LITTLEWOOD-PALEY AND MULTIPLIER THEOREMS FOR VILENKIN-FOURIER SERIES

WO-SANG YOUNG

$$
\begin{aligned}
& \text { ABSTRACT. Let } S_{2 j} f \text { be the } 2^{j} \text {-th partial sum of the Vilenkin-Fourier series of } f \in L^{1} \text {, } \\
& \text { and set } S_{2-1} f=0 \text {. For } f \in L^{p}, 1<p<\infty \text {, we show that the ratio } \\
& \qquad\left\|\left(\sum_{j=-1}^{\infty}\left|S_{2^{+1}} f-S_{2 j} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p} /\|f\|_{p} \\
& \text { is contained between two bounds (independent of } f \text {). From this we obtain the } \\
& \text { Marcinkiewicz multiplier theorem for Vilenkin-Fourier series. }
\end{aligned}
$$

1. Introduction. Let $\left\{p_{i}\right\}_{i \geq 0}$ be a sequence of integers with $p_{i} \geq 2$, and $G=$ $\Pi_{i=0}^{\infty} Z_{p_{i}}$ be the direct product of cyclic groups of order p_{i}. For $x=\left\{x_{k}\right\} \in G$, let $\phi_{k}(x)=$ $\exp \left(2 \pi i x_{k} / p_{k}\right), k=0,1,2, \ldots$. The Vilenkin system $\left\{\chi_{n}\right\}$ is the set of all finite products of $\left\{\phi_{k}\right\}$, which is enumerated in the following manner. Let $m_{0}=1, m_{k}=\prod_{i=0}^{k-1} p_{i}$, $k=1,2, \ldots$. Express each nonnegative integer n as a finite sum $n=\sum_{k=0}^{\infty} \alpha_{k} m_{k}$, where $0 \leq \alpha_{k}<p_{k}$, and let $\chi_{n}=\Pi_{k=0}^{\infty} \phi_{k}^{\alpha_{k}}$. The functions $\left\{\chi_{n}\right\}$ are the characters of G, and they form a complete orthonormal system on G. For the case $p_{i}=2, i=0,1,2, \ldots,\left\{\phi_{k}\right\}$ are the Rademacher functions and $\left\{\chi_{n}\right\}$ are the Walsh functions. In this paper there is no restriction on the orders $\left\{p_{i}\right\}$, and the constants C, c_{p} and C_{p} that appear below are independent of $\left\{p_{i}\right\}$.

We consider Fourier series with respect to $\left\{\chi_{n}\right\}$. Let μ be the Haar measure on G normalized by $\mu(G)=1$. For $f \in L^{1}$, let $\hat{f}(j)=\int_{G} f(t) \overline{\chi_{j}}(t) d \mu(t), j=0,1,2, \ldots$, and $S_{n} f=\sum_{j=0}^{n-1} \hat{f}(j) \chi_{j}, n=1,2, \ldots$ We prove the Vilenkin-Fourier series analogue of the Littlewood-Paley theorem [7, II, p. 224].

ThEOREM 1. Let $1<p<\infty$. There exist positive constants c_{p} and C_{p} such that for any $f \in L^{p}$,

$$
\begin{equation*}
c_{p}\|f\|_{p} \leq\left\|\left(\sum_{j=-1}^{\infty}\left|S_{2^{j+1}} f-S_{2} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\|f\|_{p}, \tag{1.1}
\end{equation*}
$$

where $S_{2-1} f=0$.
For $p_{i}=2, i=0,1,2, \ldots$, Theorem 1 is Paley's result for Walsh-Fourier series [3]. On the other hand, if $p_{0} \rightarrow \infty, S_{n} f$ resembles the n-th trigonometric partial sum. Thus, when restricted to one cyclic group, Theorem 1 can be viewed as a discrete version of the Littlewood-Paley theorem for trigonometric Fourier series.

As a consequence of Theorem 1, we obtain the Marcinkiewicz multiplier theorem for Vilenkin-Fourier series (see [7, II, p. 232]).

[^0]THEOREM 2. Let $1<p<\infty$. There is a constant C_{p} such that if $\{\lambda(n)\}_{n \geq 0}$ is any sequence of numbers satisfying

$$
|\lambda(n)| \leq B, \quad n=0,1,2, \ldots
$$

and

$$
\sum_{n=2^{j}}^{2^{j+1}-1}|\lambda(n+1)-\lambda(n)| \leq B, \quad j=0,1,2, \ldots
$$

and iff $\in L^{p}$, then $\sum_{n=0}^{\infty} \lambda(n) \hat{f}(n) \chi_{n}$ is the Vilenkin-Fourier series of a function $T_{\lambda} f \in L^{p}$ and

$$
\left\|T_{\gamma} f\right\|_{p} \leq C_{p} B\|f\|_{p}
$$

The proof of Theorem 2 is the same as that given for the trigonometric case (see [2, pp. 148-151]). Instead of using the vector-valued inequality for the partial sums of trigonometric Fourier series, we use the corresponding inequality for Vilenkin-Fourier series:

Lemma 3. Let $1<p<\infty$. There exists a constant C_{p} such that for any sequence of functions $\left\{f_{\ell}\right\}$ in L^{p} and any sequence of positive integers $\left\{n_{\ell}\right\}$,

$$
\left\|\left(\sum_{\ell}\left|S_{n_{\ell}} f_{\ell}\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\left\|\left(\sum_{\ell}\left|f_{\ell}\right|^{2}\right)^{1 / 2}\right\|_{p} .
$$

This lemma is proved in [6].
The proof of Theorem 1 will be given in two parts. In $\S 2$ we show that it can be obtained as a result of a multiplier lemma. This lemma, which is a special case of Theorem 2, will be proved in $\S 3$.

