,j − yj,i) ln (1− Pi,j(θ , γ )− Pj,i(θ , γ ))

]

= 1
N

n∑
i=1

∑
j�=i

[
2yi,j ln Pi,j(θ , γ )+ (1− 2yi,j) ln (1− Pi,j(θ , γ )− Pj,i(θ , γ ))

]
(2)

where N ≡ n(n− 1). As above, we can consider three equivalent representations for the log-
likelihood function and switch between them according to analytical convenience.
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Remark 2.1 (Asymptotic framework). We investigate the identification and asymptotic proper-
ties of our estimator as n, the network size, increases, which means that we consider a sequence
of networks {Gn} with n tending to infinity. However, when each agent represents a country (as in
our empirical analysis), the size of the network is fixed. In such situations, in the causal inference
literature, researchers often adopt a finite-population design-based framework (cf. Abadie et al.,
2020). Particularly, Athey et al. (2018) considered the hypothesis testing of the causal effects under
network interference using a finite-population network model. However, to the best of our knowl-
edge, finite-population inference in the context of network formationmodels is still a theoretically
unexplored topic.

2.2 Discrete heterogeneity
This study considers situations where the agents are grouped into several sub-samples, and the
individual fixed effects are heterogeneous across these groups but are homogeneous within the
groups in the following manner:

A0,i =
KA∑
k=1

a0,k · 1{i ∈ CA0,k}, B0,i =
KB∑
k=1

b0,k · 1{i ∈ CB0,k} (3)

That is, the agents can be classified into KA groups CA0 ≡ {CA0,1, . . . , CA0,KA} in terms of the sender
effects, where KA is the total number of groups, which form a partition of {1, . . . , n} into KA sub-
sets. Similarly, in terms of the receiver effects, the agents can be grouped as CB0 ≡ {CB0,1, . . . , CB0,KB}.
The group where each individual belongs to remains unknown to us. Meanwhile, it is often
assumed in the literature that the number of groups is known to researchers (e.g., Bonhomme
& Manresa, 2015; Okui & Wang, 2021). Then, following these studies, we treat KA and KB as
known values and assume that KA,KB ≥ 2.3 We discuss how to choose KA and KB in practice in
Section 5. Note that transforming (A0, B0) to (A0 + c, B0 − c) for any constant c does not change
the model (1). Thus, without loss of generality, we assume that a0,1 = 0 for normalization.

Under this setup, the full ML estimator solves

max
(θ ,a2,...,aKA ,b1,...,bKB ,CA,CB)

Ln(θ ,A, B) (4)

where CA ≡ {CA1 , . . . , CAKA}, CB ≡ {CB1 , . . . , CBKB}, Ai = ∑KA
k=1 ak · 1{i ∈ CAk }, and Bi = ∑KB

k=1 bk ·
1{i ∈ CBk }. The maximization problem in (4) is clearly a combinatorial (NP-hard) optimization
problem. In the context of panel data models, several authors have proposed iterative algorithms
to obtain a (local) solution efficiently to the problems similar to (4) (e.g., Bonhomme & Manresa,
2015; Liu et al., 2020). However, the iterative algorithm is still computationally demanding. More
importantly, it cannot be directly applied to our network model where each agent’s heterogeneity
parameters affect not only the value of his/her own likelihood function but also that of the others.

Hence, in this paper, we propose to break down the maximization problem in (4) into three
steps. The first step is to estimate γ0 = (A�

0 , B�
0 )

� using the full ML estimator based on the log-
likelihood function in (2) without explicitly considering the group structure. Given the consistent
estimates of these parameters, the second step is to estimate the group memberships CA0 and CB0
using the BS algorithm. The final step is to solve (4) with the group structure replaced by the
estimated CA0 and CB0 .
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2.3 Identification
Before presenting the estimation procedure in detail, we discuss identification conditions for the
parameters in model (1). It is important to note that, even when individual heterogeneity parame-
ters have only finite variations groupwisely, each individual’s parameters must be point-identified
separately to estimate the group structure consistently. A reason for this is that our three-step
estimator requires preliminary consistent estimates of A0 and B0 in the estimation of the group
structure.4 Here, again, we need some location normalization to identify A0 and B0. Similarly as
above, we set A0,1 = 0 without loss of generality. To facilitate the discussion, we also introduce
several simplifying assumptions, some of which are mentioned previously.

Assumption 2.1. (i) The payoff disturbances {εi,j} are identically distributed on the wholeR with
a known strictly increasingmarginal CDF F( · ). (ii) The pairs {(εi,j, εj,i)} are i.i.d. across dyads with
joint CDF H(·, ·; ρ0), and H(·, ·; ρ) is strictly increasing in each argument for all ρ ∈R. (iii) F( · )
is three times continuously differentiable, and H(·, ·; · ) is three times continuously differentiable
with respect to all arguments.

Let � ≡ B ×A×R, An ≡ {0} ×A
n−1, Bn ≡B

n, and Cn ≡An ×Bn, where B ⊂R
dz , A⊂

R++,R⊂R, A⊂R, and B⊂R are parameter spaces for β , α, ρ, Ai’s, and Bi’s, respectively.

Assumption 2.2. (i) θ0 ∈ �int, where � is compact. (ii) For all i, A0,i ∈A
int, and B0,i ∈B

int, where
A and B are compact.

Assumption 2.3. The covariates {Zi,j} are uniformly bounded.

