PROJEGTIVE-SYMMETRIC SPACES

R. F. REYNOLDS and A. H. THOMPSON

(Received 14 April 1965)

Introduction

Gy. Soos [1] and B. Gupta [2] have discussed the properties of Riemannian spaces $V_{n}(n>2)$ in which the first covariant derivative of Weyl's projective curvature tensor is everywhere zero; such spaces they call Projective-Symmetric spaces. In this paper we wish to point out that all Riemannian spaces with this property are symmetric in the sense of Cartan [3]; that is the first covariant derivative of the Riemann curvature tensor of the space vanishes. Further sections are devoted to a discussion of projective-symmetric affine spaces A_{n} with symmetric affine connexion. Throughout, the geometrical quantities discussed will be as defined by Eisenhart [4] and [5].

1. Projective-symmetric Riemannian spaces

For a V_{n}, Weyl's projective curvature tensor $W_{b c d}^{a}$ is

$$
W_{b c d}^{a}=R_{b c d}^{a}-\frac{2}{n-1}\left\{\delta_{[d}^{a} R_{c] b}\right\},
$$

where $R^{a}{ }_{b c a}$ is the curvature tensor, and $R_{b c}=R^{a}{ }_{b c a}$ the Ricci tensor, of the space. The V_{n} is a projective-symmetric space if and only if

$$
\begin{equation*}
W_{b c a ; e}^{a}=0 . \tag{1.1}
\end{equation*}
$$

We define the tensor $U^{a}{ }_{d}$ by

$$
U^{a}{ }_{d}=g^{b c} W_{b c a}^{a}=\frac{n}{n-1}\left\{R_{d}^{a}-\frac{1}{n} R \delta^{a}{ }_{d}\right\},
$$

where $R=R^{a}{ }_{a}$, and from (1.1) it follows that if the space is projectivesymmetric, then

For $n>2$, equation (1.2) and the twice-contracted Bianchi Identity $R_{b ; a}^{a}=\frac{1}{2} R_{, b}$ implies

$$
\begin{equation*}
U_{a, e}^{a}=0 . \tag{1.2}
\end{equation*}
$$

$$
R=\text { constant }
$$

and thus we have $R^{a}{ }_{b ; \theta}=0$. With (1.1) this gives the result

$$
0=W_{b c a ; b}^{a} \Leftrightarrow R_{b c d ; e}^{a}=0
$$

from which follows:
Theorem 1. A Riemannian space $V_{n}(n>2)$ is a projective-symmetric space if and only if it is symmetric in the sense of Cartan [3].

For $n=2, W^{a}{ }_{b c d}$ is identically zero and (1.1) is a degenerate condition in a V_{2}. We remark however that a V_{2} is a symmetric space if and only if it has constant scalar curvature R.

The results of Gupta [2] follow immediately since they are trivially true for symmetric spaces. The paper of Soos [2] contains theorems for projective-symmetric spaces which are generalisations of results found by Sinjukow [6] for symmetric spaces.

2. Affine spaces with symmetric connexion

For the remainder of this paper we consider the applicability of the preceding theorem in an Affine space with symmetric connexion. Such a space we will denote by A_{n}, its connexion by $\Gamma^{a}{ }_{b c}$, and covariant differentiation with respect to this connexion by ";".

The curvature tensor of A_{n} is defined

$$
\begin{equation*}
B_{b c d}^{a}=2 \Gamma_{b[a, c]}^{a}+2 \Gamma_{b[d}^{h} \Gamma_{c] h}^{a} \tag{2.1}
\end{equation*}
$$

for which the identities

$$
\begin{equation*}
B_{b(c d)}^{a}=B_{[b c d]}^{a}=0, \tag{2.2}
\end{equation*}
$$

and Bianchi's identity

$$
\begin{equation*}
B_{b[c d ; e]}^{a}=0 \tag{2.3}
\end{equation*}
$$

hold. The analogue of the Ricci tensor for an A_{n} is $B_{b c}=B_{b c a}^{a}$, but in this case it is not necessarily symmetric; it follows from (2.2) that

$$
\begin{equation*}
S_{c d}=-2 B_{[c d]}, \tag{2.4}
\end{equation*}
$$

where $S_{c d}=B^{a}{ }_{a c d}$. From (2.3) we have also

$$
\begin{align*}
S_{[c d ; e]} & =0 \tag{2.5}\\
B_{b c d ; a}^{a} & =2 B_{b[c ; d]}
\end{align*}
$$

