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1. When the plane wave equation is expressed in terms of para-
bolic co-ordinates x, y, the variables are separable, and the elementary
solutions have the form

D _4+t> (a;e±iir/4) D _i _,> {ye ±iir/4),

where x, y, /u. are real. In this context, therefore, the functions Dv (z)
which are directly significant are those where amp z = ± TT/4 and
v + \ is purely imaginary, rather than those where z is real and v is
a positive integer. The expansion of an arbitrary function in terms
of the latter sort of Z)-function (substantially, in terms of Hermite
polynomials) is well known. This paper is concerned with the
expansion in terms of the former sort of D-f unction. The result
obtained is: if f(x) is of bounded variation in any finite interval of the
real variable x and is absolutely integrable in (— oo , oo ), then

I —i + »°° eJ( ' - + i)"i f°°

— dv f(t)
- i -ix s m V7r J - o o

{Dyi^D-r-iiUj) + Dy{-xr))D_y_1( — U])}dt, (A)

where t] = enili, ^ = e~"M.

To put this result in " r e a l " form, let v = — | + i\x, and let

&(a:) = W - * 2 - * " -

Then <f>l,(x), = l+ ... and t/ilx(x), = x+ ... are respectively even and odd,
and are real when x, /x are real; and

( }

Using a different notation, W. Magnus 1 has proved formulae
which are substantially equivalent to (A), for the case where / (x) is
an analytic function which has for x~±cc an asymptotic expansion
of the form

"' W. Magnus, Jahresbericht Deutsch. Math. Verein., 50 (1940), 140-161. The
formula (A) was proved by A. Erdelyi about 1934, but was not published.
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(C)

The formula (A) can be put in a variety of other forms, some of
'which are given in equations (15)-(18) below. All of these are
asymmetrical as regards v-~i<x>, v— — i<x> ; the essential reason for
the asymmetry is that, for | x | <2 | JX | *, the functions D_ i+ i/x (±xrj)
are oscillating (roughly like exp {±ix\/fx') ) for /x — — /x' < 0, bu t non-
oscillating (roughly like exp (zt^vV) ) ^or M > 0-

The inner integrals in (A) are absolutely convergent if x ~if(x) is
absolutely integrable, and it is possible that (A) is valid under this
condition; but I have not proved this. I do, however, prove (A)
when, for x ~oo ,

with a > \; and for x~~ oo , f(x) has a similar form; this condition is
somewhat wider than Magnus's condition (C).

In the concluding section there are some examples of representa-
tion of continuous and discontinuous functions in the form (A).

The following properties1 of Dv(z) are required:
(i) For v ~- oo ,

D,(z) = 2-* exp & log ( - v)-\v - ( - v)h}. {1 + 0(v-*)} (1)

uniformly when z is bounded and \ amp (—v) | ^ \n\ here, and always
in the sequel, log ( — v) and ( — v)* denote principal values.

(ii) Let z= 2(-v)*sin a, a = jS + iy. (2)
For the values of z, v with which we shall be concerned, we take

the principal determination of a, for which \ y \ S= \TT\ this specifica-
tion is without ambiguity provided \ y \ <\n while when | y \ =\TT
the proper specification follows by continuity, as will be seen in § 3.

W i t h t h i s d e t e r m i n a t i o n of a , f o r R l v ^ O , | v | S N > 0 a n d
Rl z ^ | Im 2 | ,

1 It is likely that the results (i), (ii) are not new, but I know of no reference ;
they may be proved from the formula

Dip) = (2w)~*e~ - '"] ic _ exp (I* —it- + Id') Udt (c>0)

by the saddle-poinfc method. In Proc. London Math. Soc. (2), 17 (1918), 116, Watson
proves results like (3), but his work does not cover the case where ampi/ is near ± \TV.
For (iii) see Whittaker and Watson, Modern Analysis (4th ed.) § 10.52.
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52 T. M. CHERRY