In what follows, C will denote an absolute constant which may vary from line to line.
2. Proof of Theorem 1. The proof will be presented in several steps. To simplify our notation, set $\Delta_{j} f=S_{2^{j+1}} f-S_{2} f, j=-1,0,1, \ldots$ We first observe that, to prove Theorem 1, it suffices to prove the right side of (1.1), i.e., for each $p \in(1, \infty)$, there is a constant C_{p} such that

$$
\begin{equation*}
\left\|\left(\sum_{j=-1}^{\infty}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\|f\|_{p}, \quad f \in L^{p} . \tag{2.1}
\end{equation*}
$$

The left side of (1.1) will then follow by a duality argument. To see this, let f and g be Vilenkin polynomials, $1<p<\infty$ and $1 / p+1 / q=1$. Using the orthonormality of $\left\{\chi_{n}\right\}$, Hölder's inequality and (2.1), we obtain

$$
\begin{align*}
\left|\int_{G} f \bar{g} d \mu\right| & =\left|\sum_{j=-1}^{\infty} \int_{G}\left(\Delta_{j} f\right)\left(\overline{\Delta_{j} g}\right) d \mu\right| \\
& \leq\left\|\left(\sum_{j=-1}^{\infty}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p}\left\|\left(\sum_{j=-1}^{\infty}\left|\Delta_{j} g\right|^{2}\right)^{1 / 2}\right\|_{q} \tag{2.2}\\
& \leq C_{q}\left\|\left(\sum_{j=-1}^{\infty}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p}\|g\|_{q} .
\end{align*}
$$

Since Vilenkin polynomials are dense in L^{p}, (2.2) holds for all $f \in L^{p}$ and $g \in L^{q}$. Taking the supremum over all $g \in L^{q}$ with $\|g\|_{q} \leq 1$, we get

$$
\|f\|_{p} \leq C_{q}\left\|\left(\sum_{j=-1}^{\infty}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p}, \quad f \in L^{p}
$$

Since $\left\|\Delta_{-1} f\right\|_{p}=\|\hat{f}(0)\|_{p} \leq\|f\|_{p}$, (2.1) will be obtained if we prove

$$
\begin{equation*}
\left\|\left(\sum_{j=0}^{\infty}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\|f\|_{p}, \quad f \in L^{p} . \tag{2.3}
\end{equation*}
$$

To prove (2.3), we introduce a related operator. Let $L_{k}, k=0,1,2, \ldots$, be the integer such that $2^{L_{k}} \leq p_{k}<2^{L_{k}+1}$. Note that $L_{k} \geq 1$. For $f \in L^{1}$, define

$$
Q f=\left[\sum_{k=0}^{\infty}\left(\sum_{\ell=0}^{L_{k}-1}\left|S_{2^{\ell+1} m_{k}} f-S_{2^{\ell} m_{k}} f\right|^{2}+\left|S_{m_{k+1}} f-S_{2^{L_{k} m_{k}}} f\right|^{2}\right)\right]^{1 / 2}
$$

We shall show that

$$
\begin{equation*}
\left\|\left(\sum_{j=0}^{\infty}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\|Q f\|_{p} \tag{2.4}
\end{equation*}
$$

Let $\left\{n_{i}\right\}_{i \geq 0}$ be the enumeration of the set of integers $\left\{2^{\ell} m_{k}: \ell=0,1, \ldots, L_{k}\right.$, $k=0,1,2, \ldots\}$ with $n_{0}<n_{1}<n_{2}<\cdots$. Also, let $\left\{\nu_{i}\right\}_{i \geq 0}$ be the enumeration of $\left\{2^{j}: j=0,1,2, \ldots\right\} \cup\left\{n_{i}: i=0,1,2, \ldots\right\}$ with $\nu_{0}<\nu_{1}<\nu_{2}<\cdots$, and set $\delta_{i} f=$ $S_{\nu_{i+1}} f-S_{\nu j_{j}} f, i=0,1,2, \ldots$ We observe that in each interval $\left[2^{j}, 2^{j+1}\right), j=0,1,2, \ldots$, there are at most two n_{i}. Hence each $\Delta_{j} f$ is the sum of at most three $\delta_{i} f$. Therefore,

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left|\Delta_{j} f\right|^{2} \leq C \sum_{j=0}^{\infty}\left|\delta_{j} f\right|^{2} \tag{2.5}
\end{equation*}
$$

On the other hand, in each interval $\left[n_{i}, n_{i+1}\right), i=0,1,2, \ldots$, there is at most one integer of the form 2^{j}. Hence $S_{n_{i+}} f-S_{n i} f$ is the sum of at most two $\delta_{j} f$. Moreover, each of these $\delta_{j} f$ is a difference of two partial sums of the Vilenkin-Fourier series of the function $S_{n_{i+}} f-S_{n j} f$. Hence it follows from Minkowski's inequality and Lemma 3 that

$$
\begin{align*}
\left\|\left(\sum_{j=0}^{\infty}\left|\delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} & \leq C_{p}\left\|\left(\sum_{i=0}^{\infty}\left|S_{n_{i+1}} f-S_{n_{i}} f\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{2.6}\\
& =C_{p}\|Q f\|_{p}
\end{align*}
$$

