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TRANSVERSALS IN PERMUTATION GROUPS AND
FACTORISATIONS OF COMPLETE GRAPHS

GIL KAPLAN AND ARIEH LEV

Let G be a transitive permutation group acting on a finite set of order n. We discuss
certain types of transversals for a point stabiliser A in G: free transversals and global
transversals. We gfve sufficient conditions for the existence of such transversals, and
show the connection between these transversals and combinatorial problems of de-
composing the complete directed graph K, into edge disjoint cycles. In particular,
we classify all the inner-transitive Oberwolfach factorisations of the complete directed
graph. We mention also a connection to Frobenius theorem.

1. INTRODUCTION

Let G be a transitive permutation group acting on a set X and let A be a point
stabiliser. We define a free transversal for A in G to be a right transversal T containing 1
such that all the elements of T — {1} are fixed-point-free. We define a global transversal
in G to be a set T which is a right transversal for all the point stabilisers of G. It is
easily proved that a global transversal containing 1 must be a free transversal. Such a
transversal will be called a free global transversal.

Free and global transversals do not always exist, and one of our aims in this paper
is to find conditions for their existence. Global transversals in a transitive permutation
group of degree n are closely related to edge disjoint factorisations of K, the comp]ete
directed graph on n vertices. The corresponding definition is the following:

DEFINITION 1: Let K be the complete directed graph on n vertices (that is, every
pair of vertices of K is connected by two arcs (directed edges) of opposite directions).
A factor of K, is a spanning subgraph of K;. A factorisation {F\, F5,...,Fy} of K. isa
partition of the arc set of K7, into arc disjoint factors Fy, Fz, ..., Fy. An F-factorisation
of K is a factorisation of K, all whose factors are isomorphic to the factor F'.

We shall be interested in factorisations of K, whose factors are vertex disjoint union
of cycles (we shall include the possibility of 2-cycles (double edges)). Of particular interest
will be the Oberwolfach factorisation, which is an F-factorisation where F is a vertex
disjoint union of cycles. For a brief review on graph facorisations see [1] and [2].
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In this paper we shall use a natural correspondence between certain subgraphs of
K and permutations in the symmetric group S,. More precisely, let F' be a spanning
subgraph of K}, such that F' is a vertex disjoint union of cycles (1-cycles, that is, isolated
vertices, and 2-cycles are permitted). Then in a natural way there corresponds to F a
permutation f on the vertices of K: the cycle decomposition of f is induced by the
cycles in F (that is, we have i/ = j if and only if (i,5) is an arc of F). When we fix
a labeling of the vertices of K, by the numbers 1,2,...,n, then we can consider f as a
permutation on {1,2,...,n}, that is, f € S,. The following lemma shows the connection
between free global transversals and factorisations of K (its simple proof is omitted).
LEMMA 1.1. Let Fy, F,...,F,y be factors of K, each consisting of a vertex
disjoint union of cycles of length at least 2. Let fi, fa, ..., fn—1 € Sp be the corresponding
permutations. Then
i) {F,...,Fa-1} is a factorisation of K, if and only if the set {1}
U{f1,..., fam1} is a free global transversal in Sy;
(i) {F,-..,Fn-1} is an Oberwolfach factorisation of K}, if and only if the set
{1}U{f,-.., fa=1} is a free global transversal in S, and all the f;s belong
to the same conjugacy class of Sy,.

Suppose that, for a given Oberwolfach factorisation « of K, there exists a permu-
tation group G on the vertices of K which acts transitively on the factor set o. In this
case we say that « is a G-transitive factorisation. Let Fy and F; be two factors in « with
corresponding permutations fi, fo € Sy, and let g € G. Then one can verify that g sends
Fi to F, if and only if the equality f{ = f, holds in S,.

A special type of G-regular Oberwolfach factorisations of K}, in which |G|=n -1
and G is regular on a, was investigated in [12]. It was shown in [12] that this type of
factorisations is connected to the concept of sequenceable groups. We define now another
special type of transitive Oberwolfach factorisations. In this definition, the induced per-
mutations fi, f2,..., fa—1, besides being members of the same conjugacy class of S,,, are
also members of the same conjugacy class of the automorphism group of the factorisation.