Dv(z) | ^AN\ exp {$vlog(— v)— \v-\-v (s inhacosha + a)} | x
v I *, for | 1+e-2* | ^ | v | -»

x-
2easecha | *, for | |

where the constant A^ depends only on N.
(iii) .For arcy z, v

A A ( i i ( W (- v), (4)

2. Let a<x<b be real constants: /(/.) a function of a real
variable t, of bounded variation in a ^ t ^ 6; and 5 any constant
whose amplitude is between i i ^ r (inclusive). Consider the function

-x6)^ f(t)Dv(t9)dtj. (6)

This is an analytic function of v, regular except at the poles of F(—v)y

and we are to integrate it along a path equivalent to a large semi-
circle in the half-plane Rl v rSS 0.

From (1), together with Stirling's theorem, we have for v~ <x>
with Rl v <; 0,

(2n)-ir(-V)DAtd)Dy(-x6) = $(-v)-l ex? {-(-v)~i8(t-z)}.{l+O(v-*)}.
(7)

Hence, since f{t) is of bounded variation,

(2w)-*r( -v)Dv(-x6)\bf{t)D,{td)dt
Jx

_ »(v-i)dt, (8)

where we have put (— v)i6=n.

Since both (— e)* and 6 have amplitudes between ±JTT, and
x < t < b, the real parts of n and of n{t — x) are non-negative. Writing
then V(c, d) for the total variation of j(t) in the interval (c, d),
Gl | v | * for the upper bound of | f{t)O(v-±) \ in (a;, 6) and nx = Rbt
= R1[( —v)-0], we have

2v6\

where 8 is any small positive number. The contribution of these two
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terms to the integral of F round the semi-circle | v | = r in the half-
plane RlyfS 0 is hence less than

where, by Jordan's lemma, <f>(r, S)->0 as r->ao , for any fixed 8. By
first choosing 8 sufficiently small and then r sufficiently large, we see
that these two terms give a zero integral in the limit as r-> oo ; and
by Jordan's lemma the same applies to the first term on the right of
(8). Hence (8) gives

lim r° + 'r(21,)-ir(-v)Dv(-x8)dv\''f(t)D,{te)dt='£)f(x+0), (9)

where c is any positive constant.
For later reference we note that, if the integral on the left of (8)

had had a lower limit a exceeding x (instead of the lower limit a;),
every term on the right would have carried an exponential factor.
Hence:

if x <a< b, then for | v \ sufficiently large, with Rlv :g 0,

](2n)-ir(-v)Dv{-x8) [ f(t)Dv(t6)dt ^ c'v-1exp(-(-i/)i0(o-a;)}!, (10)

where C is a constant depending on x, a, b but not on v.
T h e first t e r m on t h e r i g h t of (6) gives a r e s u l t s imi la r t o (9) ;

hence if f(t) is of bounded variation in a ̂ t 5S 6, and a < x < b, and 6 is
a constant whose amplitude is between ̂  \TT (inclusive), then

S f{x _ o) + f(x + 0) I = lim F(v, x)dv,
"V ( \ r ->x J - 4 - if

where F{v, x) is defined by (6).
If we abbreviate by writing f(x) for \{f{x — 0) + f(x + 0)}, this

formula is equivalent to

f i + ir\ 9 \"= lim f \(
-h-ir I

- v)BDv{ - x9) \"f(t)D,,(t9)dt
Ja

Ja
e,X,t)dt\dv, (11)

J
where $(y, 8,x,t) = {2Tr)-lT(-v)e{Dv{xB)Dv(-t6)-Dv(-x6)Dv{t6)}. (12)
Since the integrand is regular in Rlv < 0, the integral can be taken
along the line Rlv = — \.