Combining (2.5) and (2.6), we obtain (2.4). A similar argument shows that we also have

$$
\|Q f\|_{p} \leq C_{p}\left\|\left(\sum_{j=0}^{\infty}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p}
$$

Therefore, proving (2.3) is equivalent to proving

$$
\begin{equation*}
\|Q f\|_{p} \leq C_{p}\|f\|_{p}, \quad f \in L^{p} \tag{2.7}
\end{equation*}
$$

We shall simplify (2.7) further. Let

$$
R f=\left(\sum_{k=0}^{\infty} \sum_{\ell=1}^{L_{k}-2}\left|S_{2^{\ell+1} m_{k}} f-S_{2^{\ell_{m}}} f\right|^{2}\right)^{1 / 2}
$$

(If $L_{k} \leq 2$, we interprete the sum $\sum_{\ell=1}^{L_{k}-2}$ to be zero.) We have

$$
\begin{aligned}
Q f \leq & \left(\sum_{k=0}^{\infty}\left|S_{2 m_{k}} f-S_{m_{k}} f\right|^{2}\right)^{1 / 2}+R f+\left(\sum_{k=0}^{\infty}\left|S_{2^{L_{k} m_{k}}} f-S_{2^{L_{k}-1} m_{k}} f\right|^{2}\right)^{1 / 2} \\
& +\left(\sum_{k=0}^{\infty}\left|S_{m_{k+1}} f-S_{2^{L_{k m_{k}}}} f\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Each of the terms $S_{2 m_{k}} f-S_{m_{k}} f, S_{2^{L_{k} m_{k}}} f-S_{2^{L_{k}-1} m_{k}} f$ and $S_{m_{k+1}} f-S_{2^{L_{k} m_{k}}} f$ is the difference of two partial sums of the Vilenkin-Fourier series of the function $S_{m_{k+1}} f-S_{m_{k}} f$. It thus follows from Lemma 3 that

$$
\|Q f\|_{p} \leq\|R f\|_{p}+C_{p}\left\|\left(\sum_{k=0}^{\infty}\left|S_{m_{k+1}} f-S_{m_{k}} f\right|^{2}\right)^{1 / 2}\right\|_{p} .
$$

Since $\left\{S_{m_{k}} f\right\}$ is a martingale (see, e.g., [6]), Burkholder's result for martingales [1] gives

$$
\left\|\left(\sum_{k=0}^{\infty}\left|S_{m_{k+1}} f-S_{m_{k}} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\|f\|_{p} .
$$

Therefore (2.7) will be proved if we show

$$
\begin{equation*}
\|R f\|_{p} \leq C_{p}\|f\|_{p}, \quad f \in L^{p} \tag{2.8}
\end{equation*}
$$

We shall prove (2.8) using a multiplier transformation. Let $k=0,1,2, \ldots$. If $L_{k}>2$, define, for $\ell=1,2, \ldots, L_{k}-2$, the sequence $\left\{a_{2^{\prime} m_{k}}(n)\right\}_{n \geq 0}$ by

$$
a_{2^{\ell} m_{k}}(n)= \begin{cases}1 & \text { if } 2^{\ell} m_{k} \leq n<2^{\ell+1} m_{k} \\ \frac{j}{2^{\ell-1}} & \text { if }\left(2^{\ell-1}+j\right) m_{k} \leq n<\left(2^{\ell-1}+j+1\right) m_{k}, j=0,1, \ldots, 2^{\ell-1}-1 \\ 1-\frac{j+1}{2^{\ell-1}} & \text { if }\left(2^{\ell+1}+j\right) m_{k} \leq n<\left(2^{\ell+1}+j+1\right) m_{k}, j=0,1, \ldots, 2^{\ell-1}-1 \\ 0 & \text { otherwise, }\end{cases}
$$

and set

$$
A_{2^{\ell} m_{k}} f=\sum_{n=0}^{\infty} a_{2^{\ell} m_{k}}(n) \hat{f}(n) \chi_{n} .
$$

Let $r_{i}(t), i=0,1,2, \ldots$, be the Rademacher functions defined on $[0,1]$. For $t \in[0,1]$, $N=1,2, \ldots$, let

$$
T_{t}^{N} f=\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_{k}-2} r_{2^{\ell} m_{k}}(t) A_{2^{\ell} m_{k}} f .
$$

We shall show that (2.8) will follow if we have

$$
\begin{equation*}
\left\|T_{t}^{N} f\right\|_{p} \leq C_{p}\|f\|_{p}, \quad f \in L^{p}, N=1,2, \ldots, t \in[0,1] \tag{2.9}
\end{equation*}
$$

To see this, we note that, from (2.9),

$$
\int_{G} \int_{0}^{1}\left|\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_{k}-2} r_{2^{\ell} m_{k}}(t) A_{2^{\ell} m_{k}} f(x)\right|^{p} d t d \mu(x) \leq C_{p}\|f\|_{p}^{p}
$$