DEFINITION 2: Let @ = {Fy, F3,..., F,_;} be an Oberwolfach factorisation of K7,
and let fi, fa,..., fa—1 € Sn be the corresponding permutations. We shall say that « is
inner-transitive with a corresponding group G, G < S,, if G acts transitively on « and
frofore o fam1 €G.

Notice that & = {F},..., F,—1} is inner-transitive with a corresponding group G,
if and only if {1} U {f1,..., fa-1} is a free global transversal in G and {fi,..., fo-1}
is a conjugacy class of G. Thus the problem of finding inner-transitive Oberwolfach
factorisations of K, is equivalent to the problem of finding transitive groups G of degree
n, with a free global transversal T, such that T — {1} is a conjugacy class of G. Using
the classification of the finite simple groups, we prove the following.
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THEOREM C. Let G be a transitive permutation group of degree n and let T be a
right transversal of a point stabiliser A, such that 1 € T. Then T — {1} is a conjugacy
class of G if and only if n = p™, p a prime, G is 2-transitive, and T is a regular elementary
Abelian normal subgroup of G.

This theorem enables us to classify all the inner-transitive Oberwolfach factorisa-
tions. _

CoroLLARY C1. An Oberwolfach factorisationa = {F}, ..., F,_1} of K}, is inner-
transitive if and only if n is a power of a prime p and the set of permutations {1} U
{f1,-.., fa=1} is an elementary Abelian p-group.

PRrooOF: The only if part is a direct consequence of Theorem C. For the if part,
suppose 7 is a prime power and {1} U {fi,..., fa—1} is an elementary Abelian group.
Then clearly there exists a 2-transitive permutation group G of degree n in which {1}
U{f1,---, fa1} is a regular normal subgroup (for instance, a Frobenius group of order
n{n — 1)). Thus this part also follows by Theorem C. 0

Another interesting case in transitive permutation groups arises when a transversal
T of a point stabiliser is a conjugacy class of G (in this case T is a global transversal
which is not free). This case was treated recently in [14] and [15]). We shall discuss it
briefly at the end of Section 4.

Let G be a transitive permutation group on a set X. When a free transversal exists
in G, we shall say that G is freely transitive. A connection between this concept and
the well known Frobenius theorem is discussed in Section 2. In Section 2 we discuss
also the basic properties of freely transitive groups. We show that solvable groups and
simple groups may not be freely transitive. In Section 3 we prove that any supersolvable
transitive permutation group is freely transitive. Furthermore, in nilpotent transitive
groups there always exists a free global transversal. Thus it follows that in any transitive
permutation group of prime power degree there exists a free global transversal. In Section
4 we return to inner-transitive Oberwolfach factorisations and prove Theorem C above.

2. FREELY TRANSITIVE GROUPS AND THEIR BASIC PROPERTIES

Let G be a transitive permutation group on a set X. An ordered pair (z,y) of
different points from X is called a free pair, if there exists a fixed-point-free element
g € G such that 29 = y. Denote the point stabiliser G, by 4 and let y € X, y # z. For
an element © € G such that z*¥ = y, it holds that the coset Au is the set of all g € G
such that 29 = y. Thus the pair (z,y) is free if and only if Au contains a fixed-point-free
element.

It follows that the existence of a free transversal for A in G is equivalent to the
condition that for each y € X, y # z, the pair (z,vy) is free. Now since G is transitive,
for every distinct points z,w € X there exist h € G and y € X, y # z such that
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(z*,y") = (z,w). Then z¢ = y if and only if z#”'9"* = w; hence (z,y) is a free pair if
and only if (z,w) is a free pair. From this it follows that the following conditions are
equivalent for G:

(i) Each ordered pair of distinct points from X is free;

(ii) A point stabiliser has a free transversal in G.

