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LITTLEWOOD-PALEY AND MULTIPLIER THEOREMS 
FOR VILENKIN-FOURIER SERIES 

WO-SANG YOUNG 

ABSTRACT. Let S^f be the 2-/-th partial sum of the Vilenkin-Fourier series off G Û, 
and set S2-\f = 0. For/ G LP, 1 < p < oo, we show that the ratio 

oo , 

IKE I W - M 2 ) 2 | U I I / I I P 

is contained between two bounds (independent of / ) . From this we obtain the 
Marcinkiewicz multiplier theorem for Vilenkin-Fourier series. 

1. Introduction. Let {/?/}/>o be a sequence of integers with /?/ > 2, and G = 
n^o Zpi be the direct product of cyclic groups of order/?/. For x — {x^} G G, let </>̂ W = 
txpilnixk/pk), k = 0,1,2, The Vilenkin system {x«} is the set of all finite prod
ucts of {<t>k}, which is enumerated in the following manner. Let mo = 1, mk — nf=o Ph 

k — 1,2, Express each nonnegative integer n a s a finite sum n = E ^ 0
 afcm*> where 

0 S ak < /?*, and let \n — n ^ 0 ^"*- The functions {xn} are the characters of G, and 
they form a complete orthonormal system on G. For the case/7/ = 2, / = 0,1,2,. . . , {<fo} 
are the Rademacher functions and {xn} are the Walsh functions. In this paper there is 
no restriction on the orders {/?/}, and the constants C, cp and Cp that appear below are 
independent of {/?/}. 

We consider Fourier series with respect to {xn}> Let // be the Haar measure on G 
normalized by /x(G) = 1. For / G L1, let/(/) = kf(t)xj(t)dp,(t\j = 0 ,1 ,2 , . . . , and 
S// = Y?;=of(j)Xj> n — 1» 2, We prove the Vilenkin-Fourier series analogue of the 
Littlewood-Paley theorem [7, II, p. 224]. 

THEOREM 1. Let 1 < p < oo. TTiere exist positive constants cp and Cp such that for 
anyf G LP, 

i2x l / 2 i i 

o.i) %rl< ^ ' + 1 7 ~~ ^2 ( / <cP|! 

w/zere S2-\f = 0. 

For /?/ = 2, / = 0,1,2, . . . , Theorem 1 is Paley's result for Walsh-Fourier series [3]. 
On the other hand, if po —-* oo, Srf resembles the n-th trigonometric partial sum. Thus, 
when restricted to one cyclic group, Theorem 1 can be viewed as a discrete version of 
the Littlewood-Paley theorem for trigonometric Fourier series. 

As a consequence of Theorem 1, we obtain the Marcinkiewicz multiplier theorem for 
Vilenkin-Fourier series (see [7, II, p. 232]). 
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THEOREM 2. Let 1 < p < oo. There is a constant Cp such that if{X(n)}n>o is any 
sequence of numbers satisfying 

\X(n)\ <B, « = 0,1,2,. . . 

and 

£ |A(*+l)-A(/i)|<fl, y = 0,l,2,.. . , 
n=2> 

and iff G LP, then £ ^ 0 ^(nV(n)Xn is the Vilenkin-Fourier series of a function T\f G LP 
and 

\W\\P < CpBWfWp. 

The proof of Theorem 2 is the same as that given for the trigonometric case (see 
[2, pp. 148-151]). Instead of using the vector-valued inequality for the partial sums of 
trigonometric Fourier series, we use the corresponding inequality for Vilenkin-Fourier 
series: 

LEMMA 3. Let 1 < p < oo. There exists a constant Cp such that for any sequence 
of functions {fi} in LP and any sequence of positive integers {n^}, 

/ „ \ 1 / 2 | | 11/ „ \ l / 2 

(EIW<I2) ^ c*few) 
V £ / U p II V £ / 

This lemma is proved in [6]. 
The proof of Theorem 1 will be given in two parts. In §2 we show that it can be ob

tained as a result of a multiplier lemma. This lemma, which is a special case of Theorem 2, 
will be proved in §3. 

In what follows, C will denote an absolute constant which may vary from line to line. 

2. Proof of Theorem 1. The proof will be presented in several steps. To simplify 
our notation, set Ajf — Sy+if ~ Syf,j — —1,0,1, We first observe that, to prove 
Theorem 1, it suffices to prove the right side of (1.1), i.e., for each p G (1, oo), there is a 
constant CD such that 

(2.1) 
/ OO x 

( E IA/I2) 
1/2 

V=-i 
<c„ I IP ' few. 