By Khintchin's inequality [7, I, p. 213], there is a constant B_{p} (depending only on p) such that

$$
\int_{0}^{1}\left|\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_{k}-2} r_{2^{\ell} m_{k}}(t) A_{2^{\ell} m_{k}} f(x)\right|^{p} d t \geq B_{p}\left(\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_{k}-2}\left|A_{2^{\ell} m_{k}} f(x)\right|^{2}\right)^{p / 2} .
$$

Therefore,

$$
\left\|\left(\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_{k}-2} \mid A_{2^{\ell} m_{k}} f^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\|f\|_{p}
$$

Now, for $k=0,1,2, \ldots, \ell=1,2, \ldots, L_{k}-2$,

$$
S_{2^{\ell+1} m_{k}} f-S_{2^{\ell} m_{k}} f=S_{2^{\ell+1} m_{k}}\left(A_{2^{\ell} m_{k}} f\right)-S_{2^{\ell} m_{k}}\left(A_{2^{\ell} m_{k}} f\right)
$$

Combining this with Lemma 3, we get

$$
\begin{aligned}
\left\|\left(\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_{k}-2}\left|S_{2^{\ell+1} m_{k}} f-S_{2^{\ell} m_{k}} f\right|^{2}\right)^{1 / 2}\right\|_{p} & \leq C_{p}\left\|\left(\sum_{k=0}^{N-1} \sum_{\ell=1}^{L_{k}-2}\left|A_{2^{\ell} m_{k}} f\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& \leq C_{p}\|f\|_{p} .
\end{aligned}
$$

Letting $N \rightarrow \infty$, we obtain (2.8).
We shall prove (2.9) in a slightly more general form. Since $a_{2^{\prime} m_{k}}(n)=0$ for $n \notin$ $\left[m_{k}, m_{k+1}\right)$,

$$
T_{t}^{N} f=\sum_{n=0}^{m_{N}-1}\left[\sum_{k=0}^{\infty} \sum_{\ell=1}^{L_{k}-2} r_{2^{\ell} m_{k}}(t) a_{2^{\ell} m_{k}}(n)\right] \hat{f}(n) \chi_{n}
$$

Let $\lambda_{k, \ell}(n)=r_{2^{\ell} m_{k}}(t) a_{2^{\ell} m_{k}}(n), n=0,1,2, \ldots, k=0,1,2, \ldots, \ell=1,2, \ldots, L_{k}-2$, $t \in[0,1]$. We notice that each sequence $\left\{\lambda_{k, \ell}(n)\right\}_{n \geq 0}$ has the following properties:

$$
\begin{gather*}
\lambda_{k, \ell}(n)=\lambda_{k, \ell}\left(\alpha m_{k}\right) \quad \text { for all } n \in\left[\alpha m_{k},(\alpha+1) m_{k}\right), \alpha=0,1,2, \ldots ; \tag{2.10}\\
\lambda_{k, \ell}\left(\alpha m_{k}\right)=0 \quad \text { for } \alpha \notin\left[2^{\ell-1}+1,2^{\ell+2}-1\right] ; \tag{2.11}\\
\left|\lambda_{k, \ell}\left(\alpha m_{k}\right)\right| \leq 1, \quad \alpha=0,1,2, \ldots ; \tag{2.12}\\
\left|\lambda_{k, \ell}\left(\alpha m_{k}\right)-\lambda_{k, \ell}\left((\alpha-1) m_{k}\right)\right| \leq \frac{1}{2^{\ell-1}}, \quad \alpha=1,2, \ldots \tag{2.13}
\end{gather*}
$$

Hence (2.9) will be proved if we have the following lemma.
Lemma 4. Suppose, for $k=0,1,2, \ldots$ and $\ell=1,2, \ldots, L_{k}-2,\left\{\lambda_{k, \ell}(n)\right\}_{n \geq 0}$ are sequences satisfying (2.10)-(2.13), and

$$
\begin{equation*}
\lambda(n)=\sum_{k=0}^{\infty} \sum_{\ell=1}^{L_{k}-2} \lambda_{k, \ell}(n), \quad n=0,1,2, \ldots . \tag{2.14}
\end{equation*}
$$

Then, for $1<p<\infty$, there is a constant C_{p}, independent of $\left\{\lambda_{k, \ell}(n)\right\}$, such that

$$
T^{N} f=\sum_{n=0}^{m_{N}-1} \lambda(n) \hat{f}(n) \chi_{n}
$$

satisfies

$$
\begin{equation*}
\left\|T^{N} f\right\|_{p} \leq C_{p}\|f\|_{p} \tag{2.15}
\end{equation*}
$$

for every $f \in L^{p}, N=1,2, \ldots$.
The proof of this lemma will conclude the proof of Theorem 1.
3. Proof of Lemma 4. Because of (2.11), we notice that for each n, at most three terms on the right side of (2.14) can be nonzero. From this and (2.12), we get

$$
|\lambda(n)| \leq C, \quad n=0,1,2, \ldots .
$$

Thus it follows from Parseval's identity that

$$
\begin{equation*}
\left\|T^{N} f\right\|_{2} \leq C\|f\|_{2}, \quad f \in L^{2}, N=1,2, \ldots \tag{3.1}
\end{equation*}
$$

The lemma will be proved if we have the weak-type inequality

$$
\begin{equation*}
\mu\left\{\left|T^{N} f\right|>y\right\} \leq C y^{-1} \mid f f \|_{1}, \quad f \in L^{1}, y>0, N=1,2, \ldots \tag{3.2}
\end{equation*}
$$

The case $1<p<2$ of (2.15) will follow from (3.1), (3.2) and the Marcinkiewicz interpolation theorem [7, II, p. 112]. A duality argument will then give us the case $2<p<\infty$ of (2.15).