A transitive permutation group satisfying these conditions will be called in this paper
a freely transitive group. A trivial group is considered as freely transitive. Let G be a
transitive permutation group with a point stabiliser A. Then G is freely transitive if and

only if besides A, no right coset of A is contained in |J A".
heG
Throughout the rest of the paper, all groups are finite.

The following definition is related to the concept of free transitivity. Let G be an
abstract group with a subgroup A. We shall say that A is closed in G if A is a maximal

subgroup in the set |J A9. That is, if for any subgroup B such that B > A it holds that
9€G
B ¢ |J A9. Notice that maximal subgroups and normal subgroups are always closed.
9€G
Now let G be a transitive permutation group with a point stabiliser A, and assume that

A is not closed in G. Let B > A satisfy B C |J A9. Then for b € B — A we have
’ e
Ab C |J A9, yielding that G is not freely transitive.
9€G
For example, let P be an elementary Abelian p-group, p a prime, such that |P| > p,

and let H = Aut(P). Let G = [P]H be the natural semidirect product and let A < P,

|A] = p. Then |J A9 = P, whence A is not closed in G. If we consider G as a transitive
9€G
permutation group on the right cosets of A4, then we obtain a transitive group which is

not freely transitive.
The last example belongs to a wide family of examples, as follows: Let K be a group

with a subgroup A < K such that K = |J A9 Such groups K were researched by
gEAUL(K)
Brandl [5], and were called there *-groups. Let G = [K] Aut(K), the natural semidirect

product, then clearly A is not closed in G. Furthermore, if the centre of K is trivial then
we can consider K as a subgroup of Aut(K), and then A is not closed in Aut(K).

QOccasionally, we can obtain examples for non-freely transitive groups by using a
proper subgroup of Aut(K). For instance, let P be elementary Abelian as before, and
let h € Aut(K) be an element of order |P| - 1 acting transitively on P — {1} (a Singer
cycle). Let G = [P](h) and let A < P, |A| = p. Then A is not closed in G. Considering
G as a transitive group on the right cosets of A, we obtain a transitive solvable group
which is not freely transitive.

We notice that there exist simple transitive groups which are non-freely transitive.
For example, let p be a prime and let P be an elementary Abelian group of order p™,
m > 2. We can embed P as a regular subgroup in the symmetric group S = Spm.
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Note that the normaliser Ng(P) is isomorphic to the semidirect product [P] Aut(P) (the
holomorph of P; see (8, Exercise 2.5.6 on p. 45]. Let A be a subgroup of P with order
p, then we saw above that A is not closed in Ng(P). We can embed S in the alternating
group G = Apm 2, by identifying S with the group of all even permutations in Sym X S,.
Hence it follows that A is a non-closed subgroup of G. Now G is simple, and as a transitive
permutation group on the right cosets of A, it is not freely transitive.

Frobenius permutation groups are clearly freely transitive, since they contain a reg-
ular subgroup, by Frobenius theorem. An interesting observation concerning the concept
of free transitivity is the following

ASSERTION 1. Let G be a Frobenius group, and assume that we have an ele-
mentary (that is, character free) proof that G is freely transitive. Then we can prove
in an elementary way the validity of Frobenius theorem for G, that is, that the set of
fixed-point-free elements with the identity is a subgroup of G.

PROOF: Let n be the degree of G and let A be a point stabiliser. Then [G : A] = n.
We know that AN A9 =1 for every g € G — A. An elementary computation shows that

the set of fixed-point-free elements, that is, the set S = G — |J A9, has order n - 1.
9€G
Since G is freely transitive, each coset Ag different from A contains an element from S,

yielding that S U {1} is a right transversal for A. By the same reasoning, S U {1} is
a right transversal for A9, for each g € G. It follows that every u,v € S U {1} satisfy
uv~! € SU{1}. Hence SU {1} is a subgroup of G. 0

We do not know whether there exist primitive non-freely transitive groups. If such
groups fail to exist, the proof for that is, not expected to be easy. The reason is the
following assertion.

