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DESCRIPTIVE COMPLEXITY IN CANTOR SERIES

DYLAN AIREY, STEVE JACKSON, AND BILL MANCE

Abstract. A Cantor series expansion for a real number x with respect to a basic sequence Q =
(q1, q2, ... ), where qi ≥ 2, is a generalization of the base b expansion to an infinite sequence of bases. Ki
and Linton in 1994 showed that for ordinary base b expansions the set of normal numbers is a Π0

3-complete
set, establishing the exact complexity of this set. In the case of Cantor series there are three natural notions
of normality: normality, ratio normality, and distribution normality. These notions are equivalent for base
b expansions, but not for more general Cantor series expansions. We show that for any basic sequence the
set of distribution normal numbers is Π0

3-complete, and if Q is 1-divergent then the sets of normal and
ratio normal numbers are Π0

3-complete. We further show that all five non-trivial differences of these sets are
D2(Π0

3)-complete if limi qi = ∞ and Q is 1-divergent. This shows that except for the trivial containment
that every normal number is ratio normal, these three notions are as independent as possible.

§1. Introduction.

1.1. Review of definability notions. In any topological space X, the collection
of Borel sets B(X ) is the smallest �-algebra containing the open sets. They are
stratified into levels, the Borel hierarchy, by defining Σ0

1 = the open sets, Π0
1 = ¬Σ0

1 =
{X – A : A ∈ Σ0

1} = the closed sets, and for α < �1 we let Σ0
α be the collection of

countable unions A =
⋃
n An where each An ∈ Π0

αn for some αn < α. We also let
Π0
α = ¬Σ0

α . Alternatively,A ∈ Π0
α ifA =

⋂
n An whereAn ∈ Σ0

αn where eachαn < α.
We also set Δ0

α = Σ0
α ∩ Π0

α , in particular Δ0
1 is the collection of clopen sets. For any

topological space, B(X ) =
⋃
α<�1

Σ0
α =

⋃
α<�1

Π0
α . All of the collections Δ0

α , Σ0
α ,

Π0
α are pointclasses, that is, they are closed under inverse images of continuous

functions. A basic fact (see [12]) is that for any uncountable Polish space X, there is
no collapse in the levels of the Borel hierarchy, that is, all the various pointclasses
Δ0
α , Σ0

α , Π0
α , for α < �1, are all distinct. Thus, these levels of the Borel hierarchy can

be used to calibrate the descriptive complexity of a set. We say a set A ⊆ X is Σ0
α

(resp. Π0
α) hard ifA /∈ Π0

α (resp.A /∈ Σ0
α). This says A is “no simpler” than a Σ0

α set.
We say A is Σ0

α-complete ifA ∈ Σ0
α \ Π0

α , that is,A ∈ Σ0
α and A is Σ0

α hard. This says
A is exactly at the complexity level Σ0

α . Likewise, A is Π0
α-complete if A ∈ Π0

α \ Σ0
α .

A set D ⊆ X is in the class D2(Π0
3) if D = A \ B where A,B ∈ Π0

3. A set D is
D2(Π0

3)-hard if X \D /∈ D2(Π0
3), and D is D2(Π0

3)-complete if it is in D2(Π0
3) and

is D2(Π0
3)-hard. As with the classes Σ0

α , Π0
α , the class D2(Π0

3) has a universal set
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and so is non-selfdual, that is, it is not closed under complements (we will define a
particular complete set for D2(Π0

3) in Section 3.2).
Ki and Linton [13] proved that the setN (b) of base-b normal numbers (Definition

1.1 below) is Π0
3(R)-complete. Further work was done by Becher, Heiber, and

Slaman [5] who settled a conjecture of Kechris by showing that the set of absolutely
normal numbers is Π0

3(R)-complete. Furthermore, Becher and Slaman [6] proved
that the set of numbers normal in at least one base is Σ0

4(R)-complete. In another
direction, Airey et al. [1, 2] showed that for any dynamical system with a weak form
of the specification property, the set of generic points for the system is Π0

3-complete.
This result generalizes the Ki–Linton result to many numeration systems other than
the standard base b one.

1.2. Normal numbers. We recall the definition of a normal number.

Definition 1.1. A real number x is normal of order k in base b if all blocks of
digits of length k in base b occur with relative frequency b–k in the b-ary expansion
of x. We denote this set by Nk(b). Moreover, x is normal in base b if it is normal of
order k in base b for all natural numbers k. We denote the set of normal numbers in
base b by

N (b) :=
⋂
k∈�

Nk(b).

We also wish to mention one of the most fundamental and important results
relating to normal numbers in base b. The following is due to Wall in his Ph.D.
dissertation [23].

Theorem 1.2 (Wall). A real number x is normal in base b if and only if the sequence
(bnx) is uniformly distributed mod 1.

While it is not difficult to prove Theorem 1.2, its importance in the theory of
normal numbers cannot be understated. Large portions of the theory of normal
numbers in base b make use of Theorem 1.2. We provide an example of a theorem
that provides motivation for the main problem studied in this paper.

Theorem 1.3 (Wall). 1For all rational numbers q ( for the second inclusion we
assume also q �= 0) and integers b ≥ 2, we have

q + N (b) ⊆ N (b);

qN (b) ⊆ N (b).

That is, normality in base b is preserved by rational addition and multiplication.

Moreover, Theorem 1.2 suggests a dynamical interpretation of normality which
allows the definition of normality to be extended to other expansions such as
the regular continued fraction expansion, the Lüroth series expansion, and the
�-expansions. See [8] for a basic treatment and introduction to this idea.

In this paper, we are interested in a class of expansions known as the Q-Cantor
series expansions that includes the b-ary expansions as a special case, but do not
admit an extension of Theorem 1.2. The study of normal numbers and other

1A full characterization of r ∈ R such that r + N (b) ⊆ N (b) is given in [17].
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statistical properties of real numbers with respect to large classes of Cantor series
expansions was first done by Erdős and Rényi in [9, 10], by Rényi in [18–20], and
by Turán in [22].

The Q-Cantor series expansions, first studied by Cantor in [7], are a natural
generalization of the b-ary expansions. Cantor’s motivation to study the Cantor
series expansions was to extend the well-known proof of the irrationality of the
number e =

∑
1/n! to a larger class of numbers. Results along these lines may be

found in the monograph of Galambos [11]. If Q = (qi)∞i=1 is a sequence of integers
with each qi ≥ 2, then we say that Q is a basic sequence. Given a basic sequence
Q = (qi)∞i=1, the Q-Cantor series expansion of a real number x is the (unique)2

expansion of the form

x = a0 +
∞∑
i=1

ai
q1q2 ··· qi

, (1)

where a0 = �x� and ai is in {0, 1, ... , qi – 1} for i ≥ 1 with ai �= qi – 1 infinitely
often. We abbreviate (1) with the notation x = a0.a1a2a3 ... w.r.t. Q. If I = [i, j] is
an interval in N and the basic sequence Q is understood, we let, with a slight abuse
of notation, x � I denote the sequence of digits ai , ... , aj .

For a basic sequence Q = (qi), a block B = (e1, e2, ... , ek) ∈ �<� , and a natural
number j, define

IQ,j(B) =

{
1 if e1 < qj, e2 < qj+1, ... , ek < qj+k–1,

0 otherwise,

and let

Qn(B) =
n∑
j=1

IQ,j(B)
qjqj+1 ··· qj+k–1

. (2)

Let

Q(k)
n :=

n∑
j=1

1
qjqj+1 ··· qj+k–1

and TQ,n(x) :=

⎛
⎝ n∏
j=1

qj

⎞
⎠x mod 1.

Qn(B) gives the expected number of occurrences of the block B in the Cantor series
expansion of x with a starting position in [1, n]. We say B has infinite expectation if
limn→∞Qn(B) = ∞.Q(k)

n is the expected number of occurrences of 0k (the length k
block of 0s) with a start in [1, n] (which is also the expected number of occurrences

of 1k). We also let Qm,n(B) =
∑n
j=m

IQ,j (B)
qjqj+1···qj+k–1

, which is expected number of

occurrences of B with a start in [m, n].
A basic sequence Q is k-divergent if limn→∞Q

(k)
n = ∞, fully divergent if Q is k-

divergent for all k, and k-convergent if it is not k-divergent. A basic sequence Q is
infinite in limit if qi → ∞.

For a block B = (e1, ... , ek) as above we let |B | = k denote the length of B, and
let ‖B‖ = (e1 + 1) + ··· + (ek + 1). For 1 ≤ t ≤ k we let B(t) = et denote the tth
element of the block B.

