PARITY RESULTS FOR PARTITIONS WHEREIN EACH PART APPEARS AN ODD NUMBER OF TIMES

MICHAEL D. HIRSCHHORN and JAMES A. SELLERS ${ }^{\boxtimes}$

(Received 22 June 2018; accepted 19 August 2018; first published online 12 November 2018)

Abstract

We consider the function $f(n)$ that enumerates partitions of weight n wherein each part appears an odd number of times. Chern ['Unlimited parity alternating partitions', Quaest. Math. (to appear)] noted that such partitions can be placed in one-to-one correspondence with the partitions of n which he calls unlimited parity alternating partitions with smallest part odd. Our goal is to study the parity of $f(n)$ in detail. In particular, we prove a characterisation of $f(2 n)$ modulo 2 which implies that there are infinitely many Ramanujan-like congruences modulo 2 satisfied by the function f. The proof techniques are elementary and involve classical generating function dissection tools.

2010 Mathematics subject classification: primary 11P83; secondary 05A17.
Keywords and phrases: congruences, partitions, generating functions.

1. Introduction

In a recent note, Chern [2] defined the function $p a_{o}(n)$ to be the number of unlimited parity alternating partitions of n with smallest part odd. Chern's work is motivated by work of Andrews [1] who defined a partition of n as 'parity alternating' if the parts of the partition in question alternate in parity.

Chern notes in passing that $p a_{o}(n)$ also counts the number of partitions of n in which each part appears an odd number of times. (Indeed, one can place the unlimited parity alternating partitions of n with smallest part odd and the partitions of n in which each part appears an odd number of times in one-to-one correspondence via conjugation.)

In order to simplify the notation, we let $f(n)$ be the number of partitions of n in which each part appears an odd number of times. Our primary goal in this note is to prove the following characterisation of $f(2 n)$ modulo 2 .

Theorem 1.1. For all $n \geq 0$,

$$
f(2 n) \equiv \begin{cases}1(\bmod 2) & \text { if } n=k^{2} \text { for some integer } k \text { with } 3 \nmid k, \\ 0(\bmod 2) & \text { otherwise. }\end{cases}
$$

[^0]At the conclusion of the note, we will highlight infinite families of Ramanujan-like congruences modulo 2 that are satisfied by f. We will also note how Theorem 1.1 implies a characterisation modulo 2 of $a_{3}(n)$, the number of 3 -cores of n (see [4]).

2. An elementary generating function proof

In order to prove Theorem 1.1, we will utilise some well-known generating function results and elementary manipulations thereof. We describe this foundation here.

We begin by setting some standard notation. In particular, we define $(a ; q)_{\infty}$, which is the usual Pochhammer symbol, to be

$$
(a ; q)_{\infty}=(1-a)(1-a q)\left(1-a q^{2}\right)\left(1-a q^{3}\right) \ldots
$$

Next, we provide three important lemmas.
Lemma 2.1.

$$
\frac{(q ; q)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q^{6} ; q^{6}\right)_{\infty}^{2}} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}-2 n}
$$

Proof. Observe that

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}-2 n} & =\left(q ; q^{6}\right)_{\infty}\left(q^{5} ; q^{6}\right)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty} \\
& =\frac{(q ; q)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}}
\end{aligned}
$$

The result follows.
Lemma 2.2.

$$
\frac{\left(q^{3} ; q^{3}\right)_{\infty}^{3}}{(q ; q)_{\infty}} \equiv \sum_{n=-\infty}^{\infty} q^{3 n^{2}-2 n}(\bmod 2)
$$

Proof. Working modulo 2,

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} q^{3 n^{2}-2 n} & \equiv \sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}-2 n}(\bmod 2) \\
& =\frac{(q ; q)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}} \\
& \equiv \frac{(q ; q)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}^{4}}{(q ; q)_{\infty}^{2}\left(q^{3} ; q^{3}\right)_{\infty}}(\bmod 2) \\
& =\frac{\left(q^{3} ; q^{3}\right)_{\infty}^{3}}{(q ; q)_{\infty}}
\end{aligned}
$$

As an aside, we note that Lemma 2.2 yields a mod 2 characterisation for the number of 3-core partitions of $n[4]$. We will return to this observation at the end of this paper.

Lemma 2.3. If, as usual,

$$
\psi(q)=\sum_{n \geq 0} q^{\left(n^{2}+n\right) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}} \quad \text { and } \quad \Pi(q)=\sum_{n=-\infty}^{\infty} q^{\left(3 n^{2}-n\right) / 2}
$$

then

$$
\psi(q)=\Pi(q)+q \psi\left(q^{9}\right)
$$

Proof. See [3, Ch. 1].
We are now in a position to prove Theorem 1.1.
Proof of Theorem 1.1.

