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TRANSVERSALS IN PERMUTATION GROUPS AND
FACTORISATIONS OF COMPLETE GRAPHS

G I L KAPLAN AND ARIEH LEV

Let G be a transitive permutation group acting on a finite set of order n. We discuss
certain types of transversals for a point stabiliser A in G: free transversals and global
transversals. We give sufficient conditions for the existence of such transversals, and
show the connection between these transversals and combinatorial problems of de-
composing the complete directed graph if* into edge disjoint cycles. In particular,
we classify all the inner-transitive Oberwolfach factorisations of the complete directed
graph. We mention also a connection to Frobenius theorem.

1. INTRODUCTION

Let G be a transitive permutation group acting on a set X and let A be a point
stabiliser. We define a free transversal for A in G to be a right transversal T containing 1
such that all the elements of T — {1} are fixed-point-free. We define a global transversal

in G to be a set T which is a right transversal for all the point stabilisers of G. It is
easily proved that a global transversal containing 1 must be a free transversal. Such a
transversal will be called a free global transversal.

Free and global transversals do not always exist, and one of our aims in this paper
is to find conditions for their existence. Global transversals in a transitive permutation
group of degree n are closely related to edge disjoint factorisations of if*, the complete
directed graph on n vertices. The corresponding definition is the following:

DEFINITION 1: Let if* be the complete directed graph on n vertices (that is, every
pair of vertices of if* is connected by two arcs (directed edges) of opposite directions).
A factor of K^ is a spanning subgraph of if*. A factorisation {F\, F2,..., F/.} of if* is a
partition of the arc set of if*, into arc disjoint factors Fi, F2,.. •, F^. An F-factorisation

of K'n is a factorisation of if* all whose factors are isomorphic to the factor F.

We shall be interested in factorisations of if* whose factors are vertex disjoint union
of cycles (we shall include the possibility of 2-cycles (double edges)). Of particular interest
will be the Oberwolfach factorisation, which is an F-factorisation where F is a vertex
disjoint union of cycles. For a brief review on graph facorisations see [1] and [2].
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In this paper we shall use a natural correspondence between certain subgraphs of
K£ and permutations in the symmetric group Sn. More precisely, let F be a spanning
subgraph of K* such that F is a vertex disjoint union of cycles (1-cycles, that is, isolated
vertices, and 2-cycles are permitted). Then in a natural way there corresponds to F a
permutation / on the vertices of K£: the cycle decomposition of / is induced by the
cycles in F (that is, we have i* — j if and only if (i,j) is an arc of F). When we fix
a labeling of the vertices of K£ by the numbers 1,2,..., n, then we can consider / as a
permutation on {1 ,2 , . . . , n}, that is, / 6 Sn. The following lemma shows the connection
between free global transversals and factorisations of if* (its simple proof is omitted).

LEMMA 1 . 1 . Let Fi, F2,..., Fn_i be factors of K*n, each consisting of a vertex

disjoint union of cycles of length at least 2. Let / i , f2, •. •, / n - i € Sn be the corresponding

permutations. Then

(i) {F i , . . . ,Fn_i} is a factorisation of K* if and only if the set {1}

U {fit • • • i fn-i} is a free global transversal in Sn;

(ii) {F\,..., Fn-i} is an Oberwolfach factorisation ofif* if and only if the set

{1} U {/i,..., fn-i} is a free global transversal in Sn and all the fas belong

to the same conjugacy class ofSn.

Suppose that, for a given Oberwolfach factorisation a of if*, there exists a permu-
tation group G on the vertices of K* which acts transitively on the factor set a. In this
case we say that a is a G-transitive factorisation. Let F\ and F2 be two factors in a with
corresponding permutations fi,f2 € Sn, and let g € G. Then one can verify that g sends
Fi to F2 if and only if the equality f{ = f2 holds in Sn.

A special type of G-regular Oberwolfach factorisations of if*, in which \G\ = n — 1
and G is regular on a, was investigated in [12]. It was shown in [12] that this type of
factorisations is connected to the concept of sequenceable groups. We define now another
special type of transitive Oberwolfach factorisations. In this definition, the induced per-
mutations / i , fi, • • • t fn-i, besides being members of the same conjugacy class of Sn, are
also members of the same conjugacy class of the automorphism group of the factorisation.