2Uniqueness can be proved in the same way as for the b-ary expansions.
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For x a real with Q-Cantor series expansion a0.a1a2 ··· , we let NQn (B, x) be the
number of i with 1 ≤ i ≤ n such that x � [i, i + |B | – 1] = B . We let NQm,n(B, x) be
the number of i ∈ [m, n] with x � [i, i + |B | – 1] = B . This counts the number of
occurrences of the block B with a start in the interval [m, n].

Motivated by Theorem 1.2, we make the following definitions of normality for
Cantor series expansions.

Definition 1.4. A real number x is Q-normal of order k if for all blocks B of
length k such that limn→∞Qn(B) = ∞,

lim
n→∞

NQn (B, x)
Qn(B)

= 1. (3)

We let Nk(Q) be the set of numbers that are Q-normal of order k. The real number
x is Q-normal if x ∈ N (Q) :=

⋂∞
k=1 Nk(Q).

Definition 1.5. A real number x is Q-ratio normal of order k (here we write
x ∈ RN k(Q)) if for all blocks B1 and B2 of length k such that

limn→∞ min(Qn(B1), Qn(B2)) = ∞, we have

lim
n→∞

NQn (B1, x)/Qn(B1)

NQn (B2, x)/Qn(B2)
= 1. (4)

We say that x is Q-ratio normal if x ∈ RN (Q) :=
⋂∞
k=1 RN k(Q).

Definition 1.6. A real number x is Q-distribution normal if the sequence
(TQ,n(x))∞n=0 is uniformly distributed mod 1. Let DN (Q) be the set of Q-distribution
normal numbers.

We note that by Theorem 1.2, the analogous versions of the above definitions are
equivalent for the b-ary expansions. The situation is far more interesting in the case
that Q is infinite in limit and fully divergent.

It was proved in [16] that the directed graph in Figure 1 gives the complete
containment relationships between these notions when Q is infinite in limit and fully
divergent. The vertices are labeled with all possible intersections of one, two, or
three choices of the sets N (Q), RN (Q), and DN (Q), where we know that N (Q) =
N (Q) ∩ RN (Q) and N (Q) ∩ DN (Q) = N (Q) ∩ DN (Q) ∩ RN (Q). The set
labeled on vertex A is a subset of the set labeled on vertex B if and only if there
is a directed path from A to B. For example, N (Q) ∩ DN (Q) ⊆ RN (Q), so all
numbers that are Q-normal and Q-distribution normal are also Q-ratio normal.

We remark that all inclusions suggested from Figure 1 are either easily proved
(N (Q) ⊆ RN (Q)) or are trivial. The difficulty comes in showing a lack of inclusion.
The most challenging of these is to prove that there is a basic sequence Q where
RN (Q) ∩ DN (Q)\N (Q) �= ∅.

As the equivalence of these definitions is so key to the study of normality in base b,
it is natural to ask how “independent” these sets are. There have been two approaches
to measure this. First, it is natural to ask if, for example, there is a simple condition
P(x) where if x is Q-normal andP(x) also holds, we will have the x is Q-distribution
normal (or any other permutation of definitions of normality). One example of such
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RN(Q)

RN(Q)∩DN(Q)

N(Q)∩DN(Q)

DN(Q)

N(Q)

Figure 1. Relations between the different notions of normality.

an attempt to find a condition P(x) is motivated by Theorem 1.3. This theorem
strongly fails when Q is infinite in limit and fully divergent: Q-distribution normality
is preserved only by non-zero integer multiplication while Q-normality and Q-ratio
normality aren’t even preserved by integer multiplication. In fact, the easiest way to
construct members of N (Q)\DN (Q) is to use the techniques presented in [16] to
construct members of the (surprisingly) non-empty set

{x ∈ N (Q) : ∀n ≥ 2 nx /∈ N (Q)}.
This motivated Samuel Roth to ask the third author if it is true that nx ∈ N (Q) for
all natural numbers n implies that x ∈ DN (Q) at the 2012 RTG conference: Logic,
Dynamics, and Their Interactions, with a Celebration of the Work of Dan Mauldin
in Denton, Texas. This question was later strongly shown to be false in [4] as it was
shown that there exist basic sequences Q such that

dimH
(
{x ∈ R : rx + s ∈ N (Q)\DN (Q)∀r ∈ Q\{0}, s ∈ Q}) = 1.

Any other attempt to find such an additional condition that would allow one to get
from one form of normality to another has thus far failed.

The second method has been to attempt to find the “size” of the difference sets
suggested by Figure 1. All of these difference sets are meager and have zero measure.
The Hausdorff dimension of most of these difference sets has been calculated in [3].
In particular, when Q is infinite in limit and fully divergent, all non-empty difference
sets except for N (Q)\DN (Q) are known to have full Hausdorff dimension. The
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Hausdorff dimension of N (Q)\DN (Q) is known to have full Hausdorff dimension
only for a small class of infinite in limit and fully divergent basic sequences Q.

Another approach to measuring the difference sets is to determine the exact
descriptive complexity of these sets. If we show that for two of these classes (for a
given Q) the difference set is D2(Π0

3)-complete, then the difference has maximum
logical complexity. One of the main results of this paper, Theorem 1.15, is to establish
this fact for the five non-trivial difference sets. As we mention in some examples
below, this can be used to rule out potential theorems connecting the different
classes.

Remark 1.7. When Q is infinite in limit and k-divergent, conditions (3) and (4)
can be replaced by

lim
n→∞

NQn (B, x)

Q(k)
n

= 1 and lim
n→∞

NQn (B1, x)

NQn (B2, x)
= 1,

respectively. This class of expansions will be important for us throughout this paper.
Moreover, Nk(Q) = RN k(Q) = R if and only if Q is k-convergent.

Remark 1.8. Assuming Q = (qi) is infinite in limit, we have the following
easy facts about distribution normality. A real x with Q-Cantor series expansion
a0.a1a2 ··· is in DN (Q) iff the sequence ( aiqi ) is uniformly distributed mod 1. If

y = b0.b1b2 ··· and limi→∞
ai –bi
qi

= 0, then x ∈ DN (Q) iff y ∈ DN (Q). Also, if
{i : ai �= bi} has density 0, then x ∈ DN (Q) iff y ∈ DN (Q).

We will need the following theorem of [15].

Theorem 1.9. The sets N (Q),RN (Q), and DN (Q) are sets of full measure for
all basic sequences Q.3

1.3. Statement of results. We will prove the following theorems. First we address
the complexity of the various normality classes themselves. Theorems 1.10 and
1.11 can be seen as generalizations of the Ki–Linton result as N (Q), RN (Q), and
DN (Q) all coincide when Q is the constant b sequence. The proofs, particularly
that of Theorem 1.11, have, however, significant extra complications.

Theorem 1.10. For all basic sequences Q, the set DN (Q) is Π0
3-complete.

Theorem 1.11. The sets N (Q) and RN (Q) are Π0
3-complete if Q is 1-divergent,

and clopen if Q is 1-convergent. Moreover, Nk(Q) and RN k(Q) are Π0
3-complete if Q

is k-divergent and clopen if Q is k-convergent.

We can extend Theorem 1.11 to show the following.

Theorem 1.12. Let C be a collection of blocks. Then the set

NC(Q) =

{
x ∈ R : lim

n→∞

NQn (B, x)
Qn(B)

= 1 ∀B ∈ C such that lim
n→∞

Qn(B) = ∞
}

3The definitions of Q-normality and Q-ratio normality that were used were less general, but the
general result holds with only small modification for our more general definition.
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is Π0
3-complete if there exists B ∈ C such that limn→∞Qn(B) = ∞ and clopen

otherwise. Similarly, the set

RN C(Q) =

{
x ∈ R : lim

n→∞

NQn (B1, x)/Qn(B1)

NQn (B2, x)/Qn(B2)
= 1 ∀B1, B2 ∈ C such that

|B1| = |B2| and lim
n→∞

min(Qn(B1), Qn(B2)) = ∞
}

is Π0
3-complete if there existB1, B2 ∈ C such that limn→∞ min(Qn(B1), Qn(B2)) = ∞

and C satisfies the following hypothesis:
(�). For every B ∈ C with infinite expectation there is a block B ′ ∈ C of infinite

expectation with |B ′| = |B | and an integer 1 ≤ t ≤ |B | such that |B(t) – B ′(t′)| > 1
for all 1 ≤ t′ ≤ |B ′|.