We shall use the following notation. For $k=0,1,2, \ldots$, let

$$
\lambda_{k}(n)=\sum_{\ell=1}^{L_{k}-2} \lambda_{k, \ell}(n), \quad n=0,1,2, \ldots
$$

and

$$
T_{k} f=\sum_{n=0}^{\infty} \lambda_{k}(n) \hat{f}(n) \chi_{n} .
$$

Observe that $\lambda_{k}(n)=0$ for $n \notin\left[m_{k}, m_{k+1}\right)$. We have

$$
\begin{equation*}
T^{N} f=\sum_{k=0}^{N-1} T_{k} f . \tag{3.3}
\end{equation*}
$$

We shall write $T_{k} f$ in an integral form. By (2.10),

$$
\begin{aligned}
\sum_{n=0}^{\infty} \lambda_{k}(n) \chi_{n} & =\sum_{\alpha=1}^{p_{k}-1} \lambda_{k}\left(\alpha m_{k}\right) \sum_{n=\alpha m_{k}}^{(\alpha+1) m_{k}-1} \chi_{n} \\
& =\sum_{\alpha=1}^{p_{k}-1} \lambda_{k}\left(\alpha m_{k}\right) \phi_{k}^{\alpha} D_{m_{k}},
\end{aligned}
$$

where $D_{n}=\sum_{j=0}^{n-1} \chi_{j}, n=1,2, \ldots$, denotes the n-th Dirichlet kernel. To describe $D_{m_{k}}$, let $\left\{G_{k}\right\}$ be a sequence of subgroups of G defined by

$$
G_{0}=G, G_{k}=\prod_{i=0}^{k-1}\{0\} \times \prod_{i=k}^{\infty} Z_{p_{i}}, \quad k=1,2, \ldots .
$$

It is proved in [4] that $D_{m_{k}}=m_{k} \chi_{G_{k}}$. Note that $\mu\left(G_{k}\right)=m_{k}^{-1}$. Therefore

$$
\begin{align*}
T_{k} f(x) & =\int_{G} f(t)\left[\sum_{n=0}^{\infty} \lambda_{k}(n) \chi_{n}(x-t)\right] d \mu(t) \tag{3.4}\\
& =\frac{1}{\mu\left(G_{k}\right)} \int_{x+G_{k}} f(t) M_{k}(x-t) d \mu(t),
\end{align*}
$$

where

$$
M_{k}(t)=\sum_{\alpha=1}^{p_{k}-1} \lambda_{k}\left(\alpha m_{k}\right) \phi_{k}^{\alpha}(t)
$$

We shall identify G with the unit interval $(0,1)$ by associating with each $\left\{x_{i}\right\} \in G$, $0 \leq x_{i}<p_{i}$, the point $\sum_{i=0}^{\infty} x_{i} m_{i+1}^{-1} \in(0,1)$. If we disregard the countable set of $p_{i}{ }^{-}$ rationals, this mapping is one-one, onto and measure-preserving. On the interval $(0,1)$, cosets of G_{k} are intervals of the form $\left(j m_{k}^{-1},(j+1) m_{k}^{-1}\right), j=0,1, \ldots, m_{k}-1$. An interval $I \subset(0,1)$ is said to belong to $I_{k}, k=0,1,2, \ldots$, if I is a proper subset of a coset of G_{k} and is the union of cosets of G_{k+1}. For $I \in J_{k}$, we define the set $3 I$ as follows: Suppose $I \subset x+G_{k}, x \in G$. If $\mu(I) \geq \mu\left(G_{k}\right) / 3$, let $3 I=x+G_{k}$. If $\mu(I)<\mu\left(G_{k}\right) / 3$, consider $x+G_{k}$ as a circle, and define $3 I$ to be the interval in this circle which has the same center as I and has measure $\mu(3 I)=3 \mu(I)$.

We are now ready to prove (3.2). Let $f \in L^{1}$ and $y>0$. We can assume $\|f\|_{1} \leq y$. Otherwise, there is nothing to prove. Applying the Calderón-Zygmund decomposition lemma (see [5]), we obtain a sequence $\left\{I_{j}\right\}$ of disjoint intervals in $\bigcup_{k=0}^{\infty} I_{k}$ such that

$$
\begin{equation*}
y<\frac{1}{\mu\left(I_{j}\right)} \int_{I_{j}}|f| d \mu \leq 3 y, \quad \text { for all } I_{j} \tag{3.5}
\end{equation*}
$$

and

$$
|f(x)| \leq y \quad \text { for a.e. } x \notin \bigcup_{j} I_{j} \equiv \Omega .
$$

Let $f=g+b$ where

$$
g(x)= \begin{cases}f(x) & \text { if } x \notin \Omega \\ \frac{1}{\mu\left(I_{j}\right)} \int_{I_{j}} f d \mu & \text { if } x \in I_{j}, j=1,2, \ldots .\end{cases}
$$