ASSERTION 2. Assume there exists an elementary (that is, character free) proof
that all primitive groups are freely transitive. Then there exists an elementary proof for
Frobenius theorem.

PROOF: Let G be a Frobenius permutation group and let A = G, the stabiliser of
the point z. By Assertion 1 we may assume that G is not primitive. Then we may choose a
subgroup L € G such that A < L and A is maximal in L. Now L, as a permutation group
on the orbit ¥, is clearly a Frobenius permutation group. Furthermore L is primitive and
so freely transitive. Thus we can prove in an elementary way (by Assertion 1) that the
set of fixed-point-free elements of L with the identity is a subgroup of L. This subgroup
is normal in L and so normalised by A. Frobenius theorem follows now for G in an
elementary way, by [9, Lemma 2.2 (iv)). 0

We introduce now some basic results on freely transitive groups. These results will
be used later.

Basic FACT 2.1. Let G be a transitive permutation group with a transitive subgroup
H. Then
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(i) A free transversal in H is also a free transversal in G. Thus, if H is freely
transitive then also G is freely transitive.
(i1) A free global transversal in H is also a free global transversal in G.

Basic FACT 2.2. Let G be a transitive permutation group with a regular subgroup R.
Then R is a free global transversal, and in particular G is freely transitive.

Since a solvable primitive group contains a regular normal subgroup (see [16, The-
orem 11.5)), it follows that such a group has a free global transversal.

Some parts of the next item were explained above.

Basic FACTS 2.3. Let G be a transitive permutation group acting on a set X, let z € X
and let A = G, the stabiliser of .
1. Lety € X, y # z, and let g € G satisfy 9 = y. Then the following are equivalent:
(1) (z,v) is a free pair;
(ii) Ag contains a fixed-point-free element;

(iii) Ag is not contained in |J A"
hEG

2. Let y € X, y # z, and let k € G. Then (z,y) is free if and only if (z*, y*) is free.
In particular, (z,y) is free if and only if, for each a € A, (z,3°) is free.

3. (Follows from 2.) G is freely transitive if and only if for each y € X — {z} the
pair (z,y) is free.

4. (Follows from 3.) G is freely transitive if and only if, besides A, no right coset

of A is contained in |J A*.
héG

5. (Follows from 1, 2 and 4.) G is freely transitive if and only if, besides A4, no

double coset AkA of A is contained in |J A"
héG

COROLLARY 2.4. Any 2-transitive permutation group is freely transitive.

PROOF: Let G be 2-transitive and let A be a point stabiliser. Then there exists
exactly one double coset of A which is different from A, and since G # |J A", the result
follows from Basic fact 2.3.5. heG 0

Consider a transitive group of prime degree. It is primitive, and by {16, Theorem
11.7], it is either solvable or 2-transitive. Thus, by the remark after Basic fact 2.2, and
by Corollary 2.4, such a group must be freely transitive (we shall prove more in Section
3, Corollary B2). ° )

In the following proposition we describe a simple condition ensuring that a transitive
group is freely transitive. However, this is clearly not a necessary condition.

PROPOSITION 2.5. Let G be a transitive permutation group which contains a
transposition (that is, a 2-cycle). Then G is freely transitive.

PRrRoOF: Let X be the set on which G acts and let z € X. Suppose on the contrary
that G is not freely transitive. Then (Basic fact 2.3.3) there exists y € X — {z} such
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that if g € G and z? = y then g is not fixed-point-free. Choose an element h € G with
minimal number of fixed points such that z* = y. Let z be a fixed point of h. Then,
since G is transitive, G contains a transposition of the form (z,w), where w € X. Denote
this transposition by ¢. Now, if w # z then z* = y, and th fixes less points than h, since
z and w are not fixed by th. This implies a contradiction. If w # y then z" = y and
ht fixes less points than A (by a similar argument), which again implies a contradiction.
Thus the proof is completed. : 0

3. SUPERSOLVABLE GROUPS, NILPOTENT GROUPS AND GROUPS OF PRIME POWER
DEGREE

We have the following result on supersolvable transitive permutation groups. As the
examples in Section 2 show, this result can not be extended to solvable transitive groups.