If there do not existB1, B2 ∈ C such that limn→∞ min(Qn(B1), Qn(B2)) = ∞, then
RN C(Q) is clopen.

Remark 1.13. The Π0
3-completeness of NC holds for general C (and all Q), but

the Π0
3-completeness of RN C requires the extra hypothesis (�) on C. We do not

know if this extra hypothesis is necessary. For base b expansions, normality and
ratio normality coincide so the extra assumption is not needed, but we do not know
for general Q.

Remark 1.14. The proof of Theorem 1.12 will also show the Π0
3-completeness

for a variation of ratio normality which we call strong ratio normality. Here we
remove the restriction that |B1| = |B2| in the above definition of RN C(Q). We can
accordingly relax the (�) assumption by removing the requirement that |B ′| = |B |.

The next theorem addresses the complexity of the difference sets. We note that
the hypotheses on Q are necessary as the various normality classes coincide for base
b expansions (where Q is not infinite in limit) and when Q is not 1-divergent then
N (Q) and RN (Q) are clopen.

Theorem 1.15. Assume that Q is infinite in limit and 1-divergent. Then the sets
DN (Q) \ N (Q), DN (Q) \ RN (Q), N (Q) \ DN (Q), RN (Q) \ DN (Q), and
RN (Q) \ N (Q) are all D2(Π0

3)-complete.

Theorem 1.15 imposes limitations on the relationships between the classes N (Q),
RN (Q), and DN (Q). For example, consider the sets N (Q) and RN (Q). Since
RN (Q) \ N (Q) is D2(Π0

3)-complete, there cannot be a Σ0
3 set A such that A ∩

RN (Q) = N (Q) (as otherwise we would have RN (Q) \ N (Q) = RN (Q) \ A ∈
Π0

3, a contradiction). Thus, no Σ0
3 condition can be added to the assumption of

ratio normality to give the set of normal numbers. Equivalently, anytime a Σ0
3 set

contains N (Q) (or DN (Q)), then it must contain elements of RN (Q) \ N (Q) and
DN (Q) \ N (Q) (resp. N (Q) \ DN (Q), and so RN (Q) \ DN (Q)). For example,
though N (Q) has Lebesgue measure one, any Π0

2 set of measure one which contains
N (Q) must contain an element of RN (Q) \ N (Q), as well as DN (Q) \ N (Q).
Many naturally occurring sets of reals A are defined by conditions which result in
them being Σ0

3 sets. Examples include countable sets, co-countable sets, the class BA
of badly approximable numbers (which is a Σ0

2 set), the Liouville numbers (which is a
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Π0
2 set), and the set of x ∈ [0, 1] where a particular continuous function f : [0, 1] →

R is not differentiable. In all these cases the theorem implies that the set either omits
some normal number, or else contains a number which is ratio normal but not
normal (and likewise for DN (Q)). Of course, many of these statements are easy
to see directly, but the point is that they all follow immediately from the general
complexity result, Theorem 1.15.

Previous work of Mance [14] had shown that all of the non-trivial difference sets
(all except N (Q) \ RN (Q), which is trivially empty) are non-empty assuming Q
is infinite in limit k-divergent for all k. Thus, Theorem 1.15 strengthens this in two
ways: we relax the hypothesis to Q being 1-divergent, and we show the difference
sets are actually D2(Π0

3)-complete.
To mention another application of Theorem 1.15, consider (relative to a fixed

basic sequence Q which is infinite in limit and 1-divergent) the following weakening
of distribution normality. Say a real x is �-weakly distribution normal (for � > 0) if
there is an � such that for all N ≥ � and all intervals (a, b) ⊆ (0, 1)∣∣∣∣ 1

N
#{n < N : q0 ··· qn–1x mod 1 ∈ [a, b]} – (b – a)

∣∣∣∣ ≤ �.
The set WDN (Q)� of �-weakly distributional normal numbers is easily a Σ0

2 set.
It therefore follows from Theorem 1.15 that N (Q) ∩ WDN (Q)� \ DN (Q) is non-
empty.

For one more example, let R(Q) denote the set of rich numbers. These are the x
such that every block B ∈ �<� occurs in the Q-ary expansion of x. The set R(Q)
is easily a Π0

2 set, and contains the ratio normal numbers (and so also the normal
numbers). From Theorem 1.15 it therefore follows that DN (Q) ∩ R(Q) \ N (Q) is
non-empty. In other words, distribution normal and rich does not imply normal (if
this failed, then DN (Q) \ N (Q) would be equal to DN (Q) \ R(Q) which a Π0

3
set, contradicting Theorem 1.15).

§2. Π0
3-completeness of the normality classes. Throughout, Q = (qi)∞i=1 will

denote a basic sequence, that is, a sequence of integers qi with qi ≥ 2 for all i.
Note that the Π0

3-completeness of the set N (Q) ∩ [0, 1] (and likewise for
RN (Q) ∩ [0, 1] and DN (Q) ∩ [0, 1]) immediately implies the Π0

3-completeness of
N (Q), since if N (Q) were in Σ0

3, then so would be N (Q) ∩ [0, 1]. Similarly, the Π0
3-

completeness of the difference sets restricted to [0, 1] (for example RN (Q) \ N (Q) ∩
[0, 1]) implies the Π0

3-completeness of the difference set (e.g., RN (Q) \ N (Q)). So,
for the rest of the paper we will restrict our attention to reals in [0, 1], that is, when
we write N (Q) etc., we will henceforth mean N (Q) ∩ [0, 1].

The basic sequence Q forms the set of bases for the expansion of an real x ∈ [0, 1]
into a Cantor series

x =
∞∑
i=1

ai
q1 ··· qi

,

where 0 ≤ ai < qi . Recall we abbreviate the above equation by writing x = .a1a2 ···
when Q is understood. Let XQ be the set of all sequences (ai)∞i=1 with 0 ≤ ai < qi .
XQ is a compact Polish space with the product of the discrete topologies on the
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sets {0, 1, ... , qi – 1}. We let ϕ2 : XQ → [0, 1] be the map ϕ2((ai)) = .a1a2 ... . Our
reduction maps will always be of the form ϕ(x) = ϕ2 ◦ ϕ1, where ϕ1 : �� → XQ will
vary from proof to proof.

We first prove the completeness result for distribution normality, Theorem 1.10.

Proof of Theorem 1.10. Let P = {x ∈ �� : limn x(n) = ∞}. It is well-known
that P is Π0

3-complete. We define a continuous ϕ : �� → [0, 1] which will be a
reduction of P to DN (Q), that is, such that P = ϕ–1(DN (Q)). This suffices to
show that DN (Q) is Π0

3-complete. Again, ϕ will be of the form ϕ = ϕ2 ◦ ϕ1 where
ϕ2 is as above.

Let 0 = b0 < b1 < b2 < ··· be a sufficiently fast-growing sequence from N,
so that in particular limn

b0+···+bn–1
bn

= 0. Let In = [bn–1, bn), which we call the nth
block of N.

Fix a z = (zi)∞i=1 ∈ XQ such that ϕ2(z) = .z1z2 ··· ∈ DN (Q). We will use z as a
“reference point” from which we make certain modifications depending on the point
x ∈ �� .

Fix x ∈ �� and we describe the construction for ϕ1(x). Let x′(n) =
min{x(n), n}. Clearly x ∈ P iff x′ ∈ P. Consider the nth block In. We may assume
the bn grow fast enough so that for all n and all k ≤ n + 2, for all b ≥ bn–1 we have
that ∣∣∣∣ 1

b
#

{
i < b : TQ,i (z) ∈

[
0,

1
k

)}
–

1
k

∣∣∣∣ < 1
2n
. (5)

For i ∈ In we defineai = (ϕ1(x))(i) as follows. For i ∈ In, ifTQ,i (z) /∈ [0, 1
x′(n)+2 ),

then we set ai = zi . If TQ,i (z) ∈ [0, 1
x′(n)+2 ), then we set ai to be the least integer in

[zi , qi) such that aiqi >
1

x′(n)+2 .
This defines the map ϕ1, and it is clear that ϕ1, and thus ϕ, is continuous. We

show ϕ is a reduction of P to DN (Q).
First suppose that x /∈ P. Then there is an i0 such that for infinitely many n we

have x′(n) = i0. For such n we have that for all i ∈ In that TQ,i
(
ϕ(x)) /∈ [0, 1

x′(n)+2 ),

and thus TQ,i
(
ϕ(x)) /∈ [0, 1

i0+2 ). This follows from the facts that

TQ,i
(
ϕ(x)) ≥ TQ,i (z) ,

and if TQ,i (z) ∈ [0, 1
x′(n)+2 ) then by definition of ai we have that TQ,i

(
ϕ(x)) ≥ ai

qi
>

1
x′(n)+2 . Since b0+···+bn–1

bn
tends to 0, it follows that ϕ(x) /∈ DN (Q).