Then g and b have the following properties:

$$
\begin{gather*}
|g(x)| \leq 3 y \quad \text { a.e. } ; \tag{3.6}\\
\|g\|_{1} \leq\|f\|_{1} ; \tag{3.7}\\
b(x)=0 \quad \text { if } x \notin \Omega \tag{3.8}\\
\int_{I_{j}} b d \mu=0 \quad \text { for all } I_{j} ; \tag{3.9}\\
\int_{I_{j}}|b| d \mu \leq 2 \int_{L_{j}}|f| d \mu \text { for all } I_{j} . \tag{3.10}
\end{gather*}
$$

Since

$$
\mu\left\{\left|T^{N} f\right|>y\right\} \leq \mu\left\{\left|T^{N} g\right|>y / 2\right\}+\mu\left\{\left|T^{N} b\right|>y / 2\right\}
$$

(3.2) will be proved if we show that each term on the right is bounded by $C y^{-1}\|f\|_{1}$.

For the first term, we use (3.1), (3.6) and (3.7) to get

$$
\mu\left\{\left|T^{N} g\right|>y / 2\right\} \leq C y^{-2}\left\|T^{N} g\right\|_{2}^{2} \leq C y^{-2}\|g\|_{2}^{2} \leq C y^{-1}\|f\|_{1} .
$$

To estimate $T^{N} b$, let $\Omega^{*}=\bigcup_{j}\left(3 I_{j}\right)$. Then

$$
\mu\left(\Omega^{*}\right) \leq 3 \sum_{j} \mu\left(I_{j}\right) \leq C y^{-1}\|f\|_{1}
$$

by (3.5). From (3.3), we have

$$
\begin{aligned}
\mu\left\{x \notin \Omega^{*}:\left|T^{N} b\right|>y / 2\right\} & \leq C y^{-1} \int_{\Omega_{\Omega^{*}}}\left|T^{N} b\right| d \mu \\
& \leq C y^{-1} \sum_{k=0}^{N-1} \int_{c_{\Omega^{*}}}\left|T_{k} b\right| d \mu
\end{aligned}
$$

Hence (3.2) will be proved if we show

$$
\begin{equation*}
\sum_{k=0}^{\infty} \int_{c_{\Omega^{*}}}\left|T_{k} b\right| d \mu \leq C\|f\|_{1} . \tag{3.11}
\end{equation*}
$$

Let $x \notin \Omega^{*}, I=x+G_{k}$ and $I^{\prime}=x+G_{k+1}$. From (3.4),

$$
T_{k} b(x)=\frac{1}{\mu(I)} \int_{I} b(t) M_{k}(x-t) d \mu(t)
$$

We shall split the integral over I^{\prime} and $I \backslash I^{\prime}$. Note that neither I nor I^{\prime} is contained in Ω.
For $t \in I^{\prime}, M_{k}(x-t)=\sum_{\alpha=1}^{p_{k}-1} \lambda\left(\alpha m_{k}\right)$. Therefore

$$
\begin{aligned}
\int_{I^{\prime}} b(t) M_{k}(x-t) d \mu(t) & =\sum_{\alpha=1}^{p_{k}-1} \lambda\left(\alpha m_{k}\right) \int_{I^{\prime}} b d \mu \\
& =\sum_{\alpha=1}^{p_{k}-1} \lambda\left(\alpha m_{k}\right) \sum_{I_{j} \subset I^{\prime}} \int_{I_{j}} b d \mu=0,
\end{aligned}
$$

by (3.8) and (3.9). As for the second integral, we have, by (3.8),

$$
\begin{aligned}
\int_{I \backslash I^{\prime}} b(t) M_{k}(x-t) d \mu(t)= & \sum_{I_{j} \subset I, I_{j} \notin I^{\prime}} \int_{I_{j}} b(t) M_{k}(x-t) d \mu(t) \\
= & \sum_{I_{j} \subset I, I_{j} \in \mathcal{I}_{k}} \int_{I_{j}} b(t) M_{k}(x-t) d \mu(t) \\
& +\sum_{\substack{I_{j} \subset I, l_{j} \not l^{\prime} \\
I_{j} \notin I_{k}}} \int_{I_{j}} b(t) M_{k}(x-t) d \mu(t) .
\end{aligned}
$$

For $I_{j} \subset I$ and $I_{j} \notin J_{k}, M_{k}(x-t)$ is constant on I_{j}. Thus the last term vanishes by (3.9). Let $t^{j}=\left\{t_{k}^{j}\right\}_{k \geq 0}$ be any fixed point in I_{j}. Again, by (3.9),

$$
\int_{I_{j}} b(t) M_{k}\left(x-t^{j}\right) d \mu(t)=0
$$

for any I_{j}. Therefore

$$
T_{k} b(x)=\frac{1}{\mu(I)} \sum_{I_{j} \subset I, l_{j} \in \mathcal{J}_{k}} \int_{I_{j}} b(t)\left[M_{k}(x-t)-M_{k}\left(x-t^{j}\right)\right] d \mu(t)
$$