The left side of (1.1) will then follow by a duality argument. To see this, le t / and g be 
Vilenkin polynomials, 1 < p < oo and l/p + l/q = 1. Using the orthonormality of 
{x«}, Holder's inequality and (2.1), we obtain 

I / oo x i / 2 | i M / oo x 1 /2 

EIA/I2 EIA^I 2 

\\j=-\ / \\p\\\j=_\ / 
I / oo x l / 2 i i 

|(._EIA/I2) ||g||,. 

(2.2) < 

<cq 
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Since Vilenkinpolynomials are dense in LP, (2.2) holds for all/ G LP and g £ 13. Taking 
the supremum over all g G 13 with \\g\\q < 1, we get 

UP < Q 
OO x 

£ IA/12) 
1/2 

/ G L " . 

(2.3) 

v=-i 

Since ||A_i/||p = |[ftO)||p < |[/||p, (2.1) will be obtained if we prove 

¥\2) (S|A/|2)1/2| <Cp\]f\\p, f^U. 
\ ;_ft / Il D 

To prove (2.3), we introduce a related operator. Let Lk, k = 0 ,1,2, . . . , be the integer 
such that 2Lk <pk< 2Lk+l. Note that Lk > 1. For/ G L1, define 

Qf = 

We shall show that 

(2.4) 

S ( X ! l ^ ' + i m / ~ SVm,f\ + l-Sm^/ ~ - S ^ m / I ) 

(£|A/|2)1/2 | <Cp\\Qf\\p-

1/2 

Let {n/}i>o be the enumeration of the set of integers {2£mk : I — 0 , 1 , . . . ,Lk, 
k = 0,1,2,.. .} with no < n\ < ri2 < - - -. Also, let { /̂}/>o be the enumeration of 
{2j : y = 0,1,2,.. .} U {n,- : / = 0,1,2,.. .} with i/0 < v\ < v2 < • • •, and set èf = 
SViJ - Suf, i = 0 ,1 ,2 , . . . . We observe that in each interval [2j, 2j+l), j = 0 ,1 ,2 , . . . , 
there are at most two m. Hence each Ajf is the sum of at most three S{f. Therefore, 

(2.5) E|A/ | 2 <cEI¥l 2 

7=0 7=0 

On the other hand, in each interval [ft/, ft/+i), / = 0,1,2, . . . , there is at most one integer 
of the form 2/. Hence SHi+f — Snf is the sum of at most two Sjf. Moreover, each of 
these ëjf is a difference of two partial sums of the Vilenkin-Fourier series of the function 
Sn.+f — Snf. Hence it follows from Minkowski's inequality and Lemma 3 that 

(2.6) 
(£l¥l2 !/2|| 

<Cr, 
/ O O x 

{T\sniJ-snf\2) 
1/2 

= CpWQfWp-

Combining (2.5) and (2.6), we obtain (2.4). A similar argument shows that we also have 

llfiriip<cJ|(givi2)1/2|-
• II \j=Q J 11/7 

Therefore, proving (2.3) is equivalent to proving 

(2.7) \\Qf\\p<CP\\f\\P, feif. 
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We shall simplify (2.7) further. Let 

oo Lk~2 1/2 

EEfeV-Wl • x£=0 £=1 

(If Ẑ  < 2, we interprète the sum E^lj to be zero.) We have 

/ °° ,,\ !/2 / °° \̂ V2 

fif < (EIW-WI 2 ) +^/+(EI%m/-^-lm/l2) v£=0 * = 0 

1/2 ( uo _\ 1/Z 

ElW-Wl) • 
Each of the terms S2mif - SmJ, S2hmf - % - ' m / and SmMf - S2Lkm/ is the difference 
of two partial sums of the Vilenkin-Fourier series of the function Smt+if — SmJ. It thus 
follows from Lemma 3 that 

(
OO x 

E I W - W I 2 ) 
k=0 y 

1/2 

Since {Smf} is a martingale (see, e.g., [6]), Burkholder' s result for martingales [1] gives 

f OO x 

(EIW--WI2) 
1/2 

<cD 

Therefore (2.7) will be proved if we show 

(2-8) \\Rf\\p < Cp\\f\\p, f£lf. 