We have now to combine (11) with a similar formula so as to
eliminate the term in I <f>dt. For this purpose, write

Ja
i)=elri, ^ = e-H (13)

take 8 = rj in (11), and for the companion take 6 = TJ in (11) and change
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the variable by putting v — — v — 1. The companion is thus

*if{x) - lim \~i + U {(277) - *I> + 1)D _ „ - !<- a^) f * / (0^ - - -

{-v- l ,^ , a:,*)*W (14)

Now from (12) we have, on substituting from (5) for D^—trj),

4>{v, v, x, t) = rje-to + ™{Dr[xn)D_v _, ( - tiij) - Dv{lr])D_v_1{ - ixr,)}

since TJ = e^l = ir). With a similar substitution from (4), (12) gives
4>{V, rh X, t) = ^ C « ' + l w { ^

a n d h e n c e <f>(v, rj, x , t) = — </>{— v — 1 , r\, x , t ) .
Hence, putting 0 = rj in (11) and adding to (14), we have
THEOREM 1. / / / (t) is of bounded variation in a <Lt <L b, and 17 = eilri,
•q = e~j7ri, <Aen, /or a < x < b,

(2n)Hf(x) = f i+l™ dv \b

where the v-integral is a Cauchy principal value.

The formula (15) is capable of various transformations by means
of (4), (5). For instance, we can express Dp(t-q) in terms of D^,,^^),
!>_„_](—%), and /)_„_!( — xrt) in terms of Dp{xr)), Dv(—xri). This
gives a common factor F(— v)F(v + 1), the terms in Dr(—x^)D_v^x{P])
cancel, and we obtain

J - i + too pit" + h>idv Cb {

— f(t)\Dl,(xv)D^1(tV)
- J —ia> S i n VTT Ja {

+ Dr{-xv)D.._1(-fi,)\dt. (16)

If here we substitute for D_ ,,_i(<rj) from (4) andforZ)r(— XT)) from (5)t

we obtain

(2n)Hf(x) -

+ r(v+lhZ)_,._1(^)D_,_1(-^)j^, (17)

which is similar to (15) but with the signs changed in the arguments
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of the Z>-functions. If here we substitute for D,,( — t7]), D_,_x(xr)),
we obtain

-i(-fy}<ft, (18)
and there is an analogue of this with the signs of the arguments of
the Z)-functions changed. It is to be emphasised that the integrands
of (15)-(18) are identical, and that there are no forms with identical
integrands which are analogous to (16) and (18) but with the initial
factors e - ^ + i ' " , e-y7ri. In fact, as will be seen, the integrals (15)-(18)

are more rapidly convergent for v~ix, than for v~ i<x> (so that,
incidentally, they exist in the ordinary sense and not merely as prin-
cipal values), and the formulae in which the behaviours at v~~ ±i<x>
are interchanged are derived from (15) (18) by the change of variable
v = — v — 1.

3. With a view to extending Theorem 1 to an infinite x-range
we now develop certain consequences of the inequality (3). We
write

(-i/)l =/**««, M = \v\og(-v)—v, (19)

E = E(v, x) = Rl {v (sinh a cosh a + a)}, (20)

where ^ is real and positive and — \-n <| 6 fg \-n, and we take
z=xerri/i,

where x is real. Then from (2), since a = /3 + iy and x is real, we find
e? sin (\-n — 0 — y) = e ^ sin (\-n — 0 + y) =y/\ (cos 2y —sin 26), (21)

x _ sin 2y e*3 sin 2y
~~ 2 y — s in 26) ~~ s i n {\TT — 6 + y)

dy
and from (20), (21)
- E/fi = \ ^ cos 2(0 + y)- | e - 2 3 cos 2(0-y) + p cos 29 - y sin 26»

= \ sin 2y + j8 cos 29 — y sin 29. (23)

„ <ffi _ cos 2^ 1 dx _ 1 — 2 cos 2y sin 2(9 + cos2 2y
cZy cos 2y — sin 25' (2/x)* rfy (cos 2y — sin Mp "

