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PARTIAL SUMS 
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1. Introduction. Our aim in this paper is to prove inequalities of the form 

n / f \/3 / n \a+0 

(i) Z *AE *J ^^«(«,/3)lZ *«) -
or 

(2) S * A £ *J èfl»(a,|8)(Z Xi) . 

for all real values of the parameters a, ft and all non-negative (in some cases 
all positive) xt. Obviously, an is finite in all cases, and we shall show that An 

is finite if a and a + /3 are both non-negative. In all cases, we obtain sharp 
values of the constants an, An (when finite), as well as bounds for these con­
stants, and their behaviour as n —> oo. In case a < 0, we naturally consider 
only positive xiy otherwise the xt may be non-negative. Although we always 
write %i ̂  0 in the following, this should be read as xt > 0 in case a < 0; 
similar remarks apply to the parameter / introduced below. 

We shall use the sequential optimization technique of dynamic programming 
to obtain our results. The analysis, as wrell as the results, depend on the region 
of the plane in which the point (a, /3) lies. Figure 1 shows the nine cases which 
we consider in separate sections, although the values of an and An are not the 
same throughout each region or on each boundary line. 

In the last section, we indicate how the inequalities can be applied to obtain 
discrete analogues of integral inequalities of Opial (2) and Yang (4). One 
such inequality was proved recently by Wong (3), and more extensive results 
have been obtained by Lee (1). 

2. T h e recursion relations. For each integer k ^ 1 and each real y ^ 0 
(or y > 0 if a + 0 < 0), set 

(3) Fk(y) = sup X) Xi\ X *i) • 

Then Fx(y) = ya+^ and 

(4) Fk+1(y) = sup {*Y + Fk(y - *)} , * = 1, 2 , . . . . 
0=x=y 
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FIGURE 1 

I t is convenient to make the substitution x = ty, 0 ^ t ^ 1, so that 

(5) Fh+1(y) = sup {ytt+r + Fk[(l - t)y]\ = sup Gk+1(t). 

We note that if sup is replaced by inf throughout, then (4) and (5) remain 
valid. For clarity we shall write fk, gk in place of Fk, Gk when dealing with 
infima; jfi(3/) = ya+P is also valid. 

We have that 

(6) G2{i) = y«+e{ta + (1 - O ^ J = g2(t). 

Dealing with suprema for now, note that if a è 0 and a + /3 ^ 0, then 

(7) F2(y) = /^(/2)r+^ 

where 

(8) /*2fe) = sup{F + (1 - t)«+e} = sup A2(0, 

is attained for some t2 G [0, 1]. I t also follows that A2(ay 0) = h2(t2). In fact, 
it is clear that we have 

(9) An(a, 0 ) = hn(tn) for » ^ 1, 
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where the functions hn are defined recursively by 

(10) \ h ^ m h 

(hn{t) =f + A ^ i ^ O (1 - J)""", n ^ 2, 

and tn is any number (0 ̂  /n ^ 1) such that 

hn(tn) = sup An(2). 

In case 0 < tn < 1, we note that we necessarily have that hn''(tn) = 0, so 
that tn must satisfy the equation 

(ii) i(/)sr
1(i-o'-M = ^±-Vi(U ^ 2 . 

a: 
For convenience we define /1 = 1, and list below certain relations based on 
(10) and (11) which we shall use repeatedly: 

(12) hn
f(t) = a/«-i - (a + ^)^_1(/w_1)(l - /)«+*-!; 

(13) hn"{t) = a{a - I)/*"2 + (a + 0)(a + fi - l ^ f e - i H l - / ) ^ " 2 ; 

(14) k'(t) = t«~2(l - 0~(a+/3)(« - 1 + (3t); 

(15) hn(tn) = 2 j L ^ s /n«-i i f ^/(fj = 0 (0 < tn < 1) ; 
a -+- p 

(16) W O = /v-i(4-i) - — - (1 - 4 ) a ^ _ 1 if K'(h) = 0 (0 < tn < 1). 

The same results apply with sup replaced by inf throughout, and we shall 
use the same notation (that is, hn) for the successive functions in this case also. 
Here, of course, we have that an(a, 13) = hn(tn), where the hn are defined by 
(10) and hn(tn) = inf hn(t), for all a and (3. 

3. a(a + /3) = 0 . Suppose first that a = 0, so that 

c2(t) = y { i + (1-0^} = *2(0. 

If p > 0, then supG2(0 = 2y* and inf g2(0 = yp, and it is clear that 
sup Gn(t) = nyP, inf gn(t) = y& for each n ^ 1. Hence, 

(17) o»(0, 0) = 1, An(0, P) = n ifp > 0. 

If jS < 0, we obtain inf gn{t) = ny13, sup G„(0 = °° ; the latter is easily seen 
directly from (1) by letting x± —» 0 + . Hence, 

(18) a»(0,0) = », i4»(0,/3) = 0 0 t//3 < 0. 