THEOREM A. All supersolvable transitive permutation groups are freely transitive.

PRroOOF: Let G # 1 be a supersolvable transitive permutation group acting on a set
X. We apply induction on the degree of G. Since G is supersolvable, there exists N <G,
a minimal normal subgroup of G, such that N is cyclic of prime order p. If N is transitive
on X then it is regular and the assertion is true by Basic fact 2.2. Assume then that N
is intransitive, and let X;, X5, ..., X, (here |X| > k > 1) be all the N-orbits on X. Then
the X;s form a system of imprimitivity blocks. Fix z € X; and let y € X, y # z. By
Basic fact 2.3.3, it suffices to show the existence of a fixed-point-free element g € G such
that z9 = y.
Case (1). y € Xj, 7 # 1. Consider the transitive action of G on the block system
X* = {X1,X,,...,Xi}. Let M be the kernel of this action (clearly M > N). Then
G* = G/M is a supersolvable transitive permutation group on X*. By the induction
hypothesis G* is freely transitive on X*. Thus there exists a fixed-point-free element
h* € G* satisfying X?" = X;. Let A € G be in the inverse image of h*, then X! = X;
and X} # X; for each i. Since z" € X, there exists u € N such that z"* = y. We have
XM= XP # X, for each 1, yielding that hu is a fixed-point-free element of G as required.

Casg (11). y € X;. Then there exists v € N satisfying z¥ = y. Furthermore, since

|N| = p, the action of NV on each of the X;s is faithful and regular. Hence v is

fixed-point-free on X; for each 4, yielding that v is a fixed-point-free element of G as

required. 0
The following corollary follows from Theorem A and Basic fact 2.1 (i).

COROLLARY Al: Every tranmsitive group with a supersolvable transitive subgroup
is freely transitive.

When we consider nilpotent transitive permutation groups, we have a stronger result,
as follows.
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THEOREM B. All nilpotent transitive permutation groups have a free global transver-
sal.

PROOF: Let G # 1 be a nilpotent transitive permutation group with a point sta-
biliser A and apply induction on [G : A], the degree of G. Let N be a minimal nor-
mal subgroup of G, then N is contained in the centre of G and AN N = 1. Denote

- N ={n, =1,ny,...,np} (this is, of course, a right transversal for A in AN). Consider
now the transitive action of G on the cosets of AN in G. Let K be the kernel of this
action, then G/K is a nilpotent transitive permutation group of degree [G : AN] and by
induction it has a free global transversal. It follows that there exists a set T of elements of
G such that 1 € T and T is a right transversal in G for all the conjugates (AN)*, h € G.

‘Denote T = {g1 =1,92,...,95}. Let U ={nig; | 1 <i < p,1<j< s} Thisis a right
transversal for A in G which contains 1, and it remains to show that it is global.

Suppose that n;g;(nkg))~' € A" for some h € G. Then (recall that N is central)
gi97 'niny ' € A", yielding g;g;' € (AN)* and so j = . Thus nyn;! € A", yielding
nin;' € A and i = k. It follows that U is a right transversal for A* in G, for each h € G.
Thus it is a global transversal as required. 0

The following is immediate by Basic fact 2.1 (ii).

COROLLARY B1. Let G be a transitive permutation group with a nilpotent tran-
sitive subgroup. Then there exists a free global transversal in G.

COROLLARY B2. Let G be a transitive permutation group of degree p™, p a prime.
Then there exists a free global transversal in G.

PROOF: Immediate by Corollary B1, since a Sylow p-subgroup of G is transitive. [

Call an abstract group G a global group if for every subgroup A < G there exists a
right transversal T in G, such that T is a right transversal for all the conjugates A9 in
G. Thus G is a global group if and only if in every transitive permutation representation
of G there exists a global transversal. Theorem B above shows that if G is nilpotent
then it is global. The converse is not true, since if G is a group satisfying that |G| is a
square-free number, then clearly G is global (a subgroup of G is a Hall w-subgroup for a
set of primes m, and then a Hall n’-subgroup is the required right transversal). However
we have the following result.