It follows that, for — \-rr < Q < \n, i.e. for Rlv < 0, both ft and a; run
monotonically from — GO to x as y runs from — (\TT — 6) to (In — 6),
and as (23) gives

— p-HEjdy = cos 2y — sin 26 + cos 28d0/dy,
E then decreases steadily from oo to — « . Also y = 0 gives
)8 = a; = ^ == 0.
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Hence, if K\y < 0 and x1 < x2 < 0 < x3 < xt, then
E{Xl) > E(x2) > 0 > E(x3) > E(x4) (24)

where E(x) specifies the magnitude of D^xe*11*) according to (3), (20).
In the limiting case where amp v — —\n, 8 = TT/4, /3 runs from

— oo to oo with x while y, E both remain zero. In the limiting case
where amp i>= TT/2, 8 = — 77/4, we have:

for x < — 2jU.a: y = — '- — 00 < B < 0, and E = i i t ;
2

for — 2;u.'r < x < 2/x«: /8 = 0, — ~ < y < ~, a n d ~ > E > — ~;
Z Z Z Z

77 LL
for x > 2/x2: y = i~, 0 < (6 < 00 , and E = — ~,z z

the three forms of (22) serving for the respective ranges.
Regarding the second factor in (3), the statement is that we can

take the smaller of | 2ea sech a \ l, | v | •', and the latter choice is
necessary only when | l + e ~ 2 a | ^ | v | ~~~* i.e. when either a — ^iri
or a + \-ni is 0(v ' '*). Since a = j8 + iy and the extreme values of y
are ± (|T7 — d), it follows that the choice j 2ea sech a | l is permissible
when 0 ;g 0 ^ J77, i.e. when both Rlv and Imv are non-positive. From
(21) we then have

I 2e° sech a |2 = •—--—-r—

and hence, for 0 s£ 7̂7—0̂ -̂ 77 and | y | ^^77 — 0,
1 n i_ , ^ - s i n 2 (|T7 —20)

2e" sech a 2 ^ 2 o f l - = 1.
' cos2 20

Hence (3) gives:
If Rlv ^ 0, I t- I 5: JY > 0 awrf x is real, then

I Dv(x-q) I ^svljy [ c* exp (M + E{v,x)) \ , (25)
where M, E{v,x) are defined by (19), (20). If also x^O, then

I Dv(xr)) I ^ 4̂xY I î  exp Jf I . (26)
If Rlv ^ 0, Imp ^ 0, I v I ^iV>0 a?id x ts reaZ, <Ae«.

I Dv(aay) I ^AN \ exp (if + E(v, x)) | . (27)
For the similar consideration of Dv(xt}), the parts played by

# = ±£77 are interchanged. Hence (25), (26) are valid when TJ is
replaced by r], while a result like (27) is valid, when I m i / ^ 0; and
replacing vhy— v— 1, we have: 7/Rli/S: — 1 , Imi' 5g 0, | v+1 | ^ N~2i0
and x is real, then

+ v + l + E(-v-l, x)} I . (28)
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Returning to the case Z = XT), we now show that (26) is valid when
x < 0, provided Rlv ^ — ]. We have
| 2e° sech a | * = | e* | | 2e~a sech a | » = | ea | | 1 + e2" | -*,

and hence, from (3), (23),
I DT(XT)) | ^ Ay I exp {M + 0(1 - fi cos 20) + /x(y sin 20 — £ sin 2y)} |

J | e~'v» | , for | 1 + e - 2 i | ^ | v | " 4 ,
X L j 1 -h e2" j -*, for | 1 + e-2* | > | v | -*. ( 2 9 )

Suppose for definiteness that | v| ^ \. Then if 11 + e~2a | ^ | " | -*
we h a v e l e - ^ l ^ ( | i> | "* + 1) | v\ * = (1 + \v\ *) ^ (1 + 2») |i/|*

^ 2* | v j *.
But if | 1 + e2*| < 2~* | v I -*,
then (e

2 a | > l - 2 ~ M v | ~ s > i
and so | 1 + e~2a| < 2.2 ~ • | v | -*<| i> | -5. .
Hence if | 1 + e ~ 2a | > | v | ~J we- have | 1 + e** | " x < 2-' | " IA; and for
the second factor in (29) we can always take 2= | v | s , provided | v \ ̂  \.

