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Introduction

Gy. Soos [1] and B. Gupta [2] have discussed the properties of Rie-
mannian spaces Vn (n > 2) in which the first covariant derivative of
Weyl's projective curvature tensor is everywhere zero; such spaces they call
Projective-Symmetric spaces. In this paper we wish to point out that all
Riemannian spaces with this property are symmetric in the sense of Cartan
[3]; that is the first covariant derivative of the Riemann curvature tensor
of the space vanishes. Further sections are devoted to a discussion of
projective-symmetric affine spaces An with symmetric affine connexion.
Throughout, the geometrical quantities discussed will be as defined by
Eisenhart [4] and [5].

1. Projective-symmetric Riemannian spaces

For a Vn, Weyl's projective curvature tensor Wa
bcd is

2
" "bed =bed Rbcd T []

where Ra
bed is the curvature tensor, and Rbc = Ra

bca the Ricci tensor, of
the space. The Vn is a projective-symmetric space if and only if

(1-1) " W'M.. = 0.

We define the tensor Ua
d by

TJa abe W o I 7?o

where R = Ra
a, and from (1.1) it follows that if the space is projective-

symmetric, then

(1.2) U\. = 0.

For n > 2, equation (1.2) and the twice-contracted Bianchi Identity
Rab-,a = \R,b implies
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R — constant,

and thus we have Ra
b.e = 0. With (1.1) this gives the result

from which follows:

THEOREM 1. A Riemannian space Vn (n > 2) is a projective-symmetric
space if and only if it is symmetric in the sense of Cartan [3].

For n = 2, Wa
bed is identically zero and (1.1) is a degenerate condition

in a F2. We remark however that a F2 is a symmetric space if and only
if it has constant scalar curvature R.

The results of Gupta [2] follow immediately since they are trivially
true for symmetric spaces. The paper of Soos [2] contains theorems for
projective-symmetric spaces which are generalisations of results found by
Sinjukow [6] for symmetric spaces.

2. Affine spaces with symmetric connexion

For the remainder of this paper we consider the applicability of the
preceding theorem in an Affine space with symmetric connexion. Such a
space we will denote by An, its connexion by F",,,., and covariant differentia-
tion with respect to this connexion by ";".

The curvature tensor of A „ is defined

for which the identities

(2-2) Ba
bied) - B°ibed] = 0,

and Bianchi's identity

(2-3) B\ed.e] = 0,

hold. The analogue of the Ricci tensor for an A „ is Bic = Ba
bca, but in

this case it is not necessarily symmetric; it follows from (2.2) that

(2-4) Scd=^2B[cd],

where 5C(, = Ba
acd. From (2.3) we have also

(2.5) -Wî O,
n bcd;a — ^nb[c;d]-

Weyl's projective curvature tensor for an A „ is

(2.6) Wbed = B\cd~ - L - 6\ Scd~ - l j Bbie6^- - ^ SHcd"d].
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This tensor is invariant for projective transformations of the space and
its vanishing implies that the An has the same paths as flat space [5].
By a projective-symmetric affine space we will mean an An (n > 2) such
that

(2.7) W\ea.e = 0,

throughout; an An is symmetric [3] if and only if

(2-8) B\cd;e = 0,

at all points.
Equation (2.8) implies that every symmetric An is a projective-

symmetric An. Such projective-symmetric spaces we will call degenerate,
and from Theorem 1 we see that all projective-symmetric Riemannian
spaces are degenerate in this sense. We will show that this is not true for
a general A „ and will consider its validity in relation to certain sub-classes
of Affine spaces.

3. A non-degenerate projective-symmetric Aa

Consider the An with connexion coefficients

(3.1) r°bc = 28\bWc),

in a coordinate system {a;0} such that

—- y>. = 0.

The latter condition is expressed covariantly as

(3.2) Vc;d+2vcVd = 0.