Obviously, an(0, 0) = ^w(0, 0) = n. 
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Now suppose that a + /3 = 0. From (10) we see at once that if a > 0, 
sup hn(t) = n and inf hn(t) = 1 for each n ^ 1, so that 

(19) an(a, —a) = 1, An(a, —a) = n if a > 0. 

Similarly, we obtain 

(20) an(a, —a) = n, An(a, —a) = oo if a < 0; 

again, the latter can be seen directly from (1) (for n ^ 2) by taking xn > 0 
and letting Xi —> 0 + . 

4. a(a + j3) < 0. I t is clear from (10) that sup hn(t) = oo in either of 
these cases (if w ^ 2). On the other hand, by (12), hn

r has the same sign on 
(0, 1) in either of the cases. I t follows that 

(21) an(a, 13) = 1, An(a, 0) = oo if a(a + 0) < 0. 

The latter result (for n ^ 2) can be seen by fixing xi > 0 and letting xn —* oo 
or 0 + in (1) according as a > 0 or a < 0. 

5. a > 1, a + 13 > 1. In this case, ft»"(0 > 0 for 0 < t < 1 by (13), so that 
each hn is convex. I t follows that sup hn(t) = 1 for all n ^ 1. The same result 
holds even if a = 1 (0 > 0) ; if, in addition, 0 = 0, then hn(t) = 1. Hence, 

( 2 2 ) U. (a ,0) = 1 ifa^lta + Phh 

} fl»(l,0) = 1. 

To deal with infima, we note first that k (0) = 0, & (1 — ) = oo , and k' (/) > 0 
for 0 < t < 1. Hence, each of equations (11) has a unique root 4 6 (0, 1), and 
hn'(tn) — 0. 77ms, 

(23) a»(a,]8) = An(0 # a > l , a + 0 > I, 

severe the functions hn are defined by equations (10), and 4 is the unique solution 
on (0, 1) of equation (11). From (10) it is obvious that since hn(0) = hn-i(tn-i), 
we have that 

hn(tn) < /v_i(/w_i) < . . . < h2(t2) ^ 2"«(1 + 2-0) < 1 = ftxfa). 

It then follows from the increasing character of k on (0, 1) that the sequence 
\tn) is a strictly decreasing sequence of positive numbers. 

Although we have upper bounds for an(a, 13), in the context of (2) we are 
more concerned with lower bounds. To this end, we note by (16) that 

hn(tn) > hn^(tn^)[l - ^ 4 J ( l - Q"^-1 > fl-'t.U(l - (n)a+"~\ 

since /3 > 1 — a and a > 1. On the other hand, k is strictly increasing so that, 
if t = t is the unique solution of k(t) = (a + P)/a, we must have that 
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0 < tn < t, and hence hn(tn) > orlhn-\{tn-i) (1 — £)a+^_1. Consequently, we 
obtain the lower bound 

(24) hn(tn) > {a-i(l - O ^ - 1 } * ifn^2,a>l,a + P>l. 

We shall also show that lim tn = lim hn(tn) = 0. To prove this, we note first 
that lim tn = a exists, where 1 > a ^ 0. Hence, by (15), 

r 7 (i \ a +_Pa a-i 
a -f- p 

and from (16), a = (a + /3a) (1 — a)a+/*_1, if a 9e 0. However, denoting the 
right side of this latter equation by g (a), we have that g (0) = a, g (I) = 0, and 
g'(a) < 0 for 0 ^ a < 1. I t follows that a = 0, and hence that lim hn(tn) = 0. 

6. a < 0, a + /3 < 0. As in the preceding section, hn is convex. Now, of 
course, hn(Q+) = hn{\ — ) = 00 for ?z > 1, so that 

(25) i4n(a, j8) = 00 if a < 0, a + 0 < 0. 

The analysis for infima proceeds precisely as in § 5 except that now k decreases 
steadily on (0, 1] from 00 to 0. Hence, 

(26) an(a, p) = /*n-i(4-i) if a < 0, a + /3 < 0, 

where the hn and tn are defined by equations (10) and (11). From (10) we see that 
hn(tn) > 1 + hn-i(tn-i) for all n ^ 2, so that 

(27) On(atp) > n ifn^2,a<0,a + l3<0. 

Moreover, since k is decreasing, it follows from (11) that {tn} is a strictly 
decreasing sequence; by using (15) and (27) we see that lim tn = 0. 

7. 0 < a < 1, 0 < a + 0 < 1. By (13), /*/'(/) < 0 for 0 < * < 1, so that 
— &w is strictly convex, and inf hn(t) = 1 for all n ^ 1. Clearly, the same 
result holds if either a = 1 or a + /3 = 1. Hence, 

(28) OnCa, j8) = 1 # 0 < a ^ l , 0 < a + / 3 g l . 