In Assumption 2.1(i), we assume that the marginal CDF of the error term is known. This
assumption is typically adopted in the estimation of complete information games. As shown
by Khan & Nekipelov (2018), when the marginal CDFs of (εi,j, εj,i) are unknown, it is gener-
ally impossible to estimate the interaction effect α0 at the parametric rate. Assumption 2.1(ii)
requires that the error terms are independent across dyads. Note that the parameters (A0,i, B0,i)
have the role of accommodating all unobserved payoff components specific to i. Therefore, assum-
ing the independence within the remainders {εi,1, . . . , εi,n} should not be too restrictive. The
other requirements in Assumption 2.1 are standard in that they are satisfied in most of com-
monly used parametric models. In Assumption 2.2(ii), we assume that the fixed-effect parameters
{(A0,i, B0,i)} are bounded. Although imposing boundedness on the degree heterogeneity parame-
ters is commonly accepted in the literature on network formation models, some studies consider a
more general framework where ||A0||∞ and ||B0||∞ can grow slowly (e.g., Yan et al., 2016, 2019).
The parameter space R for the correlation parameter ρ depends on the choice of the functional
form of H, which is typically R= [− 1, 1]. Assumption 2.3 should not be restrictive in practice.
Hereinafter, we fix the values of {Zi,j}; that is, we interpret the following analysis as being condi-
tional on the realization of {Zi,j}. Thus, any randomness in the model is considered to be due to
the randomness of {εi,j}.

An important implication from Assumptions 2.1–2.3 is that the one-way link probabilities
{Pi,j(θ , γ )} are uniformly bounded away from 0 and 1 for all possible parameter values. In other
words, we are assuming that our networks are dense such that the number of one-way links
per agent will be about proportional to the number of sampled agents. The plausibility of this
assumption depends on the context of application. For example, international trade networks
and the visa-free travel networks given in Example 2.2 and Section 5 may be regarded as dense
networks.5
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Assumption 2.4. For any (β1, α1, γ1), (β2, α2, γ2) ∈ B ×A×Cn such that (β1, α1, γ1) �=
(β2, α2, γ2), either or both (a) and (b) hold:

a. lim inf
n→∞

1
N

n∑
i=1

∑
j�=i

1
{
W�

i,j (�1 − �2)> 0, W�
j,i (�1 − �2)+ α1 − α2 < 0

}
> 0

b. lim inf
n→∞

1
N

n∑
i=1

∑
j�=i

1
{
W�

i,j (�1 − �2)< 0, W�
j,i (�1 − �2)+ α1 − α2 > 0

}
> 0

where �1 = (β�
1 , γ

�
1 )�, and �2 = (β�

2 , γ
�
2 )�.

Assumption 2.4 is our main identification condition, which basically requires the following two
conditions. The first condition is a standard full-rank condition for {Wi,j} and {Wj,i}. The second
condition is that at least either Zi,j or Zj,i should contain agent-specific covariates that have large
enough supports and also have variations across all potential partners. If no such variables exist,
since the signs of Z�

i,j(β1 − β2) and Z�
j,i(β1 − β2) cannot differ for some parameter values for all

(i, j)’s, Assumption 2.4 does not hold. It should be noted that this assumption is not inconsis-
tent with Assumption 2.3 under the compactness of the parameter space (i.e., Assumption 2.2).
While the existence of player-specific continuous variables with unbounded supports is typically
required in the identification of non/semiparametric game models—the so-called identification-
at-infinity argument (see, e.g., Tamer, 2003; Kline, 2015), we can develop our identification result
under less stringent conditions owing to the full-parametric model specification.

Theorem 2.1 (Identification). Suppose that Assumptions 2.1(i)–(ii) and 2.2–2.4 hold.
(i) Then, if ρ0 is known, (β0, α0, γ0) is point-identified on B ×A×Cn. (ii) If ρ0 is
unknown, but it is a unique maximizer of L∗

n(ρ), then (θ0, γ0) is point-identified on
� ×Cn, where L∗

n(ρ)≡ELn((β̃0(ρ)�, α̃0(ρ), ρ)�, γ̃0(ρ)), and (β̃0(ρ), α̃0(ρ), γ̃0(ρ))≡
argmax(β ,α,γ )∈B×A×Cn ELn((β�, α, ρ)�, γ ).

These identification results are similar to those in Theorem 2 of Aradillas-Lopez & Rosen
(2019). In the literature on network formation models, it is often assumed that εi,j and εj,i are
independent (e.g., Hoff et al., 2002; Jochmans, 2018; Yan et al., 2019). If they are independent,
since ρ0 = 0 is known, condition (i) is satisfied. Condition (ii) clearly depends on the choice of
H function and is difficult to verify in general; however, this is directly empirically testable. A
more primitive sufficient condition for this is that L∗

n(ρ) is strictly concave, which is satisfied
when ∂2L∗

n(ρ)/(∂ρ)2 is strictly negative under Assumption 2.1(iii). We provide an explicit form
of ∂2L∗

n(ρ)/(∂ρ)2 in Appendix C.1. For another identification condition for ρ0, see, for example,
Theorem B.2 of Hoshino & Yanagi (2021), that is based on the monotonicity of the likelihood
function with respect to ρ.

Remark 2.2 (Other identification strategies). There are several other routes for identification of
our model than the one in Theorem 2.1. For example, as our model is fully parametric, a classical
parametric identification approachmay be used based on the properties of the informationmatrix
(e.g., Rothenberg, 1971; Bjorn & Vuong, 1984), although it is not easy to verify in practice. If
one admits the existence of a player-specific continuous variable that has a positive density on
the whole R, then the model can be easily identified by the identification-at-infinity approach in
the same manner as in Tamer (2003). Since assuming the existence of such unbounded variables
is restrictive in practice, several authors have proposed other approaches based on some shape
restrictions on the distribution of unobservables (e.g., Kline, 2016). Investigating whether their
approaches can be applied to our model is an interesting topic, but it is left for a future work.
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3. Three-step ML estimation
3.1 First-step ML estimator
The first step of the ML estimation aims to obtain consistent estimates of γ0 = (A�

0 , B�
0 )

�. Let

(θ̂n, γ̂n)= argmax
(θ ,γ ) ∈ �×Cn

Ln(θ , γ ) (5)

where θ̂n = (β̂�
n , α̂n, ρ̂n)�, and γ̂n = (Â�

n , B̂�
n )�. Below, we present the asymptotic properties of

the initial full ML estimator in (5) with the main focus on γ̂n. Instead of introducing particular
identification conditions, for generality, we directly assume that the true parameter (θ0, γ0) is a
unique maximizer of ELn(θ , γ ).