We shall prove (2.8) using a multiplier transformation. Let k = 0,1,2, — If L* > 2, 
define, for £ = 1,2,... ,L* — 2, the sequence {a2emk(n)}n>o by 

^ m > ) = { 

and set 

1 if2emk <n<2Mmk 

^ if (2^-x +i)m, < n < (2*"1 +j+l)mkJ = 0 , 1 , . . . , 2 ^ -
1 - £L if (2M +j)mk <n< {2M +j+l)mkJ = 0 , 1 , . . . , 2 '"1 - 1 

10 otherwise, 

«=0 

Let r/(0, * = 0,1,2, . . . , be the Rademacher functions defined on [0,1]. For t G [0,1], 
N= 1,2,..., let 

N-lLk-2 

Ttf = E E W ) ^ W . 
We shall show that (2.8) will follow if we have 

(2.9) \T?f\\P<cP\\f\\P, feif,N=i,2,...,te[0,i]. 
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To see this, we note that, from (2.9), 

l / ' I E E r2,mt(t)A2lm/(x)\Pdtd^(x) < Cp\\f\\
P

P-

By Khintchin's inequality [7,1, p. 213], there is a constant Bp (depending only onp) such 
that 

HN-U+-2 \p ,N-lLk-2 p/2 

L E E r2<mm2<nj(x)\ at>WEE |A2,m/w|2 • 1 /c=0 £=1 vfc=0 £=1 

Therefore, 
,N-\Lk-2 

Now, for* = 0,1,2,. . . , £ = 1 ,2 , . . . ,L*-2, 

>/2|| 
(E EI^WI2) II <cp I I P -

Sl^mJ - ^ ' m / = S2Mmk(A2imif) - S2imk(A2imJ). 

Combining this with Lemma 3, we get 

J V - l I t - 2 „ \ l /2 i | ,, JV-lLk-2 , 1 / 2 

(E E l V ^ / - ^ / l 2 ) <CP ( E E kWl2) 

Letting TV —-* oo, we obtain (2.8). 
We shall prove (2.9) in a slightly more general form. Since a2(mk(n) = 0 for n fi 

[mk,mk+i), 
mN—\ r oo 4 - 2 -I 

T?/= E E E WO^toWOx,.. 
n=0 Lfc=0 £=1 J 

Let Xk/(n) = r2tmk(f)a2tmk(n), n = 0,1,2,. . . , k = 0,1,2,. . . , £ = 1,2,... ,L* - 2, 
t G [0,1]. We notice that each sequence {Xk^(n)}n>o has the following properties: 

(2.10) \k,dn) — ^k,i(ocmk) for all n £ [amk, ( a+ l)m^), a = 0 ,1 ,2 , . . . ; 

(2.11) hAamk) = 0 for a £ [2£_1 + 1,2£+2 - 1]; 

(2.12) |AM(<*m*)| < 1, a = 0 ,1 ,2 , . . . ; 

(2.13) \\t(otmk) - \t{{a - \)mk)\ < -j-^, a= 1,2,... . 

Hence (2.9) will be proved if we have the following lemma. 

LEMMA 4. Suppose, for k = 0,1,2, . . . and l — 1,2,..., Lk — 2, {Afc,£(ft)}n>o « ^ 
sequences satisfying (2.10)-(2.13), and 

(2.14) 
oo L*—2 

A(«) = E E AM(II), « = 0,1,2,.... 
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Then, for 1 < p < oo, there is a constant Cp, independent of{\k^{n)}y such that 

mN~l 

TNf= E Mn)f(n)Xn 

satisfies 

(2.15) \\T"f\\p<Cp\]f\\p 

for every f eLPtN = 1,2,.... 

The proof of this lemma will conclude the proof of Theorem 1. 

3. Proof of Lemma 4. Because of (2.11), we notice that for each n, at most three 
terms on the right side of (2.14) can be nonzero. From this and (2.12), we get 

|A(n)| < C , « = 0,1,2,. . . . 

Thus it follows from Parseval's identity that 

(3.1) ||r7l|2<c|[/1|2, feL\N= 1,2,.... 

The lemma will be proved if we have the weak-type inequality 

(3.2) t*{\T"f\>y}<Cy-l\\f\\i, feL\y>0,N=l,2,.... 

The case 1 < p < 2 of (2.15) will follow from (3.1), (3.2) and the Marcinkiewicz 
interpolation theorem [7, II, p. 112]. A duality argument will then give us the case 
2 < p < o o o f ( 2 . 1 5 ) . 

We shall use the following notation. For k = 0 ,1,2, . . . , let 

A*(/0 = E A*>€(/i), /i = 0,1,2, . . . , 

and 
oo 

Tkf=Y, Xk(n)f(n)Xn. 