If I is any coset of G_{k},
$\int_{I \cap C_{\Omega^{*}}}\left|T_{k} b(x)\right| d \mu(x) \leq \sum_{I_{j} \subset I,} \int_{I_{j} \in J_{k}} \int_{I_{j}}|b(t)| \frac{1}{\mu(I)} \int_{I \cap c\left(3 I_{j}\right)}\left|M_{k}(x-t)-M_{k}\left(x-t^{j}\right)\right| d \mu(x) d \mu(t)$.
We shall show

$$
\begin{equation*}
\frac{1}{\mu(I)} \int_{I \cap \subset\left(3 l_{j}\right)}\left|M_{k}(x-t)-M_{k}\left(x-t^{j}\right)\right| d \mu(x) \leq C \tag{3.12}
\end{equation*}
$$

for any coset I of $G_{k}, I_{j} \subset I, I_{j} \in I_{k}$ and $t, t^{j} \in I_{j}$. With (3.12) we get

$$
\begin{aligned}
\int_{I \cap \complement_{\Omega^{*}}}\left|T_{k} b\right| d \mu & \leq C \sum_{I_{j} \subset I,} \sum_{I_{j} \in J_{k}} \int_{I_{j}}|b| d \mu \\
& \leq C \sum_{I_{j} \subset I,} \sum_{I_{j} \in \mathcal{J}_{k}} \int_{I_{j}}|f| d \mu,
\end{aligned}
$$

by (3.10). Summing over all cosets I of G_{k} and then over all k, we obtain

$$
\sum_{k=0}^{\infty} \int_{C_{\Omega^{*}}}\left|T_{k} b\right| d \mu \leq C \sum_{k=0}^{\infty} \sum_{I_{j} \in ⿹_{k}} \int_{I_{j}}|f| d \mu \leq C| | f \|_{1} .
$$

Thus (3.11) will be proved if we have (3.12).
Set

$$
M_{k, \ell}(t)=\sum_{\alpha=1}^{p_{k}-1} \lambda_{k, \ell}\left(\alpha m_{k}\right) \phi_{k}^{\alpha}(t), \quad \ell=1, \ldots, L_{k}-2
$$

Then

$$
M_{k}(t)=\sum_{\ell=1}^{L_{k}-2} M_{k, \ell}(t) .
$$

To prove (3.12) it suffices to establish the following inequality:

$$
\begin{align*}
& \frac{1}{\mu(I)} \int_{I \cap c\left(3 I_{j}\right)}\left|M_{k, \ell}(x-t)-M_{k, \ell}\left(x-t^{j}\right)\right| d \mu(x) \\
& \quad \leq C \min \left\{\left[2^{-\ell} \frac{\mu(I)}{\mu\left(I_{j}\right)}\right]^{1 / 2},\left[2^{\ell} \frac{\mu\left(I_{j}\right)}{\mu(I)}\right]^{1 / 2}\right\}, \quad \ell=1, \ldots, L_{k}-2, \tag{3.13}
\end{align*}
$$

for any coset I of $G_{k}, I_{j} \subset I, I_{j} \in I_{k}$ and $t, t^{j} \in I_{j}$. Then (3.12) will follow if we sum over all ℓ, using the second estimate for $\ell \leq \log _{2} \frac{\mu(I)}{\mu\left(I_{j}\right)}$ and the first for $\ell>\log _{2} \frac{\mu(I)}{\mu\left(I_{j}\right)}$.

We shall now prove the first estimate in (3.13). Note that

$$
\begin{aligned}
\frac{1}{\mu(I)} \int_{I \cap C_{\left(3 I_{j}\right)}}\left|M_{k, \ell}(x-t)\right| d \mu(x) \leq & \left(\frac{1}{\mu(I)} \int_{I}\left|M_{k, \ell}(x-t)\right|^{2}\left|\phi_{k}(x-t)-1\right|^{2} d \mu(x)\right)^{1 / 2} \\
& \times\left(\frac{1}{\mu(I)} \int_{I \cap c\left(3 l_{j}\right)}\left|\phi_{k}(x-t)-1\right|^{-2} d \mu(x)\right)^{1 / 2}
\end{aligned}
$$

by Hölder's inequality. A direct computation shows

$$
\begin{equation*}
\frac{1}{\mu(I)} \int_{I \cap \subset\left(3 I_{j}\right)}\left|\phi_{k}(x-t)-1\right|^{-2} d \mu(x) \leq C \frac{\mu(I)}{\mu\left(I_{j}\right)} \tag{3.14}
\end{equation*}
$$

From (2.11) we have

$$
\begin{equation*}
M_{k, \ell}(x)\left[\phi_{k}(x)-1\right]=\sum_{\alpha=2^{\ell-1}}^{2^{\ell+2}}\left[\lambda_{k, \ell}\left((\alpha-1) m_{k}\right)-\lambda_{k, \ell}\left(\alpha m_{k}\right)\right] \phi_{k}^{\alpha}(x) . \tag{3.15}
\end{equation*}
$$

By Parseval's identity and (2.13) we get

$$
\begin{aligned}
\frac{1}{\mu(I)} \int_{I}\left|M_{k, \ell}(x-t)\right|^{2}\left|\phi_{k}(x-t)-1\right|^{2} d \mu(x) & =\sum_{\alpha=2^{\ell-1}}^{2^{\ell+2}}\left|\lambda_{k, \ell}\left((\alpha-1) m_{k}\right)-\lambda_{k, \ell}\left(\alpha m_{k}\right)\right|^{2} \\
& \leq C 2^{-\ell}
\end{aligned}
$$

Therefore

$$
\frac{1}{\mu(I)} \int_{I \cap C_{\left(3 I_{j}\right)}}\left|M_{k, \ell}(x-t)\right| d \mu(x) \leq C\left[2^{-\ell} \frac{\mu(I)}{\mu\left(I_{j}\right)}\right]^{1 / 2}
$$

The same inequality holds if we replace t by t^{j}. From these we obtain the first estimate in (3.13).