Assume now x ∈ P, and we show that ϕ(x) ∈ DN (Q). From Remark 1.8
it suffices to show that {i : ai �= zi} has density 0. Fix � > 0. Since x ∈ P,
limn→∞ x

′(n) = ∞. Fix n0 large enough so that 1
x′(n)+2 <

�
2 for all n ≥ n0. If n ≥ n0,

then for all k ∈ In we have that∣∣∣∣ 1
k

#
{
i < k : TQ,i (z) ∈

[
0,

1
x′(n0) + 2

)}
–

1
x′(n0) + 2

∣∣∣∣ < 1
2n

≤ 1
x′(n0) + 2

<
�

2
.

(6)

For n ≥ n0, the i ∈ In for which ai �= zi are the i for which TQ,i (z) ∈ [0, 1
x′(n)+2 ),

which is a subset of the i ∈ In for which TQ,i (z) ∈ [0, 1
x′(n0)+2 ), for n large enough.
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From Equation (6) it follows that for all large enough n and k > bn that

1
k
‖{i < k : ai �= zi}‖ < �.

Thus, {i : ai �= zi} has density 0. �
We next prove the completeness result, Theorem 1.11, for the classes N (Q) and

RN (Q).

Proof of Theorem 1.11. Suppose Q is 1-divergent and we first show that N (Q)
and RN (Q) are Π0

3-complete. Let P ⊆ �� be the Π0
3-complete set as before. Fix

z = (zi)∞i=1 ∈ XQ such that ϕ2(z) = .z1z2, ··· ∈ N (Q).
We say a block B ∈ �k is good if limn Qn(B) = ∞, that is, the block B has an

infinite expectation. Recall that if B = (e1, ... , ek), then ‖B‖ =
∑

1≤i≤k(ei + 1).
We let 0 = b0 < b1 < ··· be a sufficiently fast-growing sequence so that the

following hold:

(1) bn – bn–1 > 2nbn–1.
(2) 1

Qm(B) |N
Q
m (B, z) – Qm(B)| < 1

n for any good B with ‖B‖ ≤ n, and any m ≥
bn–1.

(3) bn–1
Qbn (B) <

1
4n for any good B with ‖B‖ ≤ n.

We define the mapϕ1 : �� → XQ, and our final reduction map will beϕ = ϕ2 ◦ ϕ1

where ϕ2 is as in the proof of Theorem 1.10. Let In = [bn–1, bn). For x ∈ �� , let
x′(n) = max{27,min{x(n), n}}. We define ϕ1(x) � In as follows.

Let B0, B1, ... , Bp enumerate the good blocks which occur among the first
� 6
√
x′(n)� many blocks, where we order the blocks first by ‖B‖ and then

lexicographically. Note that this ordering of the blocks has order-type � and the ith
block in this ordering has length ≤ i . So, for j ≤ p we have |Bj | ≤ 6

√
x′(n) ≤ 6

√
n.

For each 0 ≤ i ≤ p let m(i) ∈ [bn–1, bn) be the least m so that Nm,bn (Bi , z) ≤
2

3
√
x′(n)
Qbn (Bi). Note thatNm(i),bn (Bi , z) ≥ 3

2 3
√
x′(n)
Qbn (Bi). Letm = max{m(i) : 0 ≤

i ≤ p}. Let i0 be such that m(i0) = m. We note that i0 = i0(n) depends on n, but as
n is fixed for the rest of the definition of ϕ1(x) � In, we will just write i0.

Consider the block Bi0 . We say a block Bj is sparse relative to Bi0 if Qbn (Bj) <
1

4|Bj |4
|Bj |

√
x′(n)
Qbn (Bi0 ). Let A ⊆ In be the set of i ∈ [m, bn] such that z � [i, i +

|Bi0 | – 1] = Bi0 . Let r be the digit altering function defined as follows. If Bi0(1) = 0,
then r maps 0 to 1 and leaves all other values fixed. If Bi0(1) �= 0 then r maps Bi0(1)
to Bi0(1) – 1 and leaves all other values fixed. Since the block Bi0 is fixed for the rest
of the definition, the function r is also. Note that r applied to a valid Q expansion
results in a valid Q expansion. Also, r is at most 2-to-1, so each block B has most
2|B| many preimages under r (we apply r to a block by applying it to each digit).

Let A′ ⊆ A be those i ∈ A such that for all j < p such that Bj is sparse relative
to Bi0 , and all q < |Bj |, z � [i – q, ... , i – q + |Bj | – 1] �= Bj and z � [i – q, ... , i –
q + |Bj | – 1] /∈ BSj , whereS ⊆ |Bj | andBSj is the set of blocks B such that r(B) = Bj
(here r(B) means apply r to all of the digits of B).

Note that if z ′ is obtained by applying r to the digits zi for i in a subset of A′,
then z � In and z ′ � In have the same number of occurrences of the block Bj for
j = 1, ... , p.
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Note that

|A′| ≥ 3

2 3
√
x′(n)

Qbn (Bi0 ) –
∑
j<p

∑
S⊆|Bj |

∑
rS (B)=Bj

|Bj |NQm,bn (B, z),

where the first sum ranges over the j such that Bj is sparse relative to Bi0 , and the
third sum ranges over blocks B with rS(B) = Bj , where rS applies r to the digits
in the set S. Since r either lowers a digit or changes a 0 to a 1, it follows that if
rS(B) = Bj then Qk(B) ≤ Qk(Bj) for any k.

Thus,

|A′
n| ≥

3

2 3
√
x′(n)

Qbn (Bi0 ) –
∑
j<p

|Bj |4|Bj |NQbn (Bj)

≥ 3

2 3
√
x′(n)

Qbn (Bi0 ) – (1 +
1
n

)
∑
j<p

|Bj |4|Bj |Qbn (Bj)

≥ 3

2 3
√
x′(n)

Qbn (Bi0 ) – (1 +
1
n

)
∑
j<p

|Bj |4|Bj |
(

1

4|Bj |4|Bj |
√
x′(n)

Qbn (Bi0 )

)

≥ 3

2 3
√
x′(n)

Qbn (Bi0 ) –
1
2

6
√
x′(n)√
x′(n)

Qbn (Bi0 )

=
3

2 3
√
x′(n)

Qbn (Bi0) –
1

2 3
√
x′(n)

Qbn (Bi0 )

≥ 1
3
√
x′(n)

Qbn (Bi0 )

for all large enough n. Let A′′ be the last 1
x′(n)Qbn (Bi0 ) elements of A′.

For i ∈ In, let

ϕ1(x)(i) =

{
r(zi) if i ∈ A′′,

zi otherwise.

Note that ϕ1(x) � In is obtained from z � In by changing certain digits, the number
of such changes being |A′′| = 1

x′(n)Qbn (Bi0 ). Note that the least element i of A′′ is at
least the number m from above (since A′′ ⊆ A ⊆ [m, bn]) and

Nm(Bi0 , z) ≥ Nbn (Bi0 , z) – Nm,bn (Bi0 , z)

≥ Nbn (Bi0 , z) –
2

3
√
x′(n)

Qbn (Bi0 )

≥
(

(1 –
1
n

) –
2

3
√
x′(n)

)
Qbn (Bi0 ),

since m = m(i0) and using the definition of m(i0). Since x′(n) ≥ 27, Nm(Bi0 , z) ≥
1
3Qbn (Bi0 ) and in particular m ≥ 1

3Qbn (Bi0 ). From property (3) of the bn it follows
that the first element of A′′ is at least 4n

3 bn–1 > 2n–1bn–1, for all large enough n.

https://doi.org/10.1017/jsl.2021.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.77


1034 DYLAN AIREY ET AL.

Suppose first that x /∈ P. There is a least �, which we call �0, such that for infinitely
many n we have that x′(n) = �0. At such a stage n in the construction, we consider
the first 6

√
�0 many blocks. So, for infinitely many such n we may assume that the

blockBi0 is fixed, that is, the value of i0 does not depend on n along this subsequence.
Then for large enough such n we have:

NQbn (Bi0 , ϕ1(x)) ≤ bn–1 +NQbn (Bi0 , z) –
1
�0
Qbn (Bi0 )