Assumption 3.1. ELn(θ , γ ) is uniquely maximized at (θ0, γ0) ∈ � ×Cn for all sufficiently
large n.

We first establish several consistency results in the next theorem.

Theorem 3.1. Suppose that Assumptions 2.1–2.3 and 3.1 hold. Then, we have (i) θ̂n
p→ θ0,

(ii) 1
n

∑n
i=1 |Ân,i −A0,i| p→ 0, (iii) 1

n
∑n

i=1 |̂Bn,i − B0,i| p→ 0, and (iv) ||γ̂n − γ0||∞ p→ 0.

Next, we derive the convergence rate of γ̂n. To this end, it is convenient to re-define θ̂n and
θ0 as

θ̂n = argmax
θ∈�

Ln(θ , γ̃n(θ)) and θ0 = argmax
θ∈�

ELn(θ , γ̃0(θ))

respectively, where γ̃n(θ)≡ argmaxγ∈Cn Ln(θ , γ ) and γ̃0(θ)≡ argmaxγ∈Cn ELn(θ , γ ) for any
given θ ∈ �. Further, we define γ−1 = (A2, . . . ,An, B1, . . . , Bn)�,

Hn,γ γ (θ , γ )
(2n−1)×(2n−1)

≡ ∂2Ln(θ , γ )
∂γ−1∂γ �−1

, Hn,θθ (θ , γ )
(dz+2)×(dz+2)

≡ ∂2Ln(θ , γ )
∂θ∂θ� , Hn,γ θ (θ , γ )

(2n−1)×(dz+2)
≡ ∂2Ln(θ , γ )

∂γ−1∂θ�

and Hn,θγ (θ , γ )≡Hn,γ θ (θ , γ )�. The exact form of Hn,γ γ (θ , γ ) is given in (A.2) in Appendix A.
Finally, let

In,θθ (θ , γ )
(dz+2)×(dz+2)

≡Hn,θθ (θ , γ )−Hn,θγ (θ , γ )
[Hn,γ γ (θ , γ )

]−1 Hn,γ θ (θ , γ )

This In,θθ (θ , γ ) serves as the Hessian matrix for the concentrated ML estimator θ̂n (cf. Amemiya,
1985).

Assumption 3.2. γ̃0(θ) uniquely exists uniformly on {�:||θ − θ0|| ≤ ε} for an arbitrary small
ε > 0.

Assumption 3.3. For an arbitrary small ε > 0, there exist cγ , cθ > 0 that may depend on ε

such that (i) λmin
(−n ·Hn,γ γ (θ , γ )

)
> cγ and (ii) λmin

(−In,θθ (θ , γ )
)
> cθ with probability

approaching one (w.p.a.1) uniformly on {� ×Cn:||θ − θ0|| ≤ ε, ||γ − γ0||∞ ≤ ε}.

Assumptions 3.2 and 3.3 should be fairly reasonable in practice. Then, under these additional
assumptions, we can derive the �1-norm and max-norm convergence rates for γ̂n, as shown in the
next theorem.
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Theorem 3.2. Suppose that Assumptions 2.1–2.3 and 3.1–3.3 hold. Then, we have (i)
1
n

∑n
i=1 |Ân,i −A0,i| =OP(n−1/2), (ii) 1

n
∑n

i=1 |̂Bn,i − B0,i| =OP(n−1/2), and (iii) ||γ̂n − γ0||∞ =
OP(

√
ln n/n).

The max-norm convergence rate obtained in Theorem 3.2 is consistent with the result of
Theorem 3 in Graham (2017) and that of Theorem 3.1 in Yan et al. (2019).

3.2 Binary segmentation algorithm
Given the consistent estimates of A0 and B0, we use the BS algorithm to estimate the group struc-
ture. We first sort Ân and B̂n in ascending order and write the order statistics as Ân,(1) ≤ Ân,(2) ≤
· · · ≤ Ân,(n), and B̂n,(1) ≤ B̂n,(2) ≤ · · · ≤ B̂n,(n). In the following, we mainly describe the estimation
of the group membership for the sender effects, CA0 . The exactly same procedure described below
can be used to estimate CB0 .

A concept behind the BS algorithm is quite simple. If {A0,i} are heterogeneous across KA latent
groups but are homogeneous within the groups, there should exist KA − 1 “break points” in the
sorted {A0,i}. Since Ân is uniformly consistent forA0, these break points appear also in the follow-
ing sequence: Ân,(1), . . . , Ân,(n) w.p.a.1. For 1≤ i< j≤ n, we define �̂A(i, j) as the sum of squared
variations over {Ân,(i), . . . , Ân,(j)}:

�̂A(i, j)≡
j∑

l=i
(Ân,(l) − Ān,i,j)2, where Ān,i,j ≡ 1

j− i+ 1

j∑
l=i

Ân,(l)

Further, we define

ŜAi,j(κ)≡
⎧⎨
⎩

1
j−i+1

(
�̂A(i, κ)+ �̂A(κ + 1, j)

)
if j< κ

1
j−i+1�̂

A(i, j) if j= κ

That is, ŜAi,j(κ) provides the total variance of {Ân,(i), . . . , Ân,(j)} when a break point is placed at κ .
Assuming that KA ≥ 2, the BS algorithm proceeds as follows:

Step 1 (KA = 2):We find the first break point, say t̂1, by

t̂1 = argmin
1≤κ<n

ŜA1,n(κ)

Then, we can partition {Ân,(i)} into the following two subsets: {Ân,(i)} = {Ân,(i)}̂t1i=1
⋃{Ân,(i)}ni=̂t1+1.

If KA = 2, assuming that a0,1 < a0,2 without loss of generality, we obtain ĈAn,1 ≡ {i:̂An,(1) ≤ Ân,i ≤
Ân,(̂t1)} and ĈAn,2 ≡ {i:̂An,(̂t1+1) ≤ Ân,i ≤ Ân,(n)} as the estimators of CA0,1 and CA0,2, respectively, and
the algorithm stops. If KA > 2, we proceed to the next step.