Regarding the first factor in (29), we have ]8 5S 0 for a; ̂  0, while
ft cos 25 is the real part of — v. Hence, if Rlv ^ — 1,
0(1 — n cos 28) ^ 0. Further,

d(y sin 20 — i sin 2y)/dy = sin 25 — cos 2y,

which is negative for the relevant range of y, viz. 0 ^ y > — ( i^ — 0).
Hence as x decreases from 0, .̂(y sin 20 — -} sin 2y) increases steadily,
and it is never greater than

H§ sin (ATT - 29) - {±n - 0) sin 20},
= Alt COS 20{ 1 - (A,,- _ 20) COt (A77 - 20)} ^ AR1( _ „) ^ A.

Hence (29) gives: if— l ^ R l v ^ O , | v | ^ A a? l^ x ^ 0, «Aen

I A ( ^ ) I ^ ^ l " s exp If |; (30)
there is of course a similar result for ; v J i^ iV > 0 with the absolute
constantx A replaced by As.

Finally, we note that, when >'*/z3|is large, (2) gives

so that v (sinh a cosh a + a) — — z( — v)* + 0(z3i'-f).
Hence, for | vJz"3 | ^ 2 and | v \ ̂  i , say,

exp E(v,z) ^ 4 I exp { -« ( - r)1} |, (31)
where 4̂ is an absolute constant; and since a is small, (3) gives

I Dv{z) \ ̂  A I exp {M - z( - vf} \. (32)

1 Here, and below, the usual convention is made that an A or Aja is not necessarily
the same at each occurrence.
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4. Let us now assume that J(x) is of bounded variation in any
/•to

finite interval and that | f(x) I dx exists. Then from (26), for
J — CO

R h ^ 0 and | v j ^ N > 0, with 6' > b ^ 0,

| f f(t)Dv(tv)dl | ^ ^jV I v&exp(ivlog(-i;) - \v) i P | /(«) | dt,
Jb •> b

j(l)Dv{tr))dt converges uniformly in any compact part of the
o

region Rlv 5S 0, | v | >̂ N > 0. Hence this integral is an analytic
^regular) function of v in Rlv < 0, and is continuous up to Rlv = 0,

except perhaps at v = 0. Similarly I f{t)Dv(—tij)dt is regular in
J _00

Rlv < 0; and, replacing vhy — v — 1 and 77 by rj, we see that

["/(OD-.-i^)*, f° f(t)B_v_1(-Qdt
Jo J-o,

are regular in Rlv > — 1.

J"
4.1 Now let x be arbitrary but fixed, and let 6 > x, b > 0. We

shall prove that

dv [ r ( — x)i7/(0Z>,(—a:7?)Z>,(ty)<ft (33)

exists, for integration along Rlv— — \. For this purpose we use the
fact, just proved, that the v-integrand is regular in Rli<<0; this

enables us to estimate) ( . . . .)dv by deforming the straight path
J -i-iu-

into the left half-plane.
Writing y=r 2 exp i ( — \it — 2<f>), we choose a constant <f>0, say c/>0=^7r,

and take for the deformed path
(i) the arc r=u1 = (l + w4)*, 0 < <f> ^ <j)0,

(ii) the radius <j> = c/>0, ti^ 5: r Sg «i = (i + s4)*1,
(iii) the arc r=slt <j>0 ^ <f> > 0.

The distinction between u, u1 and between s, sr are trivial, and
will for simplicity be neglected below.