≤ bn–1 +Qbn (Bi0 )
(

1 +
1
n

)
–

1
�0
Qbn (Bi0 )

≤
(

1
4n

+ 1 +
1
n

–
1
�0

)
Qbn (Bi0 )

≤
(

1 –
1

2�0

)
Qbn (Bi0 ). (7)

This showsϕ(x) /∈ N (Q) whenx /∈ P. Consider the blockBi0 which is fixed along
the subsequence. If Bi0 (1) ≥ 1, then we obtain ϕ1(x) � In from z � In by lowering
certain occurrences of the digitBi0(1) toBi0 (1) – 1. This will not decrease the number
of occurrences of the block 0k , where k = |Bi0 |. So, NQbn (0k, ϕ1(x)) ≥ NQbn (0k, z) ≥
Qbn (0k)(1 – �), for small � (say � < 1

3�0
) and all large enough n. This, along with

Equation (7), shows ϕ1(x) /∈ RN (Q). If Bi0(1) = 0, then r maps 0 to 1 and leaves
all other digits unchanged. This cannot decrease the number of occurrences of
the block 1k . So, NQbn (1k, ϕ1(x)) ≥ NQbn (1k, z) ≥ Qbn (1k)(1 – �) which again shows
ϕ1(x) /∈ RN (Q).

Suppose now that x ∈ P so that limn x′(n) = ∞. Let B be a good block, and fix
� > 0. Let n0 > |B | be such that for all n ≥ n0, x′(n) is large enough that B is one
of the first 6

√
x′(n) many blocks. Consider now n ≥ n0 and corresponding interval

In. Let 
 > 0 and assume n is sufficiently large and inductively that we have shown
|NQbn–1

(B, z) – NQbn–1
(B,ϕ1(x))| ≤ 
Qbn–1(B).

Consider first the case B is sparse at stage n relative to Bi0 . Let p be as before,
so p ≤ 6

√
x′(n). Then B = Bj for some j ≤ p. So, for any i ∈ In we have that if

z � [i, i + |B | – 1] = B or ϕ1(x) � [i, i + |B | – 1] = B then [i, i + |B | – 1] ∩ A′
n = ∅.

Since x � In is obtained from z � In by changing the value only at points ofA′′
n ⊆ A′

n,
it follows that for any k ∈ [bn–1, bn] that |NQk (B, z) – NQk (B,ϕ1(x))| = |NQbn–1

(B, z) –

NQbn–1
(B,ϕ1(x))|. So we have for k ∈ [bn–1, bn] and large enough n:

|NQk (B,ϕ1(x)) – Qk(B)| ≤ |NQk (B, z) – Qk(B)| + |NQbn–1
(B,ϕ1(x)) – NQbn–1

(B, z)|

≤ |NQk (B, z) – Qk(B)| + 
Qbn–1(B)

≤ 1
2n
Qk(B) + 
Qk(B)

≤ Qk(B)
(

1
2n

+ 

)
, (8)
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which verifies normality for the block B. Since |NQbn (B, z) – NQbn (B,ϕ1(x))| =

|NQbn–1
(B, z) – NQbn–1

(B,ϕ1(x))|, the inductive hypothesis at bn follows immediately.
Consider next the case that B = Bj is not sparse at stage n relative to Bi0 . From

the definition of i0 and m we have that

Qm(B) ≥ Qmj (Bj) ≥
(

1 –
2

3
√
x′(n)

)
Qbn (Bj). (9)

From the definition of being sparse relative to Bi0 we have that

Qbn (B) ≥ 1

4|B |4|B|
√
x′(n)

Qbn (Bi0). (10)

Recall that ϕ1(x) � In and z � In only differ on A′′, and min(A′′) ≥ m.
Now let k ∈ [bn–1, bn], and we estimate |NQk (B,ϕ1(x)) – Qk(B)|. If k < m then

|NQk (B,ϕ1(x)) – Qk(B)| ≤ |NQk (B, z) – Qk(B)| + |NQbn–1
(B, z) – NQbn–1

(B,ϕ1(x))| ≤(
1

2n + 

)
Qk(B), which verifies normality for B.

So, assume k ≥ m. We have

|NQk (B,ϕ1(x)) – Qk(B)| ≤ bn–1 +
1
x′(n)

Qbn (Bi0 ) + |NQk (B, z) – Qk(B)|

≤ 1
2n
Qbn (B) +

1
x′(n)

Qbn (Bi0 ) +
1
2n
Qk(B)

≤ 1
2n

1

1 – 2
3
√
x′(n)

Qm(B) +
1
x′(n)

Qbn (Bi0) +
1
2n
Qk(B)

≤ 1
2n–2Qm(B) +

1
x′(n)

Qbn (Bi0 ) +
1
2n
Qk(B)

≤ 1
2n–3Qk(B) +

1
x′(n)

4|B |4|B|
√
x′(n)Qbn (B)

≤ 1
2n–3Qk(B) +

1
x′(n)

4|B |4|B|
√
x′(n)

1

1 – 2
3
√
x′(n)

Qm(B)

≤ 1
2n–3Qk(B) +

12|B |4|B|√
x′(n)

Qk(B).

Since x′(n) → ∞, this shows normality for the block B. Similarly, letting
k = bn we have |NQbn (B,ϕ1(x)) – NQbn (B, z)| ≤ bn–1 + 1

x′(n)Qbn (Bi0) ≤ 1
4n Qbn (B) +

8|B|4|B|√
x′(n)
Qbn (B) ≤ 
Qbn (B), which verifies the inductive hypothesis at bn.

This completes the proof that N (Q) and RN (Q) are Π0
3-complete assuming Q

is 1-divergent. If Q is 1-convergent, then every x is in N (Q) and RN (Q), so the
conclusion of Theorem 1.11 holds trivially. �

The second part of Theorem 1.11 concerning Nk(Q) and RN k(Q) and the proof
of Theorem 1.12 are slight generalizations of the proof of Theorem 1.11 given above.
Since the proofs are similar we just sketch the differences.
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Proof of Theorem 1.12. We use the notation and terminology of the proof of
Theorem 1.11. We may assume that all of the blocksB ∈ C have infinite expectation,
that is, lim

n→∞
Qn(B) = ∞. At stage n of the construction we again let p = � 6

√
x′(n)�,

and let B1, ... , Bp enumerate the first p many blocks of C. We define the block
Bi0 as before, maximizing the value of m(i) for 1 ≤ i ≤ p. For the first part of
Theorem 1.12 we may use the same digit changing function r as in the proof of
Theorem 1.11. If x ∈ P, then the proof of Theorem 1.11 shows that ϕ(x) ∈ NC(Q).
If x /∈ P, then for infinitely many n the value of i0 will be constant, and Bi0 is a
block in C. As in Equation (7), this gives an � > 0 such that for infinitely many
n we have |NQbn (Bi0 , ϕ1(x)) – Qbn (Bi0 )| > �Qbn (Bi0 ). Thus, ϕ(x) /∈ NC(Q). For the
second statement of Theorem 1.12 we modify the argument as the blocks 0k and 1k
used in the proof of Theorem 1.11 may not be in C. The additional hypothesis of
Theorem 1.12, however, guarantees the existence of a block Bj ∈ C and an integer
t such that |Bi0 (t) – Bj(t′)| > 1 for all t′. As in the argument after Equation (7), we
modify the definition of ϕ1(x) � In to change by 1 all occurrences of Bi0(t) in z � In
which correspond to a possible occurrence of Bi0 (that is, the integers i ∈ In where
z � [i – t + 1, i + |Bi0 |] = Bi0 ). This will not affect the number of occurrences of the
block Bj in In. This gives that ϕ(x) /∈ RN C(Q). �

§3. Proof of Theorem 1.15. We will show the D2(Π0
3)-completeness of the non-

trivial combinations of the form A \ B where A,B are one of N (Q), DN (Q), and
RN (Q). There are five non-trivial combinations, as N (Q) ⊆ RN (Q). Section 3.1
handles four of these cases, which are essentially done by the same proof. The fifth
case, RN (Q) \ N (Q), is more complicated and will be handled in Section 3.2. We
note that theD2(Π0

3)-completeness of the setsA \ B implies that the sets of the form
A ∩ B or of the form A ∪ B (for A,B ∈ N (Q),DN (Q),RN (Q)) are Π0

3-complete
by the following simple lemma.

Lemma 3.1. If A,B are Π0
3 and A \ B is D2(Π0

3)-complete, then A ∪ B and A ∩ B
are Π0

3-complete.