Step 2 (KA = 3):Now, if KA = 3, there exists one more break point either in {Ân,(i)}̂t1i=1 or in
{Ân,(i)}ni=̂t1+1. Either one of the two converges to a sequence of identical constants as the sam-
ple size increases. Therefore, if ŜA1,̂t1 (̂t1)> ŜAt̂1+1,n(n) for example, the break point is likely to lie in
the former subset. Thus, the second break point, say t̂2, can be found by

t̂2 =
⎧⎨
⎩
argmin1≤κ<̂t1 Ŝ

A
1,̂t1

(κ) if ŜA1,̂t1 (̂t1)> ŜAt̂1+1,n(n)

argmin̂t1+1≤κ<n ŜAt̂1+1,n(κ) if ŜA1,̂t1 (̂t1)≤ ŜAt̂1+1,n(n)
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Then, we add t̂2 to the set of break points, and (with a little abuse of notation) we
sort and re-label the points to ensure that t̂1 < t̂2. The resulting partition is {Ân,(i)} =
{Ân,(i)}̂t1i=1

⋃{Ân,(i)}̂t2i=̂t1+1
⋃{Ân,(i)}ni=̂t2+1. Setting a0,1 < a0,2 < a0,3 without loss of generality,

we can define ĈAn,1 ≡ {i:̂An,(1) ≤ Ân,i ≤ Ân,(̂t1)}, ĈAn,2 ≡ {i:̂An,(̂t1+1) ≤ Ân,i ≤ Ân,(̂t2)}, and ĈAn,3 ≡
{i:̂An,(̂t2+1) ≤ Ân,i ≤ Ân,(n)} as the estimators of CA0,1, CA0,2, and CA0,3, respectively.

Step 3 (KA ≥ 4):When KA = 4, if max{̂SA1,̂t1 (̂t1), ŜAt̂1+1,̂t2
(̂t2), ŜAt̂2+1,n(n)} = ŜA1,̂t1 (̂t1) for example, the

third break point should exist in {Ân,(i)}̂t1i=1. Then, following the same procedure as above, we
can obtain t̂3 = argmin1≤κ<̂t1 Ŝ

A
1,̂t1

(κ). We repeat these steps until KA groups are detected with
KA − 1 break points. Finally, letting t̂0 = 0 and t̂KA = n so that t̂0 < t̂1 < · · · < t̂KA−1 < t̂KA , each
k-th group can be estimated by ĈAn,k ≡ {i:̂An,(̂tk−1+1) ≤ Ân,i ≤ Ân,(̂tk)}. Then, ĈAn ≡ {ĈAn,1, . . . , ĈAn,KA}
is our estimator for CA0 .

In the same manner as above, we define ĈBn ≡ {ĈBn,1, . . . , ĈBn,KB} for the estimation of CB0 . Note
that the identification of group membership can be achieved only up to “label swapping.” Thus,
without loss of generality, we can label the groups according to the values of the group effects such
that a0,1 < a0,2 < · · · < a0,KA ; that is, we define the k-th group as the group with the k-th smallest
sender effect. Similarly, we set b0,1 < b0,2 < · · · < b0,KB . To investigate the asymptotic properties
of the BS algorithm, we introduce the following assumption.

Assumption 3.4. (i) There exist cA, cB > 0 such that mink�=k′ |a0,k − a0,k′ | > cA and
mink�=k′ |b0,k − b0,k′ | > cB. (ii) |CA0,k|/n→ τAk ∈ (0, 1) for all k= 1, . . . ,KA and |CB0,k|/n→
τBk ∈ (0, 1) for all k= 1, . . . ,KB.

Assumption 3.4 is parallel to Assumption A2 in Wang & Su (2021). Similar assumptions are
commonly used in the literature of panel data models with latent group structure. The following
theorem provides the consistency result of the BS algorithm:

Theorem 3.3. Suppose that Assumptions 2.1–2.3 and 3.1–3.4 hold. Then, we have Pr (ĈAn =
CA0 )→ 1 and Pr (ĈBn = CB0 )→ 1.

Although the proof of Theorem 3.3 is almost analogous to Ke et al. (2016) and Wang & Su
(2021), for completeness, we provide it in Appendix B.

Remark 3.1 (Fine-tuning). Bai (1997) shows that the BS method tends to over/underestimate
the location of break points depending on the share of each group and the gaps between the val-
ues of the group effects. To account for this problem, he proposes the following repartitioning
method. Let {̂t0, . . . , t̂KA} be the estimated break points obtained by the standard BS method.
Then, we replace the initial estimate t̂k with t̂repartk ≡ argmin̂tk−1+1≤κ<̂tk+1

ŜAt̂k−1+1,̂tk+1
(κ) for all

k= 1, . . . ,KA − 1. Letting ĈA,repartn be the resulting repartitioned estimator of CA0 , given the result
of Theorem 3.3, it is straightforward to see that ĈA,repartn is also consistent for CA0 . The above repar-
titioning procedure can be implemented recursively until convergence. The numerical simulations
in Section 4 indicate that using this repartitioning method improves the probability of correctly
predicting the group memberships.

Remark 3.2 (Other grouping techniques). Other than the BS algorithm, we can consider using
alternative groupingmethods such as the k-means and the C-Lasso (classifier-Lasso) developed by
Su et al. (2016). As discussed in Wang & Su (2021), the main advantage of the BS algorithm over

https://doi.org/10.1017/nws.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.16


12 T. Hoshino

these alternatives is its computational and interpretational simplicity. The k-means algorithm is
NP-hard, and C-Lasso requires solving a large nonlinear optimization problem, whereas our BS
method does not involve any computational optimization.6 Additionally, the C-Lasso may end up
leaving some unclassified agents. Therefore, we need to classify such observations afterward based
on some criterion. Another possibility is to use finite-mixture modeling, which is more common
and traditional in statistical literature. However, the mixture-based approach is more suitable for
cross-sectional data. It only estimates the “share” of each group, requiring an additional classifi-
cation step to estimate the group membership of each agent, as in C-Lasso. Additionally, when
(KA,KB) is large, the mixture approach may be less practical because the marginal probability
of each dyad is represented as a mixture of (KAKB)2 conditional probabilities. As mentioned in
the introduction, if the group structure is not of interest, the standard fixed-effect bias correc-
tion method should be also considered. For more details about these approaches, including some
simulation results, see Appendices C.3 and C.4.