$$
\begin{aligned}
\sum_{n \geq 0} f(n) q^{n} & =\prod_{n \geq 1}\left(1+\frac{q^{n}}{1-q^{2 n}}\right) \\
& =\prod_{n \geq 1} \frac{1+q^{n}-q^{2 n}}{1-q^{2 n}} \\
& \equiv \prod_{n \geq 1} \frac{1+q^{n}+q^{2 n}}{1-q^{2 n}}(\bmod 2) \\
& =\prod_{n \geq 1} \frac{\left(1-q^{3 n}\right)}{\left(1-q^{n}\right)\left(1-q^{2 n}\right)} \\
& =\frac{\left(q^{3} ; q^{3}\right)_{\infty}}{(q ; q)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}} \\
& =\frac{\left(q^{3} ; q^{3}\right)_{\infty}^{2}}{(q ; q)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}} \cdot \frac{(q ; q)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}} \\
& \equiv \frac{\left(q^{6} ; q^{6}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}^{2}} \cdot \frac{(q ; q)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}}(\bmod 2) \\
& =\frac{\left(q^{6} ; q^{6}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}^{2}} \cdot \frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q^{6} ; q^{6}\right)_{\infty}^{2}} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}-2 n} \quad \text { by Lemma } 2.1 \\
& =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}-2 n} \\
& =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}}\left(\sum_{n=-\infty}^{\infty} q^{12 n^{2}-4 n}-q \sum_{n=-\infty}^{\infty} q^{12 n^{2}-8 n}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{n \geq 0} f(2 n) q^{n} & \equiv \frac{1}{(q ; q)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}} \sum_{n=-\infty}^{\infty} q^{6 n^{2}-2 n}(\bmod 2) \\
& \equiv \frac{1}{(q ; q)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{6 n^{2}-2 n}(\bmod 2)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(q ; q)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}}\left(q^{4} ; q^{4}\right)_{\infty} \\
& \equiv \frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}}(\bmod 2) \\
& =\frac{\psi(q)}{\left(q^{3} ; q^{3}\right)_{\infty}} \\
& =\frac{\Pi\left(q^{3}\right)+q \psi\left(q^{9}\right)}{\left(q^{3} ; q^{3}\right)_{\infty}} \quad \text { by Lemma } 2.3 \\
& \equiv \frac{\left(q^{3} ; q^{3}\right)_{\infty}+q \psi\left(q^{9}\right)}{\left(q^{3} ; q^{3}\right)_{\infty}}(\bmod 2) \\
& =1+q \frac{\left(q^{18} ; q^{18}\right)_{\infty}^{2}}{\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{9} ; q^{9}\right)_{\infty}} \\
& \equiv 1+q \frac{\left(q^{9} ; q^{9}\right)_{\infty}^{4}}{\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{9} ; q^{9}\right)_{\infty}}(\bmod 2) \\
& =1+q \frac{\left(q^{9} ; q^{9}\right)_{\infty}^{3}}{\left(q^{3} ; q^{3}\right)_{\infty}} \\
& \equiv 1+q \sum_{n=-\infty}^{\infty} q^{9 n^{2}-6 n}(\bmod 2) \quad \text { by Lemma } 2.2 \\
& =1+\sum_{n=-\infty}^{\infty} q^{(3 n-1)^{2}} \\
& =1+\sum_{n>0,3 \nmid n}^{n^{n^{2}}}
\end{aligned}
$$

The result follows.
Several comments are in order as we close.
First, note that we can now prove a variety of corollaries which provide infinitely many Ramanujan-like congruences modulo 2 involving $f(2 n)$. We simply need to make sure that we avoid arguments of the form $2 n$ where n is square. So, although not exhaustive, we provide two such corollaries here.

Corollary 2.4. Let $p \geq 3$ be prime and let r be a quadratic nonresidue modulo p. Then, for all $M \geq 1$ and $n \geq 0$,

$$
f\left(2 M^{2}(p n+r)\right) \equiv 0(\bmod 2) .
$$

Proof. Thanks to Theorem 1.1, we need to see whether $p n+r$ can be written as $p n+r=k^{2}$ with $3 \nmid k$. However, note that $p n+r=k^{2}$ implies that $r \equiv k^{2}(\bmod p)$. This contradicts the definition of r given in the corollary. We also know that $M^{2}(p n+r)$ cannot be square because it is the product of a square and a nonsquare. The result follows.

Corollary 2.5. For all $M \geq 1$ and $n \geq 0$,

$$
f\left(2 M^{2}(4 n+2)\right) \equiv 0(\bmod 2)
$$

Proof. Note that, for $M=1$, the result follows because $4 n+2$ is never square. (All squares are congruent to either 0 or 1 modulo 4.) Next, we need to ask whether $M^{2}(4 n+2)$ can ever be square. Clearly, this also cannot be the case given that $M^{2}(4 n+2)$ is the product of a square with a nonsquare.

Secondly, we highlight an unrelated observation about the parity of $a_{3}(n)$, the number of 3-core partitions of n [4]. Since the generating function for $a_{3}(n)$ is given by

$$
\sum_{n \geq 0} a_{3}(n) q^{n}=\frac{\left(q^{3} ; q^{3}\right)_{\infty}^{3}}{(q ; q)_{\infty}}
$$

it is clear that Lemma 2.2 yields the following result.
Theorem 2.6. For all $n \geq 0$,

$$
a_{3}(n) \equiv \begin{cases}1(\bmod 2) & \text { if } n=3 m^{2}+2 m \text { for some integer } m \\ 0(\bmod 2) & \text { otherwise }\end{cases}
$$

Finally, we note that a combinatorial proof of Theorem 1.1 would be very illuminating.

Acknowledgement

The authors gratefully acknowledge the referee for significantly simplifying our original proofs.

References

[1] G. E. Andrews, 'Ramanujan's "Lost" notebook, IV. Stacks and alternating parity in partitions', $A d v$. Math. 53(1) (1984), 55-74.
[2] S. Chern, 'Unlimited parity alternating partitions', Quaest. Math., to appear.
[3] M. D. Hirschhorn, The Power of q, Developments in Mathematics, 49 (Springer, Cham, Switzerland, 2017).
[4] M. D. Hirschhorn and J. A. Sellers, 'Elementary proofs of various facts about 3-cores', Bull. Aust. Math. Soc. 79 (2009), 507-512.

MICHAEL D. HIRSCHHORN, School of Mathematics and Statistics, UNSW, Sydney 2052, Australia e-mail: m.hirschhorn@unsw.edu.au

JAMES A. SELLERS, Department of Mathematics, Penn State University, University Park, PA 16802, USA e-mail: sellersj@psu.edu

[^0]: (C) 2018 Australian Mathematical Publishing Association Inc.