Weyl's projective curvature tensor for an A_{n} is

$$
\begin{equation*}
W_{b c d}^{a}=B_{b c d}^{a}-\frac{1}{n+1} \delta_{b}^{a} S_{c d}-\frac{2}{n-1} B_{b[o} \delta^{a}{ }_{d]}-\frac{2}{n^{2}-1} S_{b[c} \delta_{d]}^{a} \tag{2.6}
\end{equation*}
$$

This tensor is invariant for projective transformations of the space and its vanishing implies that the A_{n} has the same paths as flat space [5]. By a projective-symmetric affine space we will mean an $A_{n}(n>2)$ such that

$$
\begin{equation*}
W_{b c d ; e}^{a}=0 \tag{2.7}
\end{equation*}
$$

throughout; an A_{n} is symmetric [3] if and only if

$$
\begin{equation*}
B_{b c d ; e}^{a}=0, \tag{2.8}
\end{equation*}
$$

at all points.
Equation (2.8) implies that every symmetric A_{n} is a projectivesymmetric A_{n}. Such projective-symmetric spaces we will call degenerate, and from Theorem 1 we see that all projective-symmetric Riemannian spaces are degenerate in this sense. We will show that this is not true for a general A_{n} and will consider its validity in relation to certain sub-classes of Affine spaces.

3. A non-degenerate projective-symmetric $\boldsymbol{A}_{\boldsymbol{n}}$

Consider the A_{n} with connexion coefficients

$$
\begin{equation*}
\Gamma_{b c}^{a}=2 \delta^{a}{ }_{(b} \psi_{c)} \tag{3.1}
\end{equation*}
$$

in a coordinate system $\left\{x^{a}\right\}$ such that

$$
\frac{\partial}{\partial x^{a}} \psi_{c}=0
$$

The latter condition is expressed covariantly as

$$
\begin{equation*}
\psi_{c ; d}+2 \psi_{c} \psi_{d}=0 \tag{3.2}
\end{equation*}
$$

The A_{n} is projectively related to flat space; its projective curvature tensor vanishes and therefore it is a projective-symmetric space. From (2.1) we have for this A_{n}

$$
B_{b c d}^{a}=2 \psi_{b} \delta_{(c}^{a} \psi_{d)}
$$

and using (3.2)

$$
B_{b c d ; e}^{a}=-4 \psi_{e} B_{b c d}^{a}
$$

For $\psi_{e} \neq 0$, the curvature tensor of the space is non-zero and we have the result:

Theorem 2. There exist projective-symmetric A_{n} 's which are nondegenerate.

4. The decomposable \boldsymbol{A}_{n}

If two spaces A_{m} and A_{n-m} are given with coordinates x^{α} : $(\alpha, \beta, \gamma=1,2, \cdots, m)$ and $x^{A}:(A, B, C=m+1, \cdots, n)$ and the connexions $\Gamma^{\alpha}{ }_{\beta \gamma}$ and $\Gamma^{A}{ }_{B C}$, then the A_{n} with coordinates $x^{a}:(a, b, c,=1,2, \cdots, n)$ and connexion $\Gamma_{b o}^{a} \equiv\left\{\Gamma^{a}{ }_{\beta \gamma}, \Gamma^{A}{ }_{B C}\right\}$, is called the product of A_{m} and A_{n-m}. An A_{n} that is a product space is said to be decomposable. A geometric object in a decomposable A_{n} is decomposable if and only if its components with respect to the special coordinates are always zero when they have indices from both ranges, and the components belonging to the subspace $A_{n}\left(A_{n-m}\right)$ are functions of $x^{\alpha}\left(x^{A}\right)$ only. In a decomposable $A_{n}, B^{a}{ }_{b c d}$, $B_{b c}$ and their covariant derivatives are decomposable; $W^{a}{ }_{b c d}$ and $W^{a}{ }_{b c a}{ }^{a}$; are not in general decomposable.