3.3 Post-grouping ML estimator
In the final step, we solve (4) approximately by using (ĈAn , ĈBn ) in the place of (CA0 , CB0 ). Recalling
that a1 is pinned at a1 = 0, let δ ≡ (θ�, a2, . . . , aKA , b1, . . . , bKB)�, and D≡ � ×A

KA−1 ×B
KB

for the parameter space of δ. We denote δ0 as the true value of δ. Then, our final ML estimator for
δ0 is defined as

δ̂n = argmax
δ∈D

L̂n(δ)

where L̂n(δ)≡Ln
(
θ ,

{∑KA
k=1 ak · 1{i ∈ ĈAn,k}

}
,
{∑KB

k=1 bk · 1{i ∈ ĈBn,k}
})
. Similarly, we define

δ̂oraclen = argmax
δ∈D

Ln(δ)

whereLn(δ)≡Ln
(
θ ,

{∑KA
k=1 ak · 1{i ∈ CA0,k}

}
,
{∑KB

k=1 bk · 1{i ∈ CB0,k}
})
; that is, δ̂oraclen is the “oracle”

estimator that is computed based on the true CA0 and CB0 . Since δ̂oraclen is a standard paramet-
ric ML estimator, the estimator follows a normal distribution asymptotically with its asymptotic
covariance matrix given by the inverse Fisher Information matrix. Meanwhile, we have shown
in Theorem 3.3 that the estimated group memberships (ĈAn , ĈBn ) are equal to (CA0 , CB0 ) w.p.a.1.
Therefore, the final ML estimator δ̂n has asymptotically the same statistical performance as the
oracle estimator δ̂oraclen . We formally state this result in the next theorem.

Theorem 3.4. Suppose that Assumptions 2.1–2.3 and 3.1–3.4 hold. In addition, we assume that
Iδδ ≡ − limn→∞ E

[
∂2Ln(δ0)/(∂δ∂δ�)

]
exists and is positive definite. Then, δ̂n and δ̂oraclen have

the same asymptotic distribution:
√

N
2 (̂δ

oracle
n − δ0)

d→N(0dz+KA+KB+1, I−1
δδ ).

Recall that the asymptotic equivalence between δ̂n and δ̂oraclen relies on the dense network struc-
ture where each agent’s specific effects can be point-identified. When the networks are not dense,
δ̂n is generally inconsistent, while δ̂oraclen may be still consistent (potentially with a slower con-
vergence rate). Finally, note that the above discussions hold true if the repartitioned estimator
(ĈA,repartn , ĈB,repartn ) is used instead of (ĈAn , ĈBn ).

4. Monte Carlo experiments
In this section, we examine the finite sample performance of the three-step ML estimator. We
consider the following three data-generating processes (DGPs) for Monte Carlo experiments:

https://doi.org/10.1017/nws.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.16


Network Science 13

ui,j(q)= Zi,j,1β0,1 + Zi,j,2β0,2 + α0q+A0,i + B0,j − εi,j, for i �= j

where

DGP 1 :A0,i =
KA∑
k=1

a0,k · 1{i ∈ CA0,k} and B0,j =
KB∑
k=1

b0,k · 1{j ∈ CB0,k} with KA =KB = 2

DGP 2 :A0,i =
KA∑
k=1

a0,k · 1{i ∈ CA0,k} and B0,j =
KB∑
k=1

b0,k · 1{j ∈ CB0,k} with KA =KB = 3

DGP 3 :A0,i
i.i.d.∼ Uniform[− 1.4, 1.4] (A0,1 = 0) and B0,j

i.i.d.∼ Uniform[− 1.4, 1.4]

DGP 3 is examined to investigate the performance of the proposed estimator under model mis-
specification. For all GDPs, Zi,j,1 = |Xi − Xj| with Xi

i.i.d.∼ N(0, 0.62), Zi,j,2
i.i.d.∼ N(0, 1), (εi,j, εj,i) is

i.i.d. across dyads as the standard bivariate normal with correlation ρ0 = 0.6, and (α0, β0,1, β0,2)=
(0.6,−1, 1.5). The group heterogeneity parameters are set as follows: for DGP 1, (a0,1, a0,2)= (0, r)
and (b0,1, b0,2)= −0.7+ (0, r), and for DGP 2 (a0,1, a0,2, a0,3)= (0, r, 2r), and (b0,1, b0,2, b0,3)=
−0.7+ (− r, 0, r), where r ∈ {0.4, 0.8}. The smaller r becomes, the more difficult it is to identify
the group structure. The group memberships are determined randomly while maintaining the
equal size of each group. Exceptionally, for observation 1, 1 ∈ CA0,1 is fixed throughout the exper-
iments. For each model setup, we consider two sample sizes: n ∈ {54, 72}. The number of Monte
Carlo repetitions is set to 500 for each experiment.

Regarding DGPs 1 and 2, we compare the performances of the following six types of estimators:
(1) the initial ML estimator (i.e., (5)), (2) the three-step ML estimator based on the BS method
with correctly chosen (KA,KB), (3) the BS-based estimator with KA =KB = 4, (4) the three-step
ML estimator where the k-means method is employed in the second step with correctly chosen
(KA,KB), (5) the k-means-based estimator with KA =KB = 4, and (6) the oracle estimator based
on the true group membership. For DGP 3, we compare estimators (1), (3), and (5) and also
evaluate the BS- and k-means-based estimators with KA =KB = 2. For the BS-based estimator, we
try both estimators with two iterations of fine-tuning and without repartitions. Note that when
there are only two groups, the repartitioned BS method and the standard BS method yield the
same grouping result.