Let y be any real number exceeding 6. Then from (10), for
Rlv ^ 0 and | v | ^ Ny,

where i^y, Cy depend upon x y; and here (— v)*>/ = r exp i(̂ 7r— ^ +

1 In fact, as in the proof of (31), the choice Na = max(4y6, 4x?) is suitable, but no
such explicit estimate is needed in the argument.
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«o that

-VfaMb-x)i\. (34)

Also, using (27) for Dr{li)) and (32) for D,(-xr)) we have for Rlv ̂  0,
Imi- < 0 and I v^x ~ 8 I

| J" r( - — xr)) Dv

A | r ( - v)e2M

)\ J
E{v,y)\ | f \f(t)

I Jy

f(t) i dt,

dt

since, by (24), E(v, y) < E{v, b) and
| JT(— v)ezM | = |F(— v) exp { v log (— v) — v}\ ^ A | v I ~*.

Again, estimating ^/(v, 6) from (31), we have, for Rlv^O and ! v*6~3| ̂  2,

< ^ exp{-(2/w)r(6-a;)^},
so that

< Ar-1 exp {- (2/w)r(6 - x)4>} I /(«) I dt. (35)

This is established, with A an absolute constant, provided Rl^ ̂  0,
Imv ^ 0, | v* | ̂  2 max (63, | x | 3) , and y~2zb, and it is vital that the
lower bound for | v$ | serves for arbitrarily large y.

By adding (34), (35) we have an estimate for the integrand, G{v)
say, of (33) on the deformed path. Since v = — r2ie-2i*, the contribu-
tion to the modulus of the integral from each arc r = constant is
hence less than

and the contribution from the radius <f> = <f>0 is less than

I exp J r(6—x)d>0\ \ - | + L 2rdr, < -r ;- (—S
J « "• ' r s r \b — x)<p0 \ s
w h e r e we h a v e t a k e n u > s a n d w r i t t e n 7 = 1 I f(t) | dt. H e n c e , for

•* y
-s2 ^ iVj,, s2 ^ 466, and M2 > s2,

- "- ' ^o ,_l\y . J[g> fg
" ft — x \ " ^o/ 6 — cc\s XT • (3«)

The right-hand side is made less than any positive e by first choosing
a y for which
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and then choosing s such that

I — - ( - + -7— )<he, s2 > JV,., s2 > 466.

This being true for any u exceeding s, the existence of the integral
(33) is established.

It follows that, as y->cc t
f-i (v

dv T( - v)rjf(t)Dv(- Xr,)Dv(trj)dt
J - i - i Jb

->f dv f r(-i/)^/(0I>,(-a«j)2)'(<i?)*f (37>

i.e. that

+ \dv[ r(-v)r)f(t)D,(-xn)Dv(tri)dt->0.

For the first i-integral, we may estimate the integrand by (35) pro-
vided 3 = 2 max (b3, x\3), and the preceding work gives

while for the second integral, the crude estimate (25) gives

f~* ( • • • ) ^
J-i-o"- I

V
\f(t)\dt F * r ( - v ) ex-p{2M + E(v, - x) + E(v, b)}dv\

J -i - is- I

and since a is fixed independently of v, (37) is evident.
In a similar way we prove that, as y-^ oo ,

r-4 rv _ _

J-i-ioo J*
f - i f00

-> dv\ r(v+l)iji)_,_1(-a,)Z)_r_1(^)* (38)
J — i - too J 6

The essential facts are that the integrand is regular in Rli> > — 1 and
that for Imv _i 0 we have for the inner integral an estimate based on
(28); the analogue of (36) is proved by deforming the path into the
half-plane Rlv > — 1.

