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Abstract

We consider the function f (n) that enumerates partitions of weight n wherein each part appears an odd
number of times. Chern [‘Unlimited parity alternating partitions’, Quaest. Math. (to appear)] noted
that such partitions can be placed in one-to-one correspondence with the partitions of n which he calls
unlimited parity alternating partitions with smallest part odd. Our goal is to study the parity of f (n)
in detail. In particular, we prove a characterisation of f (2n) modulo 2 which implies that there are
infinitely many Ramanujan-like congruences modulo 2 satisfied by the function f . The proof techniques
are elementary and involve classical generating function dissection tools.
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1. Introduction

In a recent note, Chern [2] defined the function pao(n) to be the number of unlimited
parity alternating partitions of n with smallest part odd. Chern’s work is motivated by
work of Andrews [1] who defined a partition of n as ‘parity alternating’ if the parts of
the partition in question alternate in parity.

Chern notes in passing that pao(n) also counts the number of partitions of n in which
each part appears an odd number of times. (Indeed, one can place the unlimited parity
alternating partitions of n with smallest part odd and the partitions of n in which each
part appears an odd number of times in one-to-one correspondence via conjugation.)

In order to simplify the notation, we let f (n) be the number of partitions of n in
which each part appears an odd number of times. Our primary goal in this note is to
prove the following characterisation of f (2n) modulo 2.

Theorem 1.1. For all n ≥ 0,

f (2n) ≡

1 (mod 2) if n = k2 for some integer k with 3 - k,
0 (mod 2) otherwise.
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At the conclusion of the note, we will highlight infinite families of Ramanujan-like
congruences modulo 2 that are satisfied by f . We will also note how Theorem 1.1
implies a characterisation modulo 2 of a3(n), the number of 3-cores of n (see [4]).

2. An elementary generating function proof

In order to prove Theorem 1.1, we will utilise some well-known generating function
results and elementary manipulations thereof. We describe this foundation here.

We begin by setting some standard notation. In particular, we define (a; q)∞, which
is the usual Pochhammer symbol, to be

(a; q)∞ = (1 − a)(1 − aq)(1 − aq2)(1 − aq3) . . .

Next, we provide three important lemmas.

Lemma 2.1.
(q; q)∞

(q3; q3)∞
=

(q2; q2)∞
(q6; q6)2

∞

∞∑
n=−∞

(−1)nq3n2−2n.

Proof. Observe that
∞∑

n=−∞

(−1)nq3n2−2n = (q; q6)∞(q5; q6)∞(q6; q6)∞

=
(q; q)∞(q6; q6)2

∞

(q2; q2)∞(q3; q3)∞
.

The result follows. �

Lemma 2.2.
(q3; q3)3

∞

(q; q)∞
≡

∞∑
n=−∞

q3n2−2n (mod 2).

Proof. Working modulo 2,
∞∑

n=−∞

q3n2−2n ≡

∞∑
n=−∞

(−1)nq3n2−2n (mod 2)

=
(q; q)∞(q6; q6)2

∞

(q2; q2)∞(q3; q3)∞

≡
(q; q)∞(q3; q3)4

∞

(q; q)2
∞(q3; q3)∞

(mod 2)

=
(q3; q3)3

∞

(q; q)∞
. �

As an aside, we note that Lemma 2.2 yields a mod 2 characterisation for the number
of 3-core partitions of n [4]. We will return to this observation at the end of this paper.
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Lemma 2.3. If, as usual,

ψ(q) =
∑
n≥0

q(n2+n)/2 =
(q2; q2)2

∞

(q; q)∞
and Π(q) =

∞∑
n=−∞

q(3n2−n)/2,

then
ψ(q) = Π(q) + qψ(q9).