PROPOSITION 3.1. Any global group is solvable.

PROOF: Suppose G is a global group. It is easily proved that any subgroup and any
quotient of G are also global. Thus, by applying induction on |G|, it suffices to show that
G is not a simple non-Abelian group. If |G| is odd then by Feit-Thompson theorem G is
solvable. Assume then that |G| is even and let u € G be an involution. We may assume
that u is not in the centre of G. Since G is global, there exists a set T which is a right
transversal for all the conjugates (uf) in G. Notice that for any g € G, w9T = G - T,
whence for any g,h € G we have w9T = uPT and wuT = T. Following [4], we denote
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Ker(T) = {k € G| kT = T}. This is a proper subgroup of G (whose order divides |T}),
and it contains the set S = {u%u® | g, h € G}. Obviously the set S contains a non-trivial
conjugacy class of G, which implies that Ker(T') contains a non-trivial normal subgroup
of G, as required. 0

4. INNER-TRANSITIVE OBERWOLFACH FACTORISATIONS

We return now to Theorem C and give its proof.

PrROOF OF THEOREM C: For the if part of the theorem, suppose that G is 2-
transitive and T is a regular normal subgroup as described. Let z be the point stabilised
by A, then the action of A on the other points is transitive, and it is equivalent to the
action of A by conjugation on T — {1} (this is a well known property of regular normal
subgroups; see, for example, [16, Theorem 11.2]). It follows that 7 — {1} is indeed a
conjugacy class of G.

For the only if part of the theorem, suppose that D = T — {1} is a conjugacy class
of G. We shall prove first that G is 2-transitive. Let t € D. Then [G : Cg(t)] =n —1 and
|G : Al = n, whence A and C¢(t) are subgroups with coprime indices in G. Consequently
G = ACq(t). It follows that A acts transitively on D (by conjugation), and so AtA =
AD = G — A, implying that G is 2-transitive as claimed.

By [6, p. 110], there are exactly two possibilities for G, either

(i) G is an affine 2-transitive group, or
(ii) G is an almost simple 2-transitive group.

Suppose (i) holds. Then, by [6, p. 194], n = p™, p a prime, and G has a regular
elementary Abelian normal subgroup N, |N| = p™. It remains to show that T = N. For
t € D the index [G : C¢(t)] is coprime to |N| and so N < Cg(t) must hold. But since N
is Abelian and regular, N is its own centraliser in G (see [16, Proposition 4.4]), implying
t € N. Thus T C N, and since [T| = |N| we obtain T = N.

Suppose (ii) holds and let N denote the socle of G, which is a simple non-Abelian
group in this case. Then N, like G, is transitive of degree n. For t € D we have
[N:NN Co(t)] = [NCs(t) : Cs(t)] and so [N : NN Cg(t)] divides n — 1. Notice
however that [N : NNCg(t)] > 1, since ¢, as a non-identity element of the almost simple
group G, does not centralise N. Now, by the classification of the finite simple groups, it is
known (see [6, p. 196]) that N itself is 2-transitive, except one case in which n = 28 and
N is isomorphic to PSL(2,8). However in this case N does not have a proper subgroup
with index dividing 27, by [11].

We consider now all the other cases (see [6, Table 7.4], or [8, Section 7.7]). In these
cases N is a simple non-Abelian 2-transitive group with degree n. We shall show that
there does not exist ¢t € G such that [N : NN Cg(t)] > 1 and [N : NN Cg(t)] divides
n-~1
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1. N = A,, the alternating group on n letters, n > 5. Then N does not have a
proper subgroup of index less than n, since N can not be embedded in S,_;.

In Cases 2 and 3 below N does not have a proper subgroup with index dividing
n — 1, by [13, Table 5.2.A on p. 175].