To save space, we report the simulation results for DGPs 1, 2, and 3 in Tables C.1, C.2, and C.3
in Appendix C.2, in which we present the bias and root mean square error (RMSE) for estimating
the common parameters (α0, β0,1, β0,2, ρ0) for the estimators listed above. Further, the results of
the estimation of the group-specific effects in DGPs 1 and 2 are summarized in Table C.4. The
main findings from these tables are as follows. We first focus on the results for DGPs 1 and 2.
First, we can observe that the initial ML estimator is largely biased for the estimation of (β0,1, β0,2)
owing to the incidental parameter problem. Although the three-step estimators also have some
biases in the estimation of (β0,1, β0,2) when r = 0.4 and n= 54, the biases can be mitigated by
increasing either r or n. Thus, these biases are probably due to the frequent misclassification of
group memberships under small r and n. Probably for some DGP-specific reasons, the estimation
of (α0, ρ0) is not biased for all estimators. Second, comparing the groupingmethods, the results for
DGP 2 show that although not always, repartitioning seems to be beneficial for the estimation of
(α0, ρ0) and the group fixed-effect parameters in RMSE. Overall, the performance of the k-means-
based estimator is very similar to that of the repartitioned BS estimator. Third, for both BS- and
k-means-based estimators, misusing oversized group numbers tends to result in negative impacts
in terms of RMSE. The impacts are relatively small in DGP 2 than DGP 1, as expected. Finally,
although we can observe certain gaps between the oracle estimator and the three-step estimators
in RMSE, the gaps can be reduced by increasing n, which is consistent with our theory.
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Table 1. Distribution of {(gi,j, gj,i):1≤ i< j≤ n}
gj,i = 0 gj,i = 1

gi,j = 0 495 343
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gi,j = 1 349 409

We move on to the results for DGP 3. First, when comparing the initial ML estimator and the
three-step estimators, we can find that the incidental parameter bias is a more serious issue than
the misspecification bias for the estimation of the slope parameters (β0,1, β0,2). Consequently, the
three-step estimators tend to achieve smaller RMSE for (β0,1, β0,2) than the initial ML estimator
despite the model misspecification. Next, comparing the two-group and the four-group estima-
tors, the latter are more accurate in terms of bias (except for the estimation of α0 with n= 54),
which should be an understandable result. Which estimator has a smaller RMSE depends on
the magnitude of bias improvement for each parameter. Finally, particularly in the estimation
of the strategic effect α0, the three-step estimators tend to have relatively large biases and RMSE
compared with the initial ML estimator.

Table C.5 summarizes the simulation results for estimating the group memberships. Here, we
compare the BS-based estimators with and without repartitions and the k-means-based estimator
in terms of the ratio of correct group classification. First, the results indicate that the repartitioned
BS method clearly outperforms the standard BS method without partitions. The performance of
the k-means method is similar to that of the repartitioned BS method. As expected, as r decreases,
predicting group membership correctly becomes significantly more difficult. If the gaps between
the values of the group effects are sufficiently large and the sample size is not small, the estimators
can attain more than 80% of correct classification even in DGP 2.7 No clear difference can be
observed between the estimation of CA0 and that of CB0 .

5. Empirical application to international visa-free travels
As an empirical application of our model and method, we analyze the network of international
visa-free travels. The dependent variable of interest is Gn = (gi,j)1≤i,j≤n, where gi,j = 1 if country
i allows the citizens in country j to visit i without visas, and gi,j = 0 otherwise. Since the bilateral
relationship about visa-free policy is expected to be complementary, this would fit into our model
framework.8

In this empirical study, we consider 57 countries selected mainly from Asia, the Middle East,
the former USSR, and Oceania.9 The information about the visa policy of each country is taken
from Henly and Partners: Passport Index 2020 (https://www.henleypassportindex.com/
passport).10 The total number of dyads in this network is 57(57− 1)/2= 1, 596. From Table 1,
which summarizes the distribution of the link connections, we can observe that the number of
country pairs with one-way links is smaller than that with mutual links or no links. This would
suggest the presence of complementarity in the network formation process. According to the
above-mentioned passport index, Japan, Singapore, and South Korea are the top three countries
among the 57 countries in terms of the number of all countries with visa-free access. For our
restricted sample network, South Korea has the largest in-degree

∑
i gi,South Korea = 49. For the

out-degree, Nepal has the largest value
∑

j gNepal,j = 55; that is, Nepal allows 55 countries (out of
57) to visit Nepal only with on-arrival visas. More detailed information can be found in Table C.8
in Appendix C.5.

The network for all the 57 countries is quite complicated and difficult to grasp the entire pic-
ture. As one illustration of our data, Figure 2 presents the sub-network obtained by restricting the
vertices to the Eastern and Southeastern Asian countries. The left panel in the figure shows the
whole shape of this sub-network. (Note that the direction of the arrows in the figure is “not” the
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Figure 2. Eastern and Southeastern Asian sub-network. (Left panel: thewhole sub-network, right panel: only one-way links.)

direction of visa-free access, but it represents that the target country is allowed to visit the country
at the arrow’s origin without visas.) The right panel shows the network created by leaving only
one-way links from the left one; in other words, this is (gi,j · (1− gj,i))i,j∈Brunei,...,Viet Nam. From this
figure, we can expect the existence of a certain level of degree heterogeneity. More specifically,
Cambodia, for example, has five outgoing one-way links in this sub-network, suggesting that this
country would have a larger sender effect. In contrast, countries such as Japan and South Korea
would exhibit a larger receiver effect.