Proof. See [3, Ch. 1]. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1.∑
n≥0

f (n)qn =
∏
n≥1

(
1 +

qn

1 − q2n

)
=

∏
n≥1

1 + qn − q2n

1 − q2n

≡
∏
n≥1

1 + qn + q2n

1 − q2n (mod 2)

=
∏
n≥1

(1 − q3n)
(1 − qn)(1 − q2n)

=
(q3; q3)∞

(q; q)∞(q2; q2)∞

=
(q3; q3)2

∞

(q; q)2
∞(q2; q2)∞

·
(q; q)∞

(q3; q3)∞

≡
(q6; q6)∞
(q2; q2)2

∞

·
(q; q)∞

(q3; q3)∞
(mod 2)

=
(q6; q6)∞
(q2; q2)2

∞

·
(q2; q2)∞
(q6; q6)2

∞

∞∑
n=−∞

(−1)nq3n2−2n by Lemma 2.1

=
1

(q2; q2)∞(q6; q6)∞

∞∑
n=−∞

(−1)nq3n2−2n

=
1

(q2; q2)∞(q6; q6)∞

( ∞∑
n=−∞

q12n2−4n − q
∞∑

n=−∞

q12n2−8n
)
.

It follows that∑
n≥0

f (2n)qn ≡
1

(q; q)∞(q3; q3)∞

∞∑
n=−∞

q6n2−2n (mod 2)

≡
1

(q; q)∞(q3; q3)∞

∞∑
n=−∞

(−1)nq6n2−2n (mod 2)
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=
1

(q; q)∞(q3; q3)∞
(q4; q4)∞

≡
(q2; q2)2

∞

(q; q)∞(q3; q3)∞
(mod 2)

=
ψ(q)

(q3; q3)∞

=
Π(q3) + qψ(q9)

(q3; q3)∞
by Lemma 2.3

≡
(q3; q3)∞ + qψ(q9)

(q3; q3)∞
(mod 2)

= 1 + q
(q18; q18)2

∞

(q3; q3)∞(q9; q9)∞

≡ 1 + q
(q9; q9)4

∞

(q3; q3)∞(q9; q9)∞
(mod 2)

= 1 + q
(q9; q9)3

∞

(q3; q3)∞

≡ 1 + q
∞∑

n=−∞

q9n2−6n (mod 2) by Lemma 2.2

= 1 +

∞∑
n=−∞

q(3n−1)2

= 1 +
∑

n>0, 3-n

qn2
.

The result follows. �

Several comments are in order as we close.
First, note that we can now prove a variety of corollaries which provide infinitely

many Ramanujan-like congruences modulo 2 involving f (2n). We simply need to
make sure that we avoid arguments of the form 2n where n is square. So, although
not exhaustive, we provide two such corollaries here.

Corollary 2.4. Let p ≥ 3 be prime and let r be a quadratic nonresidue modulo p.
Then, for all M ≥ 1 and n ≥ 0,

f (2M2(pn + r)) ≡ 0 (mod 2).

Proof. Thanks to Theorem 1.1, we need to see whether pn + r can be written as
pn + r = k2 with 3 - k.However, note that pn + r = k2 implies that r ≡ k2 (mod p). This
contradicts the definition of r given in the corollary. We also know that M2(pn + r)
cannot be square because it is the product of a square and a nonsquare. The result
follows. �
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Corollary 2.5. For all M ≥ 1 and n ≥ 0,

f (2M2(4n + 2)) ≡ 0 (mod 2).

Proof. Note that, for M = 1, the result follows because 4n + 2 is never square. (All
squares are congruent to either 0 or 1 modulo 4.) Next, we need to ask whether
M2(4n + 2) can ever be square. Clearly, this also cannot be the case given that
M2(4n + 2) is the product of a square with a nonsquare. �

Secondly, we highlight an unrelated observation about the parity of a3(n), the
number of 3-core partitions of n [4]. Since the generating function for a3(n) is given
by ∑

n≥0

a3(n)qn =
(q3; q3)3

∞

(q; q)∞
,

it is clear that Lemma 2.2 yields the following result.

Theorem 2.6. For all n ≥ 0,

a3(n) ≡

1 (mod 2) if n = 3m2 + 2m for some integer m,
0 (mod 2) otherwise.

Finally, we note that a combinatorial proof of Theorem 1.1 would be very
illuminating.
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