DEFINITION 2: Let a = {Fi,F2,..., Fn_i} be an Oberwolfach factorisation of if*,
and let f\,f2,.--, fn-i G Sn be the corresponding permutations. We shall say that a is
inner-transitive with a corresponding group G, G ^ Sn, if G acts transitively on a and

/ l , / 2 , . - . , / n - l € G .

Notice that a = {Fit... ,Fn-i} is inner-transitive with a corresponding group G,

if and only if {1} U {/i,..., fn-i} is a free global transversal in G and {fu ..., / n_i}
is a conjugacy class of G. Thus the problem of finding inner-transitive Oberwolfach
factorisations of if* is equivalent to the problem of finding transitive groups G of degree
n, with a free global transversal T, such that T — {1} is a conjugacy class of G. Using
the classification of the finite simple groups, we prove the following.
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THEOREM C. Let G be a transitive permutation group of degree n and let T be a

right transversal of a point stabiliser A, such that 1 G T. Then T - {1} is a conjugacy

class ofG if and only ifn — pm, p a prime, G is 2-transitive, and T is a regular elementary

Abelian normal subgroup ofG.

This theorem enables us to classify all the inner-transitive Oberwolfach factorisa-

tions.

COROLLARY C l . An Oberwolfach factorisation a = {F^,..., Fn_x} ofK^ is inner-

transitive if and only if n is a power of a prime p and the set of permutations {1} U

{/i, • • •. /n - i} is an elementary Abelian p-group.

PROOF: The only if part is a direct consequence of Theorem C. For the if part,
suppose n is a prime power and {1} U {/i,... , / n - i } is an elementary Abelian group.
Then clearly there exists a 2-transitive permutation group G of degree n in which {1}
U {/i, • • •, /n - i} is a regular normal subgroup (for instance, a Frobenius group of order
n(n - 1)). Thus this part also follows by Theorem C. D

Another interesting case in transitive permutation groups arises when a transversal
T of a point stabiliser is a conjugacy class of G (in this case T is a global transversal
which is not free). This case was treated recently in [14] and [15]. We shall discuss it
briefly at the end of Section 4.

Let G be a transitive permutation group on a set X. When a free transversal exists
in G, we shall say that G is freely transitive. A connection between this concept and
the well known Frobenius theorem is discussed in Section 2. In Section 2 we discuss
also the basic properties of freely transitive groups. We show that solvable groups and
simple groups may not be freely transitive. In Section 3 we prove that any supersolvable
transitive permutation group is freely transitive. Furthermore, in nilpotent transitive
groups there always exists a free global transversal. Thus it follows that in any transitive
permutation group of prime power degree there exists a free global transversal. In Section
4 we return to inner-transitive Oberwolfach factorisations and prove Theorem C above.

2. F R E E L Y TRANSITIVE GROUPS AND THEIR BASIC PROPERTIES

Let G be a transitive permutation group on a set X. An ordered pair (x, y) of
different points from X is called a free pair, if there exists a fixed-point-free element
g € G such that x9 = y. Denote the point stabiliser Gx by A and let y e X, y ^ x. For
an element u € G such that xu = y, it holds that the coset Au is the set of all g £ G

such that x9 = y. Thus the pair (x, y) is free if and only if Au contains a fixed-point-free
element.

It follows that the existence of a free transversal for A in G is equivalent to the
condition that for each y £ X, y ^ x, the pair (x, y) is free. Now since G is transitive,
for every distinct points z, w € X there exist h € G and y 6 X, y ^ x such that
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(xh
}y

h) = (z,w). Then x9 = y if and only if zh~>9h = w; hence (x,y) is a free pair if
and only if (z, w) is a free pair. From this it follows that the following conditions are
equivalent for G:

(i) Each ordered pair of distinct points from X is free;

(ii) A point stabiliser has a free transversal in G.