For estimating the network formation model, we consider five covariates; for their defini-
tions, see Table 2. The summary statistics of the covariates are provided in Table C.9. With these
variables, we consider the following payoff function:

ui,j(q)= ( ln gdp_pci)( ln gdp_pcj)β0,1 + |freei − freej|β0,2 + 1{regioni = regionj}β0,3

+ ln (exportij + 1)β0,4 + ln (importij + 1)β0,5 + α0q+A0,i + B0,j − εi,j, for i �= j

where we assume that (εi,j, εj,i) have the standard bivariate normal distribution. To estimate our
network formationmodel, we first need to determine the number of groupsKA andKB. Then, fol-
lowing Ke et al. (2016) and Wang & Su (2021), the optimal (KA,KB) is selected as the minimizer
of the BIC criterion: −2L̂n(̂δn)+ (6+KA +KB) ln (1596). Then, as a result of searching over the
models with (KA,KB) ∈ {2, . . . , 7}2, we find that the model with (KA,KB)= (7, 6) achieves the
smallest BIC (see Table C.10), and this is the model reported here. We estimate not only our pro-
posed model, which we call the grouped heterogeneity model, but also a model without strategic
interaction and group heterogeneity as a benchmark. Although the benchmark model is a “com-
plete” model that does not exhibit the multiple equilibria, we use the same log-likelihood function
as in (2) for the comparison purpose.11 For the estimation of the group memberships, we employ
the repartitioning method with two iterations.

The estimation results are summarized in Table 3. First of all, as expected, our proposed model
suggests that there is a significant strategic complementarity in the network formation behav-
ior. We can also find a certain level of degree heterogeneity in terms of both the sender and
the receiver effects. Comparing the grouped heterogeneity model and the benchmark model,
the log-likelihood value for the former is apparently significantly larger than that for the latter.
This large difference in the degree of model fitting also demonstrates the significance of strate-
gic effect and unobserved heterogeneity (note however that these models are not nested). For
specific parameter estimates, we can observe several non-negligible differences between the two
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Table 2. Definitions of variables

Variables Definitions

gdp_pci GDP per capita in 2018 (1,000 USD)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

freei Freedom rating (1 = Most Free, 7 = Least Free)∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

regioni Categorical variable: East Asia, Southeast Asia, Central Asia, Europe, Middle East, or Oceania.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

exportij Total export value from country i to j in 2018 (million USD)†
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

importij Total import value from country i to j in 2018 (million USD)†

Sources: ∗Freedom in the World 2018, Freedom House (https://freedomhouse.org/); †IMF DATA (https://data.imf.org/).

Table 3. Estimation results

Grouped heterogeneity model Benchmark model

Estimate t-value Estimate t-value

Intercept −0.208 −1.196
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Strategic effect: α 0.482 3.842
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

( ln gdp_pcj)( ln gdp_pci): β1 0.063 4.234 0.047 2.366
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|freei − freej|: β2 −0.229 −7.044 −0.075 −1.692
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1{regioni = regionj}: β3 1.402 9.496 0.691 4.400
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ln (exportij + 1): β4 0.046 1.829 −0.073 −3.604
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ln (importij + 1): β5 0.056 2.365 0.137 6.535
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Error correlation: ρ −0.080 −0.450 0.088 1.656
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sender effects: A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 1: a1 0 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 2: a2 1.060 4.552
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 3: a3 2.051 10.199
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 4: a4 2.846 13.572
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 5: a5 3.813 16.302
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 6: a6 4.790 16.642
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 7: a7 6.105 15.387
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Receiver effects: B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 1: b1 −5.670 −14.388
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 2: b2 −4.590 −16.159
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 3: b3 −3.902 −14.559
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 4: b4 −3.446 −14.240
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 5: b5 −2.561 −10.952
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 6: b6 −1.558 −6.722
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Log-likelihood −810.798 −1, 531.496
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

# Observations 1,596 1,596

models. For example, the effect of the export amount is predicted to be positive in the grouped
heterogeneity model, whereas the benchmark model predicts a significantly negative impact. The
error correlation parameter is not significantly different from zero in our model but is weakly
positively significant in the benchmark model. This result would be understandable since the
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Table 4. Estimated groupmemberships

Sender effect: A Receiver effect: B

Group 1 Australia, China, Iraq, Nauru, Oman, Russia Iraq, Pakistan


Group 2 Bhutan, India, Japan, New Zealand, UAE Bangladesh, Iran, Jordan, Lebanon, Nepal, Sri
Lanka, Yemen



Group 3 Bahrain, Cyprus, Estonia, Georgia, Kiribati,
Kuwait, Latvia, Lithuania, Mongolia, Myanmar,
Papua New Guinea, Qatar, Saudi Arabia, South
Korea, Tonga, Turkey, Ukraine, Viet Nam,
Yemen

Armenia, Cambodia, Laos, Myanmar, Qatar,
Russia, Viet Nam

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 4 Azerbaijan, Belarus, Brunei, Fiji, Hong Kong,
Israel, Kazakhstan, Kyrgyzstan, Moldova,
Pakistan, Singapore, Thailand, Uzbekistan

Belarus, Bhutan, China, Fiji, Georgia, India,
Indonesia, Kazakhstan, Kiribati, Kyrgyzstan,
Moldova, Mongolia, Nauru, Papua New
Guinea, Philippines, Tajikistan, Thailand,
Tonga, Ukraine, Uzbekistan

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 5 Armenia, Bangladesh, Jordan, Lebanon,
Malaysia, Philippines, Tajikistan, Vanuatu

Azerbaijan, Bahrain, Kuwait, Latvia, Lithuania,
Oman, Saudi Arabia, Turkey, UAE, Vanuatu

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 6 Indonesia, Iran, Laos Australia, Brunei, Cyprus, Estonia, Hong
Kong, Israel, Japan, Malaysia, New Zealand,
Singapore, South Korea



Group 7 Cambodia, Nepal, Sri Lanka

benchmark model can account for the interdependence of the links only through the error cor-
relation. Additionally, there are several interesting findings. For both models, if countries i and j
are located in the same region, they become more likely to allow visa-free access, as expected. Not
only in terms of geographical proximity, but we can also observe significant homophily in terms
of the political system.

For the estimation results of country-specific effects, we report the estimated group member-
ships in Table 4. As expected from the above discussion, countries such as Cambodia are indeed
classified into the highest group (i.e., Group 7) in terms of the sender effect. The other two coun-
tries that have Group-7 sender effect are Nepal and Sri Lanka. For the receiver effect, these two
countries are classified as Group 2, and Cambodia is in Group 3. Overall, interestingly, there seems
to be a weak negative correlation between the sender effects and the receiver effects. As expected
from the above discussion, Japan and South Korea indeed belong to the group with the highest
receiver effect (i.e., Group 6). Themagnitudes of the receiver effects seem to roughly correlate with
the size of the countries’ economies (with some exceptions, such as China, India, and Russia).