4.2 Next we prove that

+ T(v + D^D^.^-^D.^.^fq^dt (39)
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•exists, and is equal to the limit as y-> <x> of the corresponding ex-
pression with the inner integral from b to y. If, by way of explora-
tion, we estimate the integrand by means of (7), we find for the two
terms in {....} the respective principal parts (for v~~i<x>)

i :77/2. ' i } exp{,v'l(x- t)}, -i,-nj2v} e x p { v Hx - t)};

so that they cancel (to this order), and in fact the terms separately
give divergent integrals. I t is essential therefore to transform the
integrand as in the passage from (15) to (16); it is sufficient to
prove that

/•-}+ioo rco pti"

d v - ^
J - i Jy S 1 D

^ ^ ^ ^ i (40)

exists and tends to 0 as 2/->oo .

Irrespective of the signs of x, y, we can estimate D,(±XT]) by (26)
or (30), and D_,_i(±iij) by the analogous formula; hence the inte-
grand of (40) is less in absolute value than
A | cosec VTT. (v2 + v)\ exp {Iv-ni + \v log (— v) — \v — \{y + 1) log (v+1)

Since Imi> > 0 on the path, we write

log (v + 1) = log v + log (1 + v-1) = log ( - v) + in + v-1 + O(v-2), ,

and the argument of the exponential reduces to — \ log (— v) + O^'1).
Hence for | v | =̂  2, say, the integrand is less in absolute value than

"If
JV

f(t)\dt;

while the same form is valid on the parts of the path for which | v | < 2,
since there the functions of v that are concerned lie between positive
bounds. I t follows that the integral (40) is absolutely convergent,
and tends to 0 as

Combining this result with (37), (38) we see that, for b > x, b > 0,

_J_too

(41)

«xists, and is equal to the limit as y-><*> of the corresponding expres-
sion with the inner integral from 6 to y. But for any finite y the
latter expression is equal to zero, by Theorem 1, since this is true for
any finite 6 exceeding x. Hence the expression (41) is equal to zero,
provided b > x, b > 0.
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4.3 To prove the existence and vanishing of the expression

corresponding to (41) with the inner integral from — oo to a, a < x,

(...)dv is the same as in § 4.2; but for

I ( . . . . )dv the form (41) is unsuitable because each term of the
J— i—1»

integrand is regular only in the strip — 1 < Rlv < 0. We can however
transform the integrand to the form shown in (17), and for this the
treatment of § 4.1 is applicable.

Finally we add to the right-hand side of (15) the vanishing
integral (41) and its analogue, and have:

THEOREM 2. If f (x) is of bounded variation in any finite interval
and absolutely integrable in ( — co , oo ), then for any real x

r — l + ix pW + i)ndv C™

+ Dv(-X7])D_v_1{-tr])}dt, (42).

where ?? = e"</4, ~rj = e~ "m.

5. Examples. The formula (42) is valid for the function
/ (x, y) = exp { - li(x2 - y2) cos a — \ixy sin a} ' (43).

which specifies a plane wave in parabolic coordinates x, y, provided
a is not a multiple of -n. If we take either x or y as the variable, the
^-integrals required for (42) exist; but since / is not absolutely
integrable we cannot appeal to Theorem 2, and the formula which is
obtained, viz.

_ l , , ( y , ) ( 4 4 ) ,
sin ^a j

requires independent verification. I t has been proved by Erdelyix

in a slightly different notation; the form (44) is valid for 0 < Ilia < TT
and any complex x, y.

The two terms on the right of (44) both give convergent integrals
and it is of interest that these represent Sommerfeld's two diffracted,
plane waves.2 To prove this, let a be real, 0 < a < -n, and let

1 Froc. Roy. Soc. Edinburgh, 61 (1941), 61-70.
2 See, for example, Baker and Copson, The Mathematical Theory of Iluygens'

Principle, Chap. IV ; the function defined by (1.65) on p. 140 agrees, to a constant
factor, with J as given by my equation (47).
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COS

and let the integral shown in the footnote on page 51 be substituted for
each D-iunction, so that

27rJ_J_100 sin VTT J,-<._«, J , c _ m cosa( '+ 1 r r

where </r = £i(z2 + i/2) + *TJ(J/< — xs) — |(s2 + *2)-

Since all the integrals converge exponentially we can take the v-integraj
first, and use the result