A transitive permutation group satisfying these conditions will be called in this paper
a freely transitive group. A trivial group is considered as freely transitive. Let G be a
transitive permutation group with a point stabiliser A. Then G is freely transitive if and
only if besides A, no right coset of A is contained in (J Ah.

Throughout the rest of the paper, all groups are finite.

The following definition is related to the concept of free transitivity. Let G be an
abstract group with a subgroup A. We shall say that A is closed in G if A is a maximal
subgroup in the set \J A9. That is, if for any subgroup B such that B > A it holds that

sec
B % | J A9. Notice that maximal subgroups and normal subgroups are always closed.

Now let G be a transitive permutation group with a point stabiliser A, and assume that
A is not closed in G. Let B > A satisfy B C \J A9. Then for b e B - A we have

<?eG
Ab C \J A9, yielding that G is not freely transitive.

geG

For example, let P be an elementary Abelian p-group, p a prime, such that |P | > p,
and let H = Aut(P). Let G = [P\H be the natural semidirect product and let A < P,
\A\ = p. Then [j A9 = P, whence A is not closed in G. If we consider G as a transitive

sec
permutation group on the right cosets of A, then we obtain a transitive group which is
not freely transitive.

The last example belongs to a wide family of examples, as follows: Let K be a group
with a subgroup A < K such that K = (J A9. Such groups K were researched by

Brandl [5], and were called there *-groups. Let G - [K]Aut(K), the natural semidirect
product, then clearly A is not closed in G. Furthermore, if the centre of K is trivial then
we can consider A" as a subgroup of Aut(K), and then A is not closed in Aut(K).

Occasionally, we can obtain examples for non-freely transitive groups by using a
proper subgroup of Aut(K). For instance, let P be elementary Abelian as before, and
let h 6 A\xt(K) be an element of order \P\ - 1 acting transitively on P — {1} (a Singer
cycle). Let G = [P]{h) and let A < P, \A\ - p. Then A is not closed in G. Considering
G as a transitive group on the right cosets of A, we obtain a transitive solvable group
which is not freely transitive.

We notice that there exist simple transitive groups which are non-freely transitive.
For example, let p be a prime and let P be an elementary Abelian group of order pm,

m > 2. We can embed P as a regular subgroup in the symmetric group 5 = Spm.
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Note that the normaliser Ns(P) is isomorphic to the semidirect product [P] Aut(P) (the
holomorph of P\ see [8, Exercise 2.5.6 on p. 45]. Let A be a subgroup of P with order
p , then we saw above that A is not closed in Ns{P). We can embed 5 in the alternating
group G — Apm+2, by identifying 5 with the group of all even permutations in Spm x S2.
Hence it follows that A is a non-closed subgroup of G. Now G is simple, and as a transitive
permutation group on the right cosets of A, it is not freely transitive.

Probenius permutation groups are clearly freely transitive, since they contain a reg-
ular subgroup, by Frobenius theorem. An interesting observation concerning the concept
of free transitivity is the following

ASSERTION 1 . Let G be a Frobenius group, and assume that we have an eie-
mentary (that is, character free) proof that G is freely transitive. Then we can prove

in an elementary way the validity of Frobenius theorem for G, that is, that the set of

fixed-point-free elements with the identity is a subgroup ofG.

PROOF: Let n be the degree of G and let A be a point stabiliser. Then [G : A] = n.

We know that A n A9 = 1 for every g € G - A. An elementary computation shows that
the set of fixed-point-free elements, that is, the set S — G - \J A9, has order n - 1.

Since G is freely transitive, each coset Ag different from A contains an element from S,

yielding that 5 U {1} is a right transversal for A. By the same reasoning, 5 U {1} is
a right transversal for A9, for each g € G. It follows that every u, v € 5 U {1} satisfy
uv~l G 5 U {1}. Hence S U {1} is a subgroup of G. 0

We do not know whether there exist primitive non-freely transitive groups. If such
groups fail to exist, the proof for that is, not expected to be easy. The reason is the
following assertion.

ASSERTION 2 . Assume there exists an elementary (that is, character free) proof

that all primitive groups are freely transitive. Then there exists an elementary proof for

Frobenius theorem.