Observe that Xk(n) = 0 for n £ [mk, mk+\ ). We have 

(3.3) 7 w /=X)7y . 
*=o 

We shall write Trf in an integral form. By (2.10), 

oo p t - 1 (a+\)mk-l 

Z) xk(n)Xn = Z xk(amk) Z X* 
n=r0 a = l n-otmk 

Pk-1 

= E h{ocmk)(i>^Dmk, 
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where Dn = EjLo Xbn ~ I> 2 , . . . , denotes the rc-th Dirichlet kernel. To describe D, 
let {G^} be a sequence of subgroups of G defined by 

k— 1 oo 

G0 = G, G* = 11(0} x I ] Z P [ , £ = 1 , 2 , . . . . 
i = 0 i=Jk 

It is proved in [4] that Dmk = rrikXGk- Note that //(G^) = m^1. Therefore 

m*» 

r r °° 

(3.4) "=0 

<ty(0 

[ f(t)Mk(x-t)dn(t), 
Jx+Gk /i(Gjfc) A+G* 

where 

M,(0 - £ *k(<xmk)<ft(t). 
a=\ 

We shall identify G with the unit interval (0,1) by associating with each {JC/} G G, 
0 < JC; < /?/, the point E^ox 'm/+l ^ (0» I)- If w e disregard the countable set of pr 
rationals, this mapping is one-one, onto and measure-preserving. On the interval (0,1), 
cosets of Gfc are intervals of the form (jm£\ (/ +1 )mk*),./' = 0 , 1 , . . . , m* — 1. An interval 
/ C (0,1) is said to belong to %, k = 0 ,1,2, . . . , if / is a proper subset of a coset of Ĝ  
and is the union of cosets of G^+i. For / G J4, we define the set 3/ as follows: Suppose 
/ C x + Gh x G G. If /x(7) > /z(G*)/3, let 3/ = JC + G .̂ If /x(7) < /i(Gfc)/3, consider 
JC + Ĝ  as a circle, and define 3/ to be the interval in this circle which has the same center 
as I and has measure //(37) = 3//(/). 

We are now ready to prove (3.2). Let / G L1 and v > 0. We can assume \\f\\\ < y. 
Otherwise, there is nothing to prove. Applying the Calderon-Zygmund decomposition 
lemma (see [5]), we obtain a sequence {/,} of disjoint intervals in U£o % such that 

(3.5) y<JL. f [f\d^<3y, for all /y 

and 
\f(x)\ < y for a.e. x £ \JIj = « . 

j 

Let/ = g + b where 

_ \f{x) if x £ Q 
g W " U ^ i f x G / ; , 7 - l , 

Then g and Z? have the following properties: 

(3.6) | g « | < 3 v a.e.; 

(3.7) lk l l i<r i l i ; 
(3.8) b(x) = 0 if JC £ Q; 

(3.9) [bdfi = 0 for all /,•; 

(3.10) [ \b\dn<2 [ \f\dii for all/,. 
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Since 
Li{\TNf\>y}<n{\TNg\ >y/2} + lx{\TNb\ >y/2}, 

(3.2) will be proved if we show that each term on the right is bounded by Cy~l \\f\\\. 
For the first term, we use (3.1), (3.6) and (3.7) to get 

rt\TNg\>y/2} < Cr 2 | |7"g | | i < Cy-2\\g\\l < Qr'HfU,. 

To estimate TNb, let Q.* = \Jj(3Ij). Then 

/*(O0< 3 £>(//) <<y~'11/111. 
j 

by (3.5). From (3.3), we have 

li{x i & : \TNb\ > y/2} < Cy~l j ^ \TNb\ dfi 

<Cy~lY f\Tkb\d^ 
k=o J " 

Hence (3.2) will be proved if we show 

(3.1D E L l ^ l ^ < C | i f | | i . 
k=oJ '" 

Let x £ Q*, I = x + Gk and I' = x + Gk+l. From (3.4), 

Tkb(x) = - j - fb(t)Mk(x - 0 ^ ( 0 -

We shall split the integral over / ' and I \ I'. Note that neither I nor / ' is contained in Q. 
For f G /', M (̂x - 0 = Yfa

k~l X(amk). Therefore 

j b{t)Mk{x-t)d^{t) = Y ^(amk) bdfi 
Jl' a=l JV 

= Y Kocmk) Y L bd\i = 0, 
a=\ IjCrJlJ 

by (3.8) and (3.9). As for the second integral, we have, by (3.8), 

f v b(t)Mk(x - t) dii(t) = Y L b(t)Mk(x - t) d/i(r) 

= Y fb(t)Mk(x-t)dii(t) 

+ Y f b(t)Mk(x-t)dfi(t). 