Theorem 3. A projective-symmetric A_{n} which is decomposable is necessarily degenerate.

We assume that $A_{n} \equiv\left\{A_{m} \times A_{n-m}\right\}$ where indices $\alpha, \beta, \gamma=1 \cdots m$ relate to A_{m}, and $A, B, C=m+1, \cdots n$ relate to A_{n-m}. From the definition of the projective-curvature tensor we have for the decomposable A_{n}

$$
\begin{equation*}
W^{\alpha}{ }_{\beta C D}=-\frac{1}{n+1} \delta^{\alpha}{ }_{\beta} S_{C D}, \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
W^{a}{ }_{B \gamma D}=\frac{1}{n-1} \delta^{\alpha}{ }_{\gamma}\left\{B_{B D}+\frac{1}{n+1} S_{B D}\right\} . \tag{4.2}
\end{equation*}
$$

The assumption that A_{n} is a projective-symmetric space gives with (3.1)
and therefore in (3.2)

$$
S_{C D ; E}=0,
$$

$$
B_{B D ; E}=0 .
$$

Similarly we have

$$
B_{\beta \delta ; \varepsilon}=0,
$$

and since $B_{b d ;}$ is a decomposable tensor of the A_{n} it follows that

$$
B_{b d ; e}=0 .
$$

With the above, the differentiation of (2.5) gives

$$
0=W_{b c d ; \theta}^{a}=B_{b c c_{;} \theta}^{a}
$$

and the decomposable A_{n} is a symmetric space.

5. The projective-symmetric $\boldsymbol{W}_{\boldsymbol{n}}$

An A_{n} in which there exists a symmetric two index tensor $g_{a b}$ of rank n such that

$$
\begin{equation*}
g_{a b ; c}=-2 \phi_{c} g_{a b} \tag{5.1}
\end{equation*}
$$

for some covariant vector ϕ_{θ} is called a W_{n} and was first discussed by Weyl [7]. Define the contravariant tensor $g^{a b}$ by $g^{a b} g_{b c}=\delta^{a}{ }_{\text {, }}$, then from (4.1)

$$
\begin{equation*}
g_{; 0}^{a b}=2 \phi_{c} g^{a b} \tag{5.1}
\end{equation*}
$$

We can use $g_{a b}\left(g^{a b}\right)$ to define a correspondence between covariant and contravariant quantities in A_{n}; in fact if ϕ_{c} is a gradient vector $\phi_{, 0}$ the W_{n} is a Riemannian space V_{n} with metric tensor $\bar{g}_{a b}=e^{2 \phi} g_{a b}$.

With $W_{a b c d}=g_{a \theta} W^{b}{ }_{b c d}$ and $B_{a b c d}=g_{a s} B_{b c d}{ }^{b}$, we define

$$
\begin{equation*}
T_{a d}=g^{b c} W_{a b c d} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{a d}=g^{b c} B_{a b c d} \tag{5.3}
\end{equation*}
$$

From the Ricci identity applied to $g_{a b}$, and the use of (5.1) and (5.1a) we have

$$
B_{(a b) c d}=-2 g_{a b} \phi_{[c ; d]}
$$

which yields after contraction

$$
Q_{a d}=B_{a d}-4 \phi_{[a ; d]}
$$

and

$$
S_{c d}=-2 n \phi_{[c ; d]}
$$

We extract the symmetric and anti-symmetric parts of these equations to obtain

$$
\begin{align*}
& Q_{(a d)}=B_{(a d)} \\
& B_{[a d]}=n \phi_{[a ; d]} \tag{5.4}\\
& Q_{[a d]}=(n-4) \phi_{[a ; d]} .
\end{align*}
$$

With equation (5.2), the definition of the projective curvature tensor gives

$$
T_{a b}=Q_{a b}-\frac{n-2}{n^{2}-1} S_{a b}+\frac{1}{n-1}\left\{B_{a b}-B g_{a b}\right\}
$$

where $B=g^{b c} B_{b c}=g^{b c} Q_{b c}$. Frequent use of the relations (2.4) and (5.4) gives the decomposition

$$
\begin{align*}
& T_{(a b)}=\frac{n}{n-1}\left\{B_{(a b)}-\frac{1}{n} g_{a b} B\right\}, \\
& T_{[a b]}=\frac{n^{2}-4}{n(n-1)} B_{[a b]} . \tag{5.5}
\end{align*}
$$