PROOF: Let G be a Frobenius permutation group and let A = Gx, the stabiliser of
the point x. By Assertion 1 we may assume that G is not primitive. Then we may choose a
subgroup L ^ G such that A < L and A is maximal in L. Now L, as a permutation group
on the orbit xL, is clearly a Frobenius permutation group. Furthermore L is primitive and
so freely transitive. Thus we can prove in an elementary way (by Assertion 1) that the
set of fixed-point-free elements of L with the identity is a subgroup of L. This subgroup
is normal in L and so normalised by A. Frobenius theorem follows now for G in an
elementary way, by [9, Lemma 2.2 (iv)]. D

We introduce now some basic results on freely transitive groups. These results will
be used later.

BASIC FACT 2.1. Let G be a transitive permutation group with a transitive subgroup

H. Then
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(i) A free transversal in H is also a free transversal in G. Thus, if H is freely

transitive then also G is freely transitive,

(ii) A free global transversal in H is also a free global transversal in G.

B A S I C FACT 2.2. Let G be a transitive permutation group with a regular subgroup R.

Then R is a free global transversal, and in particular G is freely transitive.

Since a solvable primitive group contains a regular normal subgroup (see [16, The-

orem 11.5]), it follows that such a group has a free global transversal.

Some parts of the next item were explained above.

B A S I C FACTS 2.3. Let G be a transitive permutation group acting on a set X, let x G X

and let A — Gx, the stabiliser of x.

1. Let y G X, y ^ x, and let g G G satisfy x9 = y. Then the following are equivalent:

(i) (x, y) is a free pair;

(ii) Ag contains a fixed-point-free element;

(iii) Ag is not contained in \J Ah.
heG

2. Let y G X, y / x, and let k £ G. Then (x, y) is free if and only if (xk, yk) is free.
In particular, (x, y) is free if and only if, for each a e A, (x, ya) is free.

3. (Follows from 2.) G is freely transitive if and only if for each y G X — {x} the
pair (x, y) is free.

4. (Follows from 3.) G is freely transitive if and only if, besides A, no right coset
of A is contained in |J Ah.

heG

5. (Follows from 1, 2 and 4.) G is freely transitive if and only if, besides A, no
double coset Ah A of A is contained in (J Ah.

G
COROLLARY 2 . 4 . Any 2-transitive permutation group is freely transitive.

P R O O F : Let G be 2-transitive and let A be a point stabiliser. Then there exists

exactly one double coset of A which is different from A, and since G ^ \J Ah, the result

follows from Basic fact 2.3.5. h€G D

Consider a transitive group of prime degree. It is primitive, and by [16, Theorem

11.7], it is either solvable or 2-transitive. Thus, by the remark after Basic fact 2.2, and

by Corollary 2.4, such a group must be freely transitive (we shall prove more in Section

3, Corollary B2). '

In the following proposition we describe a simple condition ensuring that a transitive

group is freely transitive. However, this is clearly not a necessary condition.

PROPOSITION 2 . 5 . Let G be a transitive permutation group which contains a

transposition (that is, a 2-cycle). Then G is freely transitive.

P R O O F : Let X be the set on which G acts and let x e X. Suppose on the contrary

that G is not freely transitive. Then (Basic fact 2.3.3) there exists y € X — {x} such
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that if g G G and x9 = y then g is not fixed-point-free. Choose an element h € G with
minimal number of fixed points such that xh = y. Let 2 be a fixed point of h. Then,
since G is transitive, G contains a transposition of the form [z,w), where w £ X. Denote
this transposition by t. Now, ifw^x then Xth — y, and th fixes less points than h, since
z and w are not fixed by th. This implies a contradiction. It w ^ y then xh t = y and
/it fixes less points than h (by a similar argument), which again implies a contradiction.
Thus the proof is completed. D

3. SUPERSOLVABLE GROUPS, NILPOTENT GROUPS AND GROUPS OF PRIME POWER

DEGREE

We have the following result on supersolvable transitive permutation groups. As the
examples in Section 2 show, this result can not be extended to solvable transitive groups.