The An is projectively related to flat space; its projective curvature tensor
vanishes and therefore it is a projective-symmetric space. From (2.1) we
have for this An

and using (3.2)
B'Mi.= -

For ipe ^ 0, the curvature tensor of the space is non-zero and we have the
result:

THEOREM 2. There exist projective-symmetric An's which are non-
degenerate.
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4. The decomposable An

If two spaces Am and An_m are given with coordinates X*:
(a, {}, y = 1, 2, • • •, m) and xA: (A, B,C = m+1, • • -,n) and the con-
nexions r"ffY and FA

BC, then the A „ with coordinates x": (a,b,c, = l,2,---,n)
and connexion Fa

b<l = {-T1 ,̂,, JT^BC}. is called the product of Am and An_m.
An ^4n that is a product space is said to be decomposable. A geometric
object in a decomposable An is decomposable if and only if its components
with respect to the special coordinates are always zero when they have
indices from both ranges, and the components belonging to the subspace
An (i4B_m) are functions of x* (ar1*) only. In a decomposable An, Ba

hed,
Bbe and their covariant derivatives are decomposable; Wa

ied and Wa
bcd;e

are not in general decomposable.

THEOREM 3. A projective-symmetric An which is decomposable is neces-
sarily degenerate.

We assume that An = {AmxAn_m} where indices a, /3, y = 1 • • • m
relate to Am, and A, B,C = m-\-\, • • • n relate to An_m. From the definition
of the projective-curvature tensor we have for the decomposable An

(4-1) W*fiCD = - - L - d*fiSCD,

and

(4.2)

The assumption that An is a projective-symmetric space gives with (3.1)

and therefore in (3.2)

Similarly we have
Bft;e = 0,

and since Bbi., is a decomposable tensor of the An it follows that

With the above, the differentiation of (2.5) gives

and the decomposable An is a symmetric space.

5. The projective-symmetric Wn

An A „ in which there exists a symmetric two index tensor gab of rank
n such that
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(5-1) S«»;c = - 2 & g « » ,

for some covariant vector <j>t is called a Wn and was first discussed by
Weyl [7]. Define the contravariant tensor g°* by gabgbe = <5°e, then from (4.1)

(5-1) g";. = *+£*•

We can use gab (g°*) to define a correspondence between covariant and
contravariant quantities in An; in fact if <f>e is a gradient vector <f>e the
Wn is a Riemannian space Vn with metric tensor gab = e 2 * ^ .

With Wa>C(l = ga.Wbed and So>cd = ga.B»bca, we define

(5-2) r^ -^TF^ .

and

(5-3) Qaa=gbeBahei.

From the Ricci identity applied to gab, and the use of (5.1) and (5.1a)
we have

which yields after contraction

Qad = B ad—
and

We extract the symmetric and anti-symmetric parts of these equations
to obtain

Qiad) = B(ad)>

With equation (5.2), the definition of the projective curvature tensor
gives

Tab = Qab- - j - - S o t + {Ba6-J5gfl6},

where B = g"cBbe = gbeQbc. Frequent use of the relations (2.4) and (5.4)
gives the decomposition

(5.5)
2 4
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LEMMA 1. In a projective-symmetric Wn (n > 2),

PROOF. Tab.e= gadg«W\fh.e+gai.cT\+g«.0Watr From (5.1) and
(5.1a) the sum of the second and third terms on the right hand side of the
above equation is zero. Hence

•* ab; c — SadS " «/»; e>

which vanishes if Wn is projective-symmetric. Q.E.D.

Lemma 1 applied to the second equation of (5.5) gives

(5.6) B[ab];c = 0,

and with (5.6) in the first equation of (5.5)

(5.7) JBrt.. = i g r t { B . - 2 f l * i } .

LEMMA 2. In a projective-symmetric Wn (n > 2)

PROOF. We have

0 = Wa
bed;a = Ba

bei.a
n a_ !"" ' " n _ i

From (2.3) and (5.6), S^., = 0, and we see that

2
-"»[e;«]'

However from the contracted Bianchi Identity (2.4) for the space

O

»cd;o —

and the result of the lemma follows.
From lemma 2 and (5.7) we have

gai>Bie]-2Bglb<f>e] = 0,

and after contraction

(5.8) (n-\){B>c-HeB) = 0.

Referring to equation (5.7) we deduce that Bab.e = 0, and therefore for a Wn
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THEOREM 4. Every projective-symmetric Wn is degenerate.
We also remark that if B ^ 0 in (5.3) then <f>e is necessarily a gradient:

THEOREM 5. The "scalar curvature" B of a projective-symmetric Wn

which is not a Riemannian space is necessarily zero.
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