Lemma 1. In a projective-symmetric $W_{n}(n>2)$,

$$
T_{a b ; c}=0
$$

Proof. $T_{a b ; c}=g_{a a g} g^{\circ f} W_{a f b ; c}+g_{a d ; c} T^{d}{ }_{b}+g^{e f ;} ;{ }^{6} W_{a e f b}$. From (5.1) and (5.1a) the sum of the second and third terms on the right hand side of the above equation is zero. Hence

$$
T_{a b ; c}=g_{a d} g^{a f} W_{a f b ; c}^{a}
$$

which vanishes if W_{n} is projective-symmetric. Q.E.D.
Lemma 1 applied to the second equation of (5.5) gives

$$
\begin{equation*}
B_{[a b] ; c}=\mathbf{0}, \tag{5.6}
\end{equation*}
$$

and with (5.6) in the first equation of (5.5)

$$
\begin{equation*}
B_{a b ; c}=\frac{1}{n} g_{a b}\left\{B_{, 0}-2 B \phi_{o}\right\} . \tag{5.7}
\end{equation*}
$$

Lemma 2. In a projective-symmetric $W_{n}(n>2)$

$$
B_{a[b ; c]}=0 .
$$

Proof. We have

$$
0=W_{b c d ; a}^{a}=B_{b e d ; a}^{a}-\frac{n-2}{n^{2}-1} S_{c a ; b}-\frac{2}{n-1} B_{b[; ; d]} .
$$

From (2.3) and (5.6), $S_{o d ;}=0$, and we see that

$$
B_{b c d ; a}^{a}=\frac{2}{n-1} B_{b[0 ; d]} .
$$

However from the contracted Bianchi Identity (2.4) for the space

$$
B_{b c a ; a}^{a}=2 B_{b[6 ; a]},
$$

and the result of the lemma follows.
From lemma 2 and (5.7) we have

$$
g_{a[b} B_{, c]}-2 B g_{[b} \phi_{c]}=0,
$$

and after contraction

$$
\begin{equation*}
(n-1)\left\{B{ }_{, \mathrm{c}}-2 \phi_{\mathrm{c}} B\right\}=0 . \tag{5.8}
\end{equation*}
$$

Referring to equation (5.7) we deduce that $B_{a b ; c}=0$, and therefore for a W_{n}

$$
0=W_{b c a ; \theta}^{a} \leftrightarrow B_{b c a ; \theta}^{a}=0 .
$$

Theorem 4. Every projective-symmetric W_{n} is degenerate.
We also remark that if $B \neq 0$ in (5.3) then ϕ_{c} is necessarily a gradient:
Theorem 5. The "scalar curvature" B of a projective-symmetric W_{n} which is not a Riemannian space is necessarily zero.

References

[1] Gy. Soos, 'Ueber die geodaetischen Abbildung von Riemannsche Raeumen auf projectivsymmetrische Riemannsche Raeume', Acta Math. Acad. Sci. Hung., 9 (1958), 349-361.
[2] B. Gupta, 'On Projective-Symmetric Spaces', J. Austr. Math. Soc., 4 (1964), 113-121.
[3] J. A. Schouten, Ricci calculus, 2nd Ed., Springer-Verlag, Berlin (1954), 163.
[4] L. P. Eisenhart, Riemannian geometry, Princeton U. Press, Princeton (1926).
[5] L. P. Eisenhart, Non-Riemannian geometry, Amer. Math. Soc., New York (1927).
[6] N. S. Sinjukow, 'On the geodesic correspondence of a Riemannian space with a symmetric space' (Russian) D. A. N. (U.S.S.R.), 98 (1954), 21-23.
[7] H. Weyl, 'Reine infinitesimal Geometrie', Math. Zeitschrift, 2 (1918), 384-411.
Department of Mathematics
University of Pittsburgh
Pittsburgh, Pennsylvania