To obtain the second estimate in (3.13), we use the inequality

$$
\begin{aligned}
& \frac{1}{\mu(I)} \int_{I \cap C_{\left(3 J_{j}\right)}}\left|M_{k, \ell}(x-t)-M_{k, \ell}\left(x-t^{j}\right)\right| d \mu(x) \\
& \left.\leq\left(\frac{1}{\mu(I)} \int_{I}\left|M_{k, \ell}(x-t)-M_{k, \ell}\left(x-t^{j}\right)\right|^{2}\right\} \phi_{k}(x-t)-\left.1\right|^{2} d \mu(x)\right)^{1 / 2} \\
& \quad \times\left(\int_{I \cap c_{\left(3 J_{j}\right)}}\left|\phi_{k}(x-t)-1\right|^{-2} d \mu(x)\right)^{1 / 2}
\end{aligned}
$$

Let $s=t^{j}-t$. We observe that

$$
\begin{aligned}
& {\left[M_{k, \ell}(x)-M_{k, \ell}(x-s)\right]\left[\phi_{k}(x)-1\right] } \\
&= M_{k, \ell}(x)\left[\phi_{k}(x)-1\right]-M_{k, \ell}(x-s)\left[\phi_{k}(x-s)-1\right] \\
& \quad-M_{k, \ell}(x-s)\left[\phi_{k}(x)-\phi_{k}(x-s)\right] \\
&= \sum_{\alpha=2^{\ell-1}}^{2^{\ell+2}}\left[\lambda_{k, \ell}\left((\alpha-1) m_{k}\right)-\lambda_{k, \ell}\left(\alpha m_{k}\right)\right]\left[1-\phi_{k}^{-\alpha}(s)\right] \phi_{k}^{\alpha}(x) \\
&-\sum_{\alpha=2^{\ell-1}}^{2^{\ell+2}} \lambda_{k, \ell}\left((\alpha-1) m_{k}\right) \phi_{k}^{1-\alpha}(s)\left[1-\phi_{k}^{-1}(s)\right] \phi_{k}^{\alpha}(x),
\end{aligned}
$$

by (3.15) and (2.11). Using Parseval's identity, (2.13), (2.12) and the fact that $t, t^{j} \in I_{j}$, we obtain

$$
\begin{aligned}
& \frac{1}{\mu(I)} \int_{I}\left|M_{k, \ell}(x-t)-M_{k, \ell}\left(x-t^{j}\right)\right|^{2}\left|\phi_{k}(x-t)-1\right|^{2} d \mu(x) \\
& \leq C \sum_{\alpha=2^{\ell-1}}^{2^{\ell+2}}\left|\lambda_{k, \ell}\left((\alpha-1) m_{k}\right)-\lambda_{k, \ell}\left(\alpha m_{k}\right)\right|^{2}\left|1-\phi_{k}^{-\alpha}\left(t^{j}-t\right)\right|^{2} \\
& \quad+C \sum_{\alpha=2^{\ell-1}}^{2^{\ell+2}}\left|\lambda_{k, \ell}\left((\alpha-1) m_{k}\right)\right|^{2}\left|1-\phi_{k}^{-1}\left(t^{j}-t\right)\right|^{2} \\
& \leq C 2^{\ell}\left[\frac{\mu\left(I_{j}\right)}{\mu(I)}\right]^{2}
\end{aligned}
$$

Combining this with (3.14) we get

$$
\frac{1}{\mu(I)} \int_{I \cap c}\left(3 I_{j}\right)\left|M_{k, \ell}(x-t)-M_{k, \ell}\left(x-t^{j}\right)\right| d \mu(x) \leq C\left[2^{\ell} \frac{\mu\left(I_{j}\right)}{\mu(I)}\right]^{1 / 2}
$$

This proves (3.13) and hence concludes the proof of Lemma 4. The proof of Theorem 1 is now complete.

References

1. D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1(1973), 19-42.
2. R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
3. R. E. A. C. Paley, A remarkable series of orthogonal functions (I), Proc. London Math. Soc. 34(1932), 241-264.
4. N. Ja. Vilenkin, On a class of complete orthonormal systems, Trans. Amer. Math. Soc. (2) 28(1963), 1-35.
5. W.-S. Young, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc. 218(1976), 311-320.
6. Almost everywhere convergence of Vilenkin-Fourier series of H^{1} functions, Proc. Amer. Math. Soc. 108(1990), 433-441.
7. A. Zygmund, Trigonometric Series, Vols. I, II, 2nd rev. ed., Cambridge Univ. Press, New York, 1968.

Department of Mathematics

University of Alberta
Edmonton, Alberta
T6G 2GI

[^0]: Received by the editors August 5, 1992.
 AMS subject classification: Primary: 42C10, 42A45; secondary: 43A75.
 (c) Canadian Mathematical Society 1994.