Proof. Suppose that A ∪ B were Σ0
3. Then A \ B = (A ∪ B) \ B would be Σ0

3, a
contradiction. Likewise, if A ∩ B were Σ0

3 then A \ B = A \ (A ∩ B) would be Π0
3,

a contradiction. �

Lastly, we note that since N (Q),RN (Q), and DN (Q) are sets of full measure by
Theorem 1.9, their intersections are nonempty. We will freely use this fact without
mentioning it.

3.1. Completeness of DN (Q) \ N (Q), DN (Q) \ RN (Q), N (Q) \ DN (Q), and
RN (Q) \ DN (Q).

Theorem 3.2. Let Q be infinite in limit and 1-divergent. Then the sets DN (Q) \
N (Q), DN (Q) \ RN (Q), N (Q) \ DN (Q), and RN (Q) \ DN (Q) are allD2(Π0

3)-
complete.

Proof. Let C = {x ∈ �� : x(2n) → ∞} and D = {x ∈ �� : x(2n + 1) → ∞}.
It is easy to see that C \D is D2(Π0

3)-complete.
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Fix a fast growing sequence {bn}, so in particular (2n
∑
i<n bi)/bn → 0. Recall

0k denotes the sequence of length k consisting of all 0s. We introduce two basic
operations which can be performed on an interval I ∈ N[a,b] of digits:

Θk,� : Let A ⊆ [a, b] be the set of j which start an occurrence of 0k , that is,
(I (j), ... , I (j + k – 1)) = 0k . Let A′ ⊆ A be the last � |A|

� � many elements of A.
For each j ∈ A′, change the digit I (j) from a 0 to a 1.

Ξk : For every j ∈ [a, b] with I (j) ∈ [ kk+1qj, qj ], change the digit from I (j) to
qj – 1.

For the difference hierarchy results we will use both operations, exploiting the
fact that, roughly speaking, they allow us to modify normality/ratio normality and
distribution normality independently.

Let z ∈ DN (Q) ∩ RN (Q), and let (zi)∞i=1 ∈ XQ be the digits of the Q-Cantor
series expansion of z.

We suppose the bn are chosen so that for all k ≤ 2n such that Q is k-divergent we
have Q(k)

bn
> 2nbn–1 and ∀m ≥ bn |NQm (0k, z) – Q(k)

m | < 1
2n Q

(k)
m .

Suppose first that limn Q
(k)
n = ∞ for all k, that is, Q is fully divergent. Given x ∈

�� , we define ϕ1(x) ∈ XQ as follows. Let x′(n) = max{2,min{x(n), n}}. Consider
the interval of digits z � In, where In = [bn–1, bn). We letϕ1(x) � [bn–1, bn) be given by
starting with z � In and applying the operation Θx′(2n),x′(2n) and then the operation
Ξx′(2n+1) to it.

Recall ϕ2 : XQ → [0, 1] is the continuous map

ϕ2(d1, d2 ... ) =
∞∑
i=1

di
q1 ··· qi

.

We show that ϕ = ϕ2 ◦ ϕ1 is a reduction from C \D to N (Q) \ DN (Q). In fact,
we show that x ∈ C iff ϕ(x) ∈ N (Q) and x ∈ D iff ϕ(x) ∈ DN (Q).

Since qi → ∞, the Θ operation does not affect distribution normality as it involves
changing each digit in the Q Cantor series expansion by at most 1 (see Remark 1.8).
Also, as qi → ∞we have that the Ξ operation does not effect normality, since for any
block of digits B we have that |NQn (B, z) – NQn (B, y)| is bounded with n (regardless
of x), where y is the result of applying the Ξ operation in all of the In.

First suppose x ∈ C , so x(2n) → ∞. Let w be the result of applying just the first
operation Θx′(2n),x′(2n) to z in each of the intervals In. We claim that w ∈ N (Q).
Consider a block B of digits, and let k = |B | denote its length. First note that for
any � > 0 and all large enough n we have

|NQbn (B,w) – NQbn (B, z)| ≤ bn–1 +
2|B |
x′(2n)

NQbn (0x′(2n), z)

≤ bn–1 +
2|B |
x′(2n)

(
1 +

1
2n

)
Qbn (0x′(2n))

≤ bn–1 +
2|B |
x′(2n)

2Qbn (B)

≤ �Qbn (B).
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Since z ∈ N (Q), for large enough n we have |NQbn (B,w) – Qbn (B)| < 2�Qbn (B). Fix
� > 0, and consider now n large enough and k ∈ [bn–1, bn). Let m be the first element
of A′ in In. Note that |A| ≥ 2nbn–1, and so m ≥ 2n–1bn–1 as x′(2n) ≥ 2. If k < m
then we have

|NQk (B,w) – Qk(B)| ≤ |NQbn–1
(B,w) – Qbn–1(B)| + |NQbn–1,k

(B,w) – Qbn–1,k(B)|

≤ 2�Qbn–1 (B) + |NQbn–1,k
(B, z) – Qbn–1,k(B)|

≤ 2�Qbn–1 (B) + |NQk (B, z) – Qk(B)| + |NQbn–1
(B, z) – Qbn–1 (B)|

≤
(

2� +
2
2n

)
Qk(B).

If k ≥ m, then for large enough n first note that we have

Qk(B) ≥ Qk(0x′(2n)) ≥ (1 –
1
2n

)NQk (0x′(2n), z)

≥ (1 –
1
2n

)(1 –
1

x′(2n)
)NQbn (0x′(2n), z)

≥ (1 –
1
2n

)2(1 –
1

x′(2n)
)Qbn (0x′(2n))

≥ 1
2
Qbn (0x′(2n))

≥ 2n–1bn–1.

So we have

|NQk (B,w) – Qk(B)| ≤ bn–1 +
2|B |
x′(2n)

NQk (0x′(2n), z) + |NQk (B, z) – Qk(B)|

≤ 2
2n
Qk(B) +

2|B |
x′(2n)

NQk (0|B|, z) +
1
2n
Qk(B)

≤ 3
2n
Qk(B) +

3|B |
x′(2n)

Qk(B)

≤ �Qk(B). (11)

This shows that w ∈ N (Q).
If x /∈ C , say x(2n) = c for infinitely many n, then for infinitely many n we have

NQbn (0c , w) ≤ NQbn (0c , z) + bn–1 –
1
c
NQbn–1,bn

(0c , z)

≤
(

1 +
1
2n

)
Qbn (0c) + 2bn–1 –

1
c
NQbn (0c , z)

≤
(

1 +
3
2n

)
Qbn (0c) –

1
c

(
1 –

1
2n

)
Qbn (0c)

≤
(

1 –
1

2c

)
Qbn (0c). (12)
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On the other hand, the block 1c occurs in w � [0, bn) at least as many times as it
does in z � [0, bn). So, NQbn (1c , w) ≥ NQbn (1c , z) ≥ (1 – 1

2n )Qbn (1c). Since Qbn (0c) =
Qbn (1c), it follows that w /∈ RN (Q) (and also w /∈ N (Q)).

If x ∈ D, so x(2n + 1) → ∞, then ϕ(x) ∈ DN (Q). We use the fact that if
u = .u1u2 ··· ∈ DN (Q) and v = .v1v2 ... is such that |(ui – vi)/qi | → 0, then v ∈
DN (Q) (see Remark 1.8). If x /∈ D, then ϕ(x) /∈ DN (Q) since for infinitely many
intervals [bn–1, bn) we have that (ϕ1(x))(i)/qi /∈ [1 – �, 1 – �2 ], where � = 1

c+1 and
x(2n + 1) = c for infinitely many n.

So we have that if x ∈ C then ϕ(x) ∈ N (Q), and if x /∈ C then ϕ(x) /∈ RN (Q).
Also, x ∈ D iff ϕ(x) ∈ DN (Q). Thus, in the last two cases of the theorem, ϕ is
a reduction of C \D to the desired difference set. For the first two cases of the
theorem, ϕ is a reduction of D \ C to the desired difference set. This completes the
proof of Theorem 3.2 in the case where Q is fully divergent.

Assume now that there is a largest integer k0 such that Q is k0-divergent. We again
obtain ϕ1(x) � [bn–1, bn) by applying two operations. One of these is Ξx′(2n+1), where
the operation Ξ is as before. For the other, we use operation Θk0,x

′(2n).
If x /∈ C , then ϕ(x) /∈ RN (Q) as before. If x ∈ C , that is, x(2n) → ∞, then the

argument of Equation (11) shows that limk
|NQ
k

(B,w)–Qk (B)|
Qk (B) = 0 for any block B of

length ≤ k0. Since this accounts for all of the blocks of infinite expectation, we have
thatw ∈ N (Q). Since the second operation does not affect normality, it follows that
ϕ(x) ∈ N (Q).