6. Conclusion
This paper proposed a network formation model with pairwise strategic interaction and grouped
degree heterogeneity. Assuming some parametric form for the error distribution, we proved that
the model parameters can be identified under the availability of agent-specific covariates that have
large supports and also have variations across all potential partners. For estimating the model, we
proposed the three-step ML procedure: in the first step, the model is estimated without consider-
ing the group structure; subsequently, we estimate the groupmemberships using the BS algorithm
given the estimates for the heterogeneity parameters obtained in the first step; and, finally, based
on the estimated group memberships, we re-estimate the model. Under certain regularity condi-
tions, we showed that the proposed estimator is asymptotically unbiased and distributed as normal
at the parametric rate. An empirical application to international visa-free travel networks indicates
the usefulness of the proposed model.

Several limitations and extensions are as follows. First, our approach can be used only in pair-
wise network formation games with no network externalities to/from the rest of the links, and
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this limits the empirical applicability. Therefore, it would be worthwhile to extend our results to
network formation models with general network externalities involving more than two agents.
Second, our approach requires that the degree heterogeneity parameters have discrete support,
although, in reality, it is possible that they are continuous. To address this issue, it is of inter-
est to modify our model in a similar manner to Bonhomme et al. (2017) and investigate the
three-step ML estimator in which KA and KB grow slowly to infinity. Third, as our model is
a dyadic binary game model, where a pairwise network formation model is its special case, we
can consider its ordered-response game version as a natural extension. For example, we might
be interested in analyzing bilateral military relations: non-alliance, quasi-alliance, or alliance.
We expect that such extension can be relatively easily achieved by adopting the ML estimator
discussed in Aradillas-Lopez & Rosen (2019). We leave these topics for future research.
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Notes
1 For recent developments regarding econometric approaches for analyzing network formation, we refer readers to, for
example, Chandrasekhar (2016) and de Paula (2020).
2 Refer to de Paula (2013) for a comprehensive survey on this topic.
3 This assumption should be debatable. Rather than directly specifying the number of groups, in the literature on the BS
algorithm for example, Ke et al. (2016) and Lian et al. (2021) propose introducing an additional threshold parameter to detect
the group structure. However, since the number of groups can vary only discretely with the threshold value, introducing the
threshold parameter is essentially equivalent to selecting the number of groups. For the use of the BS algorithm, Wang & Su
(2021) formally show that Bayesian Information Criterion (BIC)-type criterion can consistently select the correct number of
groups as the sample size increases.
4 Note that we can always estimate “pseudo-true” group memberships based on the maximum likelihood principle even
when some elements of A0 and B0 are not point-identified. However, they may not necessarily coincide with the true group
memberships in general. A more formal investigation on this issue is left as a future work. For a related discussion, see
Bonhomme &Manresa (2015).
5 Graham (2017) and Jochmans (2018) developed conditional likelihoodmethods that can be used to estimate the homophily
parameters (i.e., β0 in our context), even when the networks are sparse. However, their approach cannot be directly applied
to our case because of the interdependence between gi,j and gj,i.
6 Having said that, the recent statistical softwares are often equipped with fast heuristic algorithms for solving the k-means
problem. In fact, as shown in Section 4, a version of our three-step estimator that employs the k-means classification in the
second stage works equivalently well to the BS algorithm with repartitions. This is not surprising because the BS method and
the k-means are based on a very similar grouping principle.
7 One might view that the results reported in Table C.5 are not particularly good for the BS algorithm. The main reason
for this would be that our model is a bivariate binary response model, whereas most of the previous studies using the BS
algorithm focused on models with a continuous outcome.
8 As pointed out by a referee, the validity of characterizing our data as a set of equilibrium actions in a simultaneous-move
game, rather than a dynamic game, should be debatable. Indeed, in the game econometrics literature, there has been some
discussion on the interpretation of applying a static model to data where the actions actually take place at different points in
time. For example, some researchers justify the use of a static game by regarding the observed actions as the realization of a
“long-run” equilibrium (e.g., Ciliberto & Tamer, 2009; Aradillas-López & Gandhi, 2016). If this assumption is not realistic, a
dynamic network formation model such as that in Graham (2016) would be more suitable.
9 The list of countries used in this empirical study is as follows: Armenia, Australia, Azerbaijan, Bahrain, Bangladesh, Belarus,
Bhutan, Brunei, Cambodia, China, Cyprus, Estonia, Fiji, Georgia, Hong Kong, India, Indonesia, Iran, Iraq, Israel, Japan,
Jordan, Kazakhstan, Kiribati, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lithuania, Malaysia, Moldova, Mongolia, Myanmar,
Nauru, Nepal, New Zealand, Oman, Pakistan, Papua New Guinea, Philippines, Qatar, Russia, Saudi Arabia, Singapore, South
Korea, Sri Lanka, Tajikistan, Thailand, Tonga, Turkey, UAE, Ukraine, Uzbekistan, Vanuatu, Viet Nam, and Yemen. These
countries are selected based on geographical proximity and ease of data collection.
10 Based on their definition, we categorize electronic travel authorization (eTA) and on-arrival visa as visa-free access.
11 We also estimated another benchmark model with the strategic interaction but no group heterogeneity. Consequently, the
estimated interaction effect was almost zero and insignificant. However, once the group effects are introduced into the model,
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the interaction effect becomes positively significant even when KA and KB are small (e.g., when both are two, α̂n = 0.519).
This result might be interpreted as that since the strategic interaction parameter α0 is a type of “location-shift” parameter, if
a larger part of the variation in the payoff remains unaccounted for, it becomes more difficult to identify it from the payoff
disturbances. This should provide another motivation to account for unobserved degree heterogeneity. These results are not
included here to save space, but are available on request.
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