Wk 
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For Ij C / and Ij ^ %, Mk(x — t) is constant on Ij. Thus the last term vanishes by (3.9). 
Let tj — {̂ }ik>o be any fixed point in Ij. Again, by (3.9), 

f b(t)Mk(x-tJ)dLi(t) = 0 

for any Ij. Therefore 

TiMx) ^ E ( Kt)[Mk(x - t) - Mk(x - t>)] dfi(t). l_ 

If / is any coset of Gk, 

f \Tkb(x)\ d^x) < E /* \b(t)\^- f \Mk{x-t)-Mk(x-J)\ dii{x)dixit). 

We shall show 

(3.12) - ^ j f ^ ^ |M*(* - 0 - Mfc(* - Ô| rf/xW < C 

for any coset / of Gh Ij C /, Ij G % and /, *> G //. With (3.12) we get 

ijci, ijejk
 J1J 

by (3.10). Summing over all cosets / of Gk and then over all k, we obtain 

oo r oo ,. 

£ / c I W M < c £ £ / l / l ^ < c | i / - | | , . 
fc=(r " k=0lj£%J1J 

Thus (3.11) will be proved if we have (3.12). 
Set 

MM(0 = E \i^mk)<i>a
k{t\ £ = 1,... ,Lk - 2. 

Then 

MM = E MW«. 
£ = 1 

To prove (3.12) it suffices to establish the following inequality: 

1 r 

—— / \Mki{x-t)-Mki{x-^)\dii{x) 
LL(I) Jmc(3ii) '

 MV MV J] p v ' (3.13) 
/ i ( / ) i/nc(3/7) 

< Cmin 
, / i ( / ) 

M(/;) 

1/2 
2*M(//) 

MOOJ 

1/2 

= l , . . . , L k - 2 , 

for any coset IofGk, Ij C /, // G _% and t, i G //. Then (3.12) will follow if we sum over 
g a n d t h e f i r s t f o r £ > l o g 2 g . all £, using the second estimate for £ < log2 j4j\ and the first for £ > log2 ^-
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We shall now prove the first estimate in (3.13). Note that 

X (^) /nc (3,) l^- ? ) - 1 '"H , / 2 ' 
by Holder's inequality. A direct computation shows 

(3.14) - ! - / \(f)k(x-t)-\\-
2dn(x)<C—. 

From (2.11) we have 

2i+2 

(3.15) MKt{x)[<l>k(x)-l]= £ [hA(oc-\)mk)-\Kdccmù}<t>ï(xl 
a=2'-i 

By Parseval's identity and (2.13) we get 

l r 2M i 
— / \MKl(x - t)\2\cj)k{x -t)- \\2dii(x) = Y, \xk,e((a ~ l)mk) ~ hAamk)\ 

< C2~£. 

Therefore 

— f \Mu(x-t)\d/2(x)<c\2'i^-] . 
/ i ( / ) y/nc(3/y) 

The same inequality holds if we replace t by tJ. From these we obtain the first estimate 
in (3.13). 

To obtain the second estimate in (3.13), we use the inequality 

,V2 

Let s = tj — t. We observe that 

[MKl(x) - Mu(x - s)][cj)k(x) - 1] 

= MkJ(x)[(f)k(x) - 1] - Mu(x - s)[<t>k{x -s)-\] 

- Mu(x - s)[<t>k{x) - (/>k(x - s)] 

2e+2 

= E \Ki{(<* - Dm*) - Aw(am*)][l ~ <Pïa(s)]fâ(x) 

2>+2 

- E hj((a-l)mk)^k-
a(s)[l-d>^(s)]^(x), 

a=2 
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by (3.15) and (2.11). Using Parseval's identity, (2.13), (2.12) and the fact that t, f1 G /,, 
we obtain 

MOD 
l—Ji\MKl(x-t)'-Mktl(X'-lf)\2\(l>k(x ~ t) - \\2d^x) 

<C £ \\i{{oc-\)mk)-\kAamk)f\l-rk
a^-t)\2 

2t+1 

+ C £ |Aw((a-l)m t)|2 | l-^-y-0|2 

<C1' 

a=2 ' - ' 
,n2 

M(/;) 

Combining this with (3.14) we get 

1 r 
— / \Mki(x-t)-Mkt(x-J)\du(x) < C /x(7) ^/nc(3/7) 

2£ 

M*) 

1/2 

This proves (3.13) and hence concludes the proof of Lemma 4. The proof of Theorem 1 
is now complete. • 
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