THEOREM A. All supersolvable transitive permutation groups are freely transitive.

PROOF: Let G ^ 1 be a supersolvable transitive permutation group acting on a set
X. We apply induction on the degree of G. Since G is supersolvable, there exists N <G,

a minimal normal subgroup of G, such that N is cyclic of prime order p. If N is transitive
on X then it is regular and the assertion is true by Basic fact 2.2. Assume then that N

is intransitive, and let X\, X2, • • •, Xk (here \X\ > k > 1) be all the TV-orbits on X. Then
the XiS form a system of imprimitivity blocks. Fix x e Xi and let y G X, y 7̂  x. By
Basic fact 2.3.3, it suffices to show the existence of a fixed-point-free element g G G such
that x9 = y.

CASE ( I ) . y G Xj, j ^ 1. Consider the transitive action of G on the block system
X' - {XuX2,-..,Xk}. Let M be the kernel of this action (clearly M ^ N). Then
G* = G/M is a supersolvable transitive permutation group on X*. By the induction
hypothesis G* is freely transitive on X*. Thus there exists a fixed-point-free element
h* € G* satisfying X^' = Xj. Let h £ G be in the inverse image of h*, then X^ — Xj

and X!1 ^ Xi for each i. Since xh € Xj, there exists u G N such that xhu = y. We have
X^u — X^ 7̂  X{ for each i, yielding that hu is a fixed-point-free element of G as required.

CASE ( I I ) . y € X\. Then there exists v G N satisfying xv = y. Furthermore, since
I TV I = p, the action of N on each of the X;s is faithful and regular. Hence v is
fixed-point-free on X{ for each i, yielding that v is a fixed-point-free element of G as
required. D

The following corollary follows from Theorem A and Basic fact 2.1 (i).

COROLLARY A l : Every transitive group with a supersolvable transitive subgroup

is freely transitive.

When we consider nilpotent transitive permutation groups, we have a stronger result,

as follows.
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THEOREM B . All nilpotent transitive permutation groups have a free global transver-
sal.

PROOF: Let G ^ 1 be a nilpotent transitive permutation group with a point sta-
biliser A and apply induction on [G : A], the degree of G. Let N be a minimal nor-
mal subgroup of G, then N is contained in the centre of G and A D N = 1. Denote
N — {ni — 1, n2 , . . . , np} (this is, of course, a right transversal for A in AN). Consider
now the transitive action of G on the cosets of AN in G. Let K be the kernel of this
action, then G/K is a nilpotent transitive permutation group of degree [G : AN] and by
induction it has a free global transversal. It follows that there exists a set T of elements of
G such that l e T and T is a right transversal in G for all the conjugates (AN)h, h € G.

. Denote T = {gi = 1, g2, • • •, 9,}- Let U = {rugj | 1 ^ i 4 P, 1 < j < s}. This is a right
transversal for A in G which contains 1, and it remains to show that it is global.

Suppose that riigj(nkgi)~l € Ah for some h 6 G. Then (recall that N is central)
ink1 € ^h> yielding gjgf1 € (AN)h and so j — I. Thus riiTi^1 e Ah, yielding

1 € A and i = k. It follows that U is a right transversal for Ah in G, for each h € G.
Thus it is a global transversal as required. D

The following is immediate by Basic fact 2.1 (ii).

COROLLARY B l . Let G be a transitive permutation group with a nilpotent tran-
sitive subgroup. Then there exists a free global transversal in G.

COROLLARY B2 . Let G be a transitive permutation group of degree pm, p a prime.
Then there exists a free global transversal in G.

PROOF: Immediate by Corollary Bl, since a Sylow p-subgroup of G is transitive. D
Call an abstract group G o global group if for every subgroup A ^ G there exists a

right transversal T in G, such that T is a right transversal for all the conjugates A9 in
G. Thus G is a global group if and only if in every transitive permutation representation
of G there exists a global transversal. Theorem B above shows that if G is nilpotent
then it is global. The converse is not true, since if G is a group satisfying that \G\ is a
square-free number, then clearly G is global (a subgroup of G is a Hall 7r-subgroup for a
set of primes n, and then a Hall 7r'-subgroup is the required right transversal). However
we have the following result.