As before, we have that x ∈ D iff ϕ(x) ∈ DN (Q). So we again have that x ∈
C implies ϕ(x) ∈ N (Q), x /∈ C implies ϕ(x) /∈ RN (Q), and x ∈ D iff ϕ(x) ∈
DN (Q). Thus, as in the previous case ϕ gives the desired reductions. �

3.2. Completeness of RN (Q) \ N (Q). We will need to define a class of functions
�P,Q in order to prove the last case of Theorem 1.15. Let P = (pi) and Q = (qi) be
basic sequences. If x = a0.a1a2 ··· w.r.t. P, then put

�P,Q(x) =
∞∑
i=1

min(ai , qi – 1)
q1 ··· qi

.

We will need the following theorem of [16].

Theorem 3.3. Suppose that P and Q are basic sequences which are infinite in limit.
If x = a0.a1a2 ··· w.r.t. P satisfies ai < qi – 1 for infinitely many i, then for every
block B

NQi
(
B,�P,Q(x)) = NPi (B, x) +O(1).

While Theorem 3.3 is not difficult to prove, it has been an essential tool in proving
some of the more difficult theorems about Q-normal numbers.

Recall that for a basic sequence Q and block B,Qn(B) (see Equation (2)) denotes
the expected number of occurrences of B with a starting position in [1, n] with respect
to the basic sequence Q. Since we will be dealing with several basic sequences in this
section, we extend this notation in a natural manner. Namely, if P (or R) are basic
sequences, then we letPn(B) (orRn(B)) denote the expected number of occurrences
of B with a starting position in [1, n] with respect to P (or R). We similarly use the
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notation NPn (B, z) to denote the number of occurrences of B in the P-Cantor series
for z with starting position in [1, n].

We will use the following lemma about concatenating intervals of normal
sequences for different basic sequences.

Lemma 3.4. Let P, Q be basic sequences which are infinite in limit and assume
that lim supi

pi
qi

is finite. Let u ∈ N (P), and v ∈ N (Q). Let B ∈ �<� have infinite
expectation with respect to P and Q, and let � > 0. Then there is an i0 such that if
i ′ > i ≥ i0 then |NR

i′ (B,w) – Ri′(B)| < �Ri′(B) where w � [0, i) = u, w � [i,∞) =
v, R � [0, i) = P, and R � [i,∞) = Q.

Proof. Fix C such that piqi ≤ C for all i. Since pi
qi

≤ C , and B has infinite
expectation with respect to P and Q, for large enough i we have that Qi(B) ≤
2C |B|Pi(B). Let i0 be such that for all i ≥ i0 we have that |NQi (B, v) – Qi(B)| <
�′Qi(B) and |NPi (B, u) – Pi(B)| < �′Pi(B) where �′ = �

3+4C |B| . Let i ′ > i ≥ i0. We
then have

|NRi′ (B,w) – Ri′(B)| ≤ |NPi (B, u) – Pi(B)| + |NQ
i,i′(B, v) – Qi,i′(B)|

≤ �′Pi(B) + |NQi (B, v) – Qi(B)| + |NQ
i′ (B, v) – Qi′(B)|

≤ �′Pi(B) + �′Qi(B) + �′Qi′(B)

≤ �′Ri(B) + 2�′Qi′(B)

≤ �′Ri(B) + 2�′(Qi(B) +Qi,i′(B))

≤ �′Ri(B) + 2�′(2C |B|Pi(B) +Qi,i′(B))

≤ �′Ri(B) + 2�′(1 + 2C |B|)Ri′(B)

≤ �′(3 + 4C |B|)Ri′(B) ≤ �Ri′(B). �

We now prove the following theorem which gives the last case of Theorem 1.15.

Theorem 3.5. Let Q be a basic sequence which is infinite in limit and 1-divergent.
Then the set RN (Q) \ N (Q) is D2(Π0

3)-complete.

Proof. LetC,D ⊆ �� be as in Section 3.1. For k, n ∈ N, recall thatQ(k)
n denotes

the sum Q(k)
n =

∑n
i=1

1
qi qi+1···qi+k–1

.

For each m, let Pm = (max(2, �m+1
m+2qi�))∞i=1. Recall (Pm)i(B) denotes the

expectation of B in the first i digits of Pm, as in Equation (2), and (Pm)(k)
i denotes

the expectation of 0k in the first i digits of Pm. We fix for the rest of the proof
wm ∈ N (Pm), which we identify with a Pm-Cantor series expansion.

Given a strictly increasing sequence {bn} (which we will choose below) and
an x ∈ �� we define a new basic sequence Px = P(x, {bn}, Q) = (pxi ) as follows.

Let x′(n) = min{x(n), n}. Let pxi = Px′(2n+1)(i) = max(2, �x
′(2n+1)+1
x′(2n+1)+2qi�) for i ∈

[bn–1, bn). Note that pi ≤ qi for all i, and if x(2n + 1) → ∞ then limi
pxi
qi

= 1. Also

Q(k)
n ≤ (Px)(k)

n for all k, n.
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Claim 3.6. Suppose Q is k-divergent. If x(2n + 1) → ∞ then limi
Q

(k)
i

(Px )(k)
i

→ 1. If

x(2n + 1) does not tend to ∞ and limn
Q

(k)
bn–1

Q
(k)
bn–1 ,bn

= 0, there is a subsequence of
Q

(k)
i

(Px )(k)
i

which is bounded away from 1. �

Proof. If x(2n + 1) → ∞, then �n = x(2n+1)+1
x(2n+1)+2 → 1 and so pxi /qi tends to 1.

Note that
(

1
qjqj+1···qj+k–1

)
/
(

1
pjpj+1···pj+k–1

)
= (�n)k for all j ∈ [bn, bn+1). We then

have that for all k that Q(k)
i /(Px)(k)

i → 1 using the simple fact that if cj, dj ≥ 0,∑
j cj = ∞,

∑
j dj = ∞, and cj/dj → 1, then

(∑i
j=1 cj

)
/
(∑i

j=1 dj

)
→ 1.

If x(2n + 1) does not tend to ∞, then ∃u < 1 such that �n ≤ u for infinitely many
n. So, for infinitely many n we have that Q(k)

bn–1,bn
≤ uk(Px)(k)

bn–1,bn
. Thus, for infinitely

many n

Q(k)
bn

(Px)(k)
bn

=
Q(k)
bn–1

+Q(k)
bn–1,bn

(Px)(k)
bn–1

+ (Px)(k)
bn–1,bn

≤
Q(k)
bn–1

+Q(k)
bn–1,bn

Q(k)
bn–1

+ (Px)(k)
bn–1,bn

≤
Q(k)
bn–1

+Q(k)
bn–1,bn

Q(k)
bn–1

+ ( 1
uk

)Q(k)
bn–1,bn

≤
Q(k)
bn–1

+ ( 1
uk

)Q(k)
bn–1,bn

+ (1 – 1
uk

)Q(k)
bn–1,bn

Q(k)
bn–1

+ ( 1
uk

)Q(k)
bn–1,bn

= 1 –
(

1
uk

– 1
) Q(k)

bn–1,bn

Q(k)
bn–1

+ ( 1
uk

)Q(k)
bn–1,bn

≤ 1 –
(

1
uk

– 1
) Q(k)

bn–1,bn

( 2
uk

)Q(k)
bn–1,bn

= 1 –
(

1
uk

– 1
)
uk

2

= 1 –
1
2

(1 – uk). �
First assume that Q is k-divergent for all k. Using Lemma 3.4 we then inductively

pick the bn satisfying the following:

(1) For all m1, m2 ≤ n + 1 and all i > bn–1, let P = P(m1, m2, i) be defined
by: P � [0, bn–1) = Pm1 � [0, bn–1) and P � [bn–1, i) = Pm2 � [bn–1, i). Let w �
[0, bn–1) = wm1 andw � [bn–1, i) = wm2 � [bn–1, i). Then for any B with ‖B‖ ≤
n + 1 we have |NPi (B,w) – Pi(B)| < 1

2n Pi(B).
(2) (Pm)bn–1,bn (02n) > 2nbn–1 for all m ≤ n.