2. N = PSL(m,q) for a prime power ¢, n = (¢™ —~ 1)/(q — 1), and (m,q) #
(2,5),(2,7),(2,9), (4,2), (2,11). These five exceptional cases are eliminated by verifying
that there does not exist K < N such that |V : K| divides n — 1 and K = N N Cg(t)
for some t € G. For instance, PSL(2,11) has two 2-transitive actions: on n = 11
and on n = 12 points. The case n = 11 is excluded since PSL(2,11) has no proper
subgroup of index less then 11 ([7]). It remains to check the case n = 12. We have
N = PSL(2,11) £ G € PGL(2,11), and PSL(2,11) has a subgroup H of index 11,
which is isomorphic to As (it is the stabiliser of a point in the action on n = 11 points).
Since no non-trivial element in PGL(2,11) centralises H, this case is excluded.

3. N = Sp(2m,2), where m > 3, and n = 2™ !(2™ — 1).

Another case in which Sp(2m, 2) is involved is as follows.

4. N = Sp(2m, 2), where m > 3, has another 2-transitive action, on n = 2™1(2™+1)
points. Then by [13, Theorem 5.2.4 on p. 176], we conclude that any subgroup H whose
order divides n — 1 is contained in a member of the family of subgroups C(G). This
family of subgroups is described in {13, Table 3.5. Chapter on p. 72]. Checking the
rows of this table which are relevant to our case (the underlying field has two elements)
implies that the only proper subgroups H of N with index less than n are isomorphic to
subgroups of O;(2) or O (2). But in this case we have that [G : H] is even, while n — 1
is odd, and in particular (G : H] does not divide n — 1, as required.

In the following three cases n — 1 is a prime power, and N does not have a proper
subgroup with index dividing n — 1, by [11).

5. N = PSU(3,q), where q is a prime power, ¢ > 3, and n = ¢° + 1.

6. N = Sz(q), where ¢ = 27™+! > 2 and n = ¢* + 1.

7. N = R,(g), where ¢ =3™*! >3 and n = ¢* + 1.

Further cases:

8. N = A7, n=15. In this case G = N (see [6, Table 7.4, on p. 197]. Clearly G
does not have an element ¢ # 1 such that [G : Cg(t)] divides 14.

9. The remaining possibilies are when IV is one of the sporadic groups Mi; (two
2-transitive actions, on n = 11 and n = 12 points), My, My, Moz, Moy, Coz, and HS.
By (7] we have that the only case where N has a proper subgroup of index dividing n — 1
is N = M;, where n = 12. In this case /V has the subgroup Mo (which is the stabiliser
of a point in the action of M;; on n = 11 points) whose index in N is 11. Since all the
automorphisms of N = M, are inner, G = N in this case. Thus we only have to check
that Mg is not a centraliser of an element of N. This is true since the centre of M, is

trivial.
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We checked all the cases, and so the proof is completed. 0

We end this section with a note on a related subject. Theorem C deals with the case
when a transversal T of a subgroup A of G satisfies that 7 — {1} is a conjugacy class of
G. Another case of interest is when a-transversal T of a subgroup A of G is a conjugacy
class of G. This case was treated recently in [14] and [15]. One can easily verify that in
this case each conjugate of A contains exactly one element of T. Furthermore, each t € T
lies in the centre of a unique conjugate of A. Considering the transitive action of G on
the right cosets of A, we obtain a transitive permutation group isomorphic to a quotient
of G. The image of T in this quotient is a global transversal in which each element
has exactly one fixed point. Particular cases of the above appear in the celebrated Z*-
Theorem of Glauberman [10], and in an extension of it proved by Artemovich [3] using
the classification of the finite simple groups. Stein [15] proved, using the classification of
the finite simple groups, that in the situation above the group generated by the conjugacy
class T is solvable. He gave an application of this result to quasigroups ([15, Theorem
1.4]). Similarly to the free global transvesrals discussed in the current paper, a transversal
which is a conjugacy class is related to (extended) Oberwolfach factorisations (in which
each factor contains, apart from the non-trivial cycles, an isolated vertex). A special case
of such factorisations is the class of inner-transitive Hering configurations studied in [14].
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