PROPOSITION 3 . 1 . Any global group is solvable.

PROOF: Suppose G is a global group. It is easily proved that any subgroup and any
quotient of G are also global. Thus, by applying induction on \G\, it suffices to show that
G is not a simple non-Abelian group. If \G\ is odd then by Feit-Thompson theorem G is
solvable. Assume then that \G\ is even and let u € G be an involution. We may assume
that u is not in the centre of G. Since G is global, there exists a set T which is a right
transversal for all the conjugates (u9) in G. Notice that for any g e G, u9T = G -T,
whence for any g,h G G we have u9T = uhT and u9uhT = T. Following [4], we denote
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[9] Transversals in permutation groups 285

Ker(T) = {k e G \ kT = T}. This is a proper subgroup of G (whose order divides \T\),

and it contains the set 5 = {u9uh \ g, h € G}. Obviously the set 5 contains a non-trivial
conjugacy class of G, which implies that Ker(T) contains a non-trivial normal subgroup
of G, as required. U

4. INNER-TRANSITIVE OBERWOLFACH FACTORISATIONS

We return now to Theorem C and give its proof.

P R O O F O F T H E O R E M C: For the if part of the theorem, suppose that G is 2-
transitive and T is a regular normal subgroup as described. Let x be the point stabilised
by A, then the action of A on the other points is transitive, and it is equivalent to the
action of A by conjugation on T — {1} (this is a well known property of regular normal
subgroups; see, for example, [16, Theorem 11.2]). It follows that T — {1} is indeed a
conjugacy class of G.

For the only i /par t of the theorem, suppose that D = T — {1} is a conjugacy class
of G. We shall prove first that G is 2-transitive. Let t e D. Then [G : CG(t)] = n - 1 and
[G : A] = n, whence A and Cc{t) are subgroups with coprime indices in G. Consequently
G = ACG(t). It follows that A acts transitively on D (by conjugation), and so AtA —
AD = G - A, implying that G is 2-transitive as claimed.

By [6, p. 110], there are exactly two possibilities for G, either

(i) G is an affine 2-transitive group, or

(ii) G is an almost simple 2-transitive group.

Suppose (i) holds. Then, by [6, p. 194], n = p m , p a prime, and G has a regular
elementary Abelian normal subgroup TV, \N\ — p m . It remains to show that T — N. For
t € D the index [G : Celt)} is coprime to |TV| and so TV ̂  Cc{t) must hold. But since TV
is Abelian and regular, TV is its own centraliser in G (see [16, Proposition 4.4]), implying
t € TV. Thus T C TV, and since \T\ = \N\ we obtain T = TV.

Suppose (ii) holds and let TV denote the socle of G, which is a simple non-Abelian
group in this case. Then TV, like G, is transitive of degree n. For t € D we have
[TV : TV n CG{t)) - [NCG{t) : CG{t)] and so [TV : TV n CG{t)] divides n - 1. Notice
however that [TV : NC\CG(t)] > 1, since t, as a non-identity element of the almost simple
group G, does not centralise TV. Now, by the classification of the finite simple groups, it is
known (see [6, p. 196]) that TV itself is 2-transitive, except one case in which n = 28 and
TV is isomorphic to PSL(2,8). However in this case TV does not have a proper subgroup
with index dividing 27, by [11].

We consider now all the other cases (see [6, Table 7.4], or [8, Section 7.7]). In these
cases TV is a simple non-Abelian 2-transitive group with degree n. We shall show that
there does not exist t € G such that [TV : TV n CG{t)} > 1 and [TV : TV n CG(t)] divides
n-1.
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1. TV = An, the alternating group on n letters, n ^ 5. Then TV does not have a
proper subgroup of index less than n, since TV can not be embedded in Sn-i-

In Cases 2 and 3 below TV does not have a proper subgroup with index dividing
n - 1, by [13, Table 5.2.A on p. 175].