Given x ∈ �� , we defineϕ1(x) as follows. Supposeϕ1(x) � bn–1 has been defined.
Let y � [bn–1, bn) = wx(2n+1) � [bn–1, bn). Then we perform the operation Θx′(2n),x′(2n)
of Section 3.1 on y � [bn–1, bn) to produce ϕ1(x) � [bn–1, bn). This defines ϕ1(x) �
[bn–1, bn). Doing this for all blocks [bn–1, bn) produces ϕ1(x).

If x /∈ C , that is x(2n) does not tend to ∞, then ϕ(x) /∈ RN (Q). This is because
if k = lim inf x(2n), then there will be infinitely many n for which 0k occurs in [0, bn)
at most

N
Px′(2n+1)
bn

(0k, wx′(2n+1))
(

1 –
1
k

)
+ bn–1 ≤ (Px′(2n+1))

(k)
bn

(
1 –

1
k

) (
1 +

1
2n

)
+ bn–1
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≤ (Px′(2n+1))
(k)
bn

(
1 –

1
k

+
1

2n–1

)

≤ (Px′(2n+1))
(k)
bn

(
1 –

1
2k

)
(13)

many times while 1k occurs at least

N
Px′(2n+1)
bn

(1k, wx′(2n+1)) – bn–1 ≥ (Px′(2n+1))
(k)
bn

(
1 –

1
2n

)
– bn–1

≥ (Px′(2n+1))
(k)
bn

(
1 –

1
2n–1

) (14)

many times.
If x(2n) → ∞ but x(2n + 1) does not tend to infinity, then ϕ(x) ∈ RN (Q) \

N (Q). To see this, first note that the point y as above is in RN (Q). Recall Px is
defined by Px � [bn–1, bn) = Px(2n+1) � [bn–1, bn). We show that y ∈ N (Px), which
implies y ∈ RN (Q). For any B, for large enough n, and for any bn–1 ≤ i < bn we
have from property (1) of the bn:

|NP′i (B, y′) – P′
i (B)| < 1

2n
P′
i (B), (15)

where y′ and P′ are defined by:

y′ � [0, bn–1) = wx(2n–1) � [0, bn–1),

y′ � [bn–1, i) = wx(2n+1) � i,
P′ � [0, bn–1) = Px(2n–1),

P′ � [bn–1, i) = Px(2n+1) � [bn–1, i).

Also, from property (2) of the bn we have:

|NP′i (B, y′) – NPxi (B, y)| ≤ bn–2 <
1
2n

(Px)bn–1(B) ≤ 1
2n

(Px)i(B). (16)

Finally,

|P′
i (B) – (Px)i(B)| ≤ bn–2 <

1
2n

(Px)i(B). (17)

From Equations 15–17 we have |NPxi (B, y) – (Px)i(B)| ≤ 4
2n (Px)i(B). This shows

that y ∈ RN (Q). Since x(2n + 1) does not tend to infinity, then from Claim 3.6

there is a subsequence on which
Q

(k)
i

(Px )(k)
i

is bounded away from 1. Since y isPx-normal,

we have that y is not Q-normal.
The operation applied to y to produce ϕ1(x) does not affect normality or ratio

normality if x(2n) → ∞ (this is just as in Section 3.1). So, ϕ(x) ∈ RN (Q) \ N (Q).
Finally, ifx(n) → ∞, then as abovey ∈ N (Px). Asx(2n + 1) → ∞, we have from

Claim 3.6 that limi
Q

(k)
i

(Px )(k)
i

→ 1 and it follows that y ∈ N (Q). Since x(2n) → ∞ as

well, from the argument in Section 3.1 we also have that y = ϕ(x) ∈ N (Q).
So, in all cases we have that x ∈ C \D iff ϕ(x) ∈ RN (Q) \ N (Q).
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Suppose now that there is a largest integerk0 such that Q isk0-divergent. The proof
is essentially identical to that above. We let Pm be as before, and now let wm be ≤ k0

normal with respect toPm, that is, for all B of length ≤ k0 we have limi
Ni (B,wm)
(Pm)i (B) = 1.

We defineϕ1(x) by first defining y exactly as before (using the values x(2n + 1)). We
then modify y to ϕ1(x), (using x(2n)) but in a slightly different manner. Namely, we
get ϕ1(x) � [bn–1, bn) from y � [bn–1, bn) as follows. LetA ⊆ [bn–1, bn) be the integers
i in this interval such that y � [i, i + k0 – 1) = 0k0 . Let A′ ⊆ A be the last � |A|

x(2n)�
many elements of A. For each i ∈ A′ we change y(i) from a 0 to a 1, and for all
other i in this interval we set ϕ1(x)(i) = y(i).

If x(2n) does not tend to infinity, then easily ϕ(x) /∈ RN (Q) as
NPxi (1k0 ,ϕ1(x))

NPxi (0k0 ,ϕ1(x))

does not tend to 1. If x(2n) tends to infinity, then we easily have that ϕ(x) is in
N (Q) (or RN (Q)) iff y is in N (Q) (resp. RN (Q)). In this case, as above, we have
that if x(2n + 1) → ∞ then y ∈ N (Q), and if x(2n + 1) does not tend to infinity
then y ∈ RN (Q) \ N (Q). So, in all cases we have x ∈ C \D iff ϕ(x) ∈ RN (Q) \
N (Q). �

3.3. Further discussion. Theorem 3.2 can be extended further. First, the hypoth-
esis that Q = (qi) in infinite in limit can be weakened to the following condition
studied by Šalát [21]: limN→∞

1
N

∑N
i=1

1
qi

= 0. This condition is equivalent to saying
that there is a setD ⊆ N of density 0 such that (qi)i /∈D tends to infinity (see Theorem
1.20 of [24]). Since changing a sequence on a set of density 0 may affect normality
and ratio normality, we must now use the argument of Theorem 1.11. At stage n of
the construction ofϕ1(x) � In, we again use two operations Θ′

x′(2n) and Ξ′
x′(2n+1). The

first operation Θ′
x′(2n) is the operation implicitly described in the proof of Theorem

1.11. That is, we define the block Bi0 exactly as in that proof, and define the sets
A,A′, A′′ ⊆ In as in that proof. We then eliminate the occurrences of the block Bi0
at the points of A′′ by applying the digit changing function r as in Theorem 1.11.
Let w be the result of applying this first operation to z (so w is the ϕ1(x) of Theorem
1.11). The proof of Theorem 1.11 did not require that Q be infinite in limit, and so
we have that x(2n) → ∞ implies w ∈ N (Q) and x(2n) � ∞ implies w /∈ RN (Q).
The function r changes digits by at most 1, and does not affect distribution normality
using Remark 1.8 and the fact that D has density 0 (changing a sequence on a set
of density 0 does not affect distribution normality). So, w ∈ DN (Q). The second
operation Ξ′

x′(2n+1) is the operation Ξx′(2n+1) of Theorem 3.2 except we only apply the
operation to digits not in D. We letϕ1(x) be the result of applying these operations to
w. The operations Ξ′

x′(2n+1) do not affect normality or distribution normality as qi →
∞ off of D, and so for every block B, |NQm (B,ϕ1(x)) – NQm (B,w)| is bounded with
m. As in Theorem 3.2 we have that ϕ1(x) ∈ DN (Q) iff x(2n + 1) → ∞. So, ϕ =
ϕ2 ◦ ϕ1 is a reduction of C \D (orD \ C depending on the case) to the desired set.

Second, we can prove the version of Theorem 3.2 with N (Q) and RN (Q) replaced
with Nk(Q) and RN k(Q), provided we assume that Q is k-divergent (and infinite
in limit, or more generally limN→∞

1
N

∑N
i=1

1
qi

= 0). We proceed as above except
in defining the block Bi0 used in the first operation, and we only consider the first
6
√
x′(2n) many good blocks B1, ... , Bp of length k. This makes sense since there
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is some block of length k, namely 0k , which has infinite expectation. If w again
denotes the result of applying the first operation in all of the In, then the proof of
Theorem 1.11 shows that if x(2n) → ∞ then |NQm (B,w) – NQm (B, z)|/Qm(B) → 0
for all blocks B of length k. It follows that if x(2n) → ∞ then w ∈ Nk(Q) and if
x(2n) � ∞ thenw /∈ RN k(Q). Also,w ∈ DN (Q) as above. The second operation
works exactly as in the above argument, so ϕ1(x) ∈ DN (Q) iff x(2n + 1) → ∞. So,
ϕ = ϕ2 ◦ ϕ1 again gives the desired reduction.
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