2%r-*+

J _ j _ sin VTT 1 + p'

valid for | amp p | < TT ; this condition being satisfied for all the
values of p in question, t>tz. s tan £a/£, < cot | a As, provided s, ^ lie on
straight paths Im s = c, Im < = c in the upper half-plane. Hence
we get

. j = r+0° d*f+" "p ^ .
J ie _ oo J ic _ „ s sin | a + < cos | a

It is easy to justify the change of variables
u = s cos \a — t sin | a , z> = s sin %a + i cos Ja,

which gives wJ = I exp^idwl exp ift2 — t (46)
J t i -oo Jiifc -oo *

where k — c(sin ^a + cos \a) > 0,

Z = c(cos ^a — sin |a) ,

and </-!=— f{it + irj(z cos ^a + 2/ sin |a)}2 - \i(x cos i a + y sin |a)2,

,p2 = — %v2 — iv7)(x sin Ja — j / cos |a) + Ji(x sin Ja — y cos Ja)2.

On the right of (46) we thus have the product of two simple integrals; in

particular the ^-integral is equal to — t(27r)iZ)_1{Tj(2/ cos \a — x sin £a)}.

Hence we find

J = — 2iD0{-q(x cos | a + y sin \u)}D^{t)(y cos Ja — a; sin |a)}; (47)

and this is the representation, in parabolic coordinates, of Sommerfeld's
diffracted plane wave.

An example of a discontinuous function, represented for real
values only of the argument, is provided by

f{z) = Dll(zr)) ( * > 0 ) \ < ( 4 8 )

f(x) = 0 (x<0)\'

Since D^xrj) ~ e~*ix'(xr))'' for x — <» , the hypotheses of Theorem 2
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are satisfied if Rl/* < — 1. The result can be written in the two forms

- i / * ) /

These forms answer respectively to the general forms (15), (17), and
the two integrands are identical.

The truth of this formula is easily checked, and it is indeed valid
under the sole restriction that fj. be not zero or a positive integer,
provided the path of integration is so deformed that the point v = yu
lies on its left while the points v = 0, 1, 2, . . . remain on its right-
By use of (1) it is easily shown that, for the first term on the right of
(49), the path can be closed at infinity in the left half-plane, provided
amp x is between \n, n inclusive; and for the second term the path
can be closed in the right half-plane, provided amp x is between —|T7,
— 7T inclusive. Hence for x real and negative the right-hand side of
(49) is zero, the pole of (v — /x)"1 in the first term being cancelled
by the second factor. For x real and positive the form (50) is
similarly used, and the residue of the first term at v — fj, gives
J(x) = D^xrj), in agreement with (48).

If /x is a non-negative integer, the terms in T( — \v) or T{\ — \v)
are absent from (49) and (50), according as fi is even or odd. In both
cases we find, in place of (48),

In the general case, if we take the point r = /xto the right of the
path, the function represented by (49) or (50) is again discontinuous;
in place of (48) we have

/(*) = * exp ( - i t » I V + l)D-,-i(*v) (* > 0))
/(*) = - $ exp (hj^)Y(^+l)D_ll_i{-x~l) (x < 0)1'

Finally, if in (49), (50) we replace x by — x, we get the repre-
sentation of the function / , (a;) for which

(*>o)
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It is easy now to prove that the formula (A) is valid under the
condition (D) of § 1. For (i), we have just verified (A) for the
functions given by (48), (51), provided Rl /x < — | (this condition
being imposed so that we can use the original path of integration
Rlj, = — £); and (ii), for x ~ + <» ,

DM{xv) ~ e-«M{(*,)"-JM(M - 1)(*'7)'-8}.
Hence a function satisfying (D) can be reduced to an absolutely
integrable function, for which Theorem 2 is valid, by adding suitable
multiples of the functions (48), (51).
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