2. TV = PSL(m,q) for a prime power q, n = (qm - \)/{q — 1), and (m, q) ^

(2,5), (2,7), (2,9), (4, 2), (2,11). These five exceptional cases are eliminated by verifying
that there does not exist K < N such that |TV : K\ divides n - 1 and K = TV n Cdt)

for some t € G. For instance, PSL(2,11) has two 2-transitive actions: on n — 11
and on n = 12 points. The case n = 11 is excluded since PSL(2,11) has no proper
subgroup of index less then 11 ([7]). It remains to check the case n — 12. We have
TV = PSL(2,U) ^ G < PGL(2,ll), and P5L(2,11) has a subgroup H of index 11,
which is isomorphic to A$ (it is the stabiliser of a point in the action on n = 11 points).
Since no non-trivial element in PGL(2,11) centralises H, this case is excluded.

3. TV = Sp(2m, 2), where m ^ 3, and n = 2m-1(2m - 1).

Another case in which Sp(2m, 2) is involved is as follows.

4. TV = Sp(2m, 2), where m ^ 3, has another 2-transitive action, on n = 2m~~1(2m+l)
points. Then by [13, Theorem 5.2.4 on p. 176], we conclude that any subgroup H whose
order divides n - 1 is contained in a member of the family of subgroups C(G). This
family of subgroups is described in [13, Table 3.5. Chapter on p. 72]. Checking the
rows of this table which are relevant to our case (the underlying field has two elements)
implies that the only proper subgroups H of TV with index less than n are isomorphic to
subgroups of O+(2) or O~(2). But in this case we have that [G : H] is even, while n — 1
is odd, and in particular [G : H] does not divide n — 1, as required.

In the following three cases n — 1 is a prime power, and TV does not have a proper
subgroup with index dividing n - 1, by [11].

5. TV = PSU(3, q), where q is a prime power, q ^ 3, and n — q3 + 1.

6. TV = Sz(q), where q = 2 2 m + 1 > 2 and n = q2 + 1.

7. TV = Ri(q), where q = 3 2 m + 1 > 3 and n = q3 + 1.

Further cases:

8. TV = A7, n = 15. In this case G = N (see [6, Table 7.4, on p. 197]. Clearly G

does not have an element t ^ 1 such that [G : Cc{t)] divides 14.

9. The remaining possibilies are when TV is one of the sporadic groups Mn (two

2-transitive actions, on n = 11 and n = 12 points), Mu, M22, M23, M24, C03, and HS.

By [7] we have that the only case where TV has a proper subgroup of index dividing n - 1

is TV = Mu where n = 12. In this case TV has the subgroup M10 (which is the stabiliser

of a point in the action of Mu on n = 11 points) whose index in TV is 11. Since all the

automorphisms of TV = Mn are inner, G = TV in this case. Thus we only have to check

that M10 is not a centraliser of an element of TV. This is true since the centre of M10 is

trivial.
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We checked all the cases, and so the proof is completed. U

We end this section with a note on a related subject. Theorem C deals with the case

when a transversal T of a subgroup A of G satisfies that T — {1} is a conjugacy class of

G. Another case of interest is when a transversal T of a subgroup A of G is a conjugacy

class of G. This case was treated recently in [14] and [15]. One can easily verify that in

this case each conjugate of A contains exactly one element of T. Furthermore, each t G T

lies in the centre of a unique conjugate of A. Considering the transitive action of G on

the right cosets of A, we obtain a transitive permutation group isomorphic to a quotient

of G. The image of T in this quotient is a global transversal in which each element

has exactly one fixed point. Particular cases of the above appear in the celebrated Z*-

Theorem of Glauberman [10], and in an extension of it proved by Artemovich [3] using

the classification of the finite simple groups. Stein [15] proved, using the classification of

the finite simple groups, that in the situation above the group generated by the conjugacy

class T is solvable. He gave an application of this result to quasigroups ([15, Theorem

1.4]). Similarly to the free global transvesrals discussed in the current paper, a transversal

which is a conjugacy class is related to (extended) Oberwolfach factorisations (in which

each factor contains, apart from the non-trivial cycles, an isolated vertex). A special case

of such factorisations is the class of inner-transitive Hering configurations studied in [14].
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