In the present case, &'(/) < 0 for 0 < t < 1 and k decreases on (0, 1] from 
00 to 0. Hence, each of equations (11) has a unique root tn £ (0, 1) with 
hn(tn) = 0. I t follows that 

(29) An(a, 0) = hn(tn) if0<a<l,0<a + (3<l, 

where the functions hn are defined recursively by equations (10), and tn is the unique 
solution on (0, 1) of equation (11). From (10) we see that 

1 < h2(t2) < . . . < K-dtn-i) = A»(0) < hn(tn) < 1 + A^ifo- i ) . 

Therefore, 

(30) 1 < hn(tn) <n if n^2,0<a<l,0<a + P<l. 
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Since k is decreasing, it follows that the sequence {tn) is again a strictly 
decreasing sequence. If a = lim tn, then 1 > a ^ 0. If a > 0, then by (15), 

limAn(^) = ——r- a , 

and by (16), a(l — a)1~(a+^) = a + fia which is impossible since 

(1 - a ) 1 - ^ ) <a + j3a 

for 0 < a + ft < 1, and 0 < a < 1. I t follows that lim tn = 0, and hence 
lim hn{tn) = œ by (15). 

8. a = 1, a + /3 > 0. If 0 > 0, then the analysis of § 5 remains unchanged 
except that now k increases from 1 to » on [0, 1), and we must verify that 
each of equations (11) has a root on (0, 1). This will be the case if and only if 

(31) (1 + p)hn^(tn^) > 1 forn^2. 

We shall prove (31) by induction, incidentally obtaining a better lower bound 
than would be obtained by setting a = 1 in (24). Now, (31) is certainly true 
if n = 2. Moreover, if it is true for any n = k ^ 2, then tk is well-defined, and 
in fact, from (11) with a = 1, 

4 = 1 — ntjc-r11^ where mk-i = (1 + i8)^_i(4-i). 

Using (16), we obtain 

hk(h) = (1 + £/*)&*_!(k_i) • m^- r 1 = 1 + p(tk - lJAjb-i^-Owt-r1 , 

or 

(32) hk(tk) = 1 - 0/{ (1 + 0 ) i % ! f e - i ) } 1 ^ . 

Thus, (1 + j8)ft*(0 > 1 if and only if 0 + w*"1^ > (1 + P)tnr1/fi, that is, 
if and only if 

PmkW+ 1 > 0 + 1; 

the latter inequality is, however, true by our induction assumption since 
P > 0. Hence, the result (23) of § 5 w also valid when a = 1, /5 > 0. In this case, 
the an(a,/3) = Aw(0 may also be computed directly from the recursion 
relation (32), and satisfy the inequality (31). By proceeding as in § 5, it is 
easy to verify that lim tn = 0 and lim hn(tn) = (1 + /3)-1. 

If a = 1 and 0 < a + /3 < 1, that is, - 1 < 13 < 0, the analysis of § 7 
remains unchanged except that now k decreases from 1 to 0 on [0, 1]. Again, 
we must verify that each of equations (1) has a root on (0, 1). This will be 
the case if and only if 

(33) 0 < (1 + /3)^_x(4-i) < 1 forn = 2. 

The proof of this by induction is precisely the same as before, so that the result 
(29) of § 7 is also valid if a = 1, — 1 < 0 < 0. The recursion relations (32) 
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are also valid in this case, and the results lim tn — 0, lim hn(tn) = (1 + 0 ) - 1 

follow by setting a = 1 in § 7. 

9. 0 < a < 1, a + /3 > 1. In this case, we note that hn(0) = hn-i(tn-i) > 0 
and hn(l) = 1, by (10). Moreover, from (12), hn'(0+) = + œ and ftn'(l) = 
a > 0 so that hn' has at least two zeros on (0, 1) provided hn-i(tn-i) ^ 1. The 
latter is clearly the case if n = 2, or for all w when dealing with suprema. To 
see that hn

r has precisely two zeros on (0, 1) in such circumstances, we note 
that k(0+) = * ( 1 - ) = +oo from (11) and k'(t) = 0 if and only if 
t = a = (1 — a)/j8 by (14). Hence, k is decreasing on (0, a] and increasing 
on [a, 1). I t follows that hn' has at most two zeros, hence precisely two zeros on 
(0, 1) if either n = 2 or when dealing with suprema. We have also proved that 

nA\ h(n\ ft ^ a+ & 
( 3 4 ) k{a) " (1 - aY~a(a + p - i r + ^ T < a " 
Denoting the zeros of hn

f by 4, tn', where 0 < tn < a < tn
r < 1, we obviously 

have that sup/^(/) = hn(tn). Hence, 

(35) An(a, 13) = hn(tn) if0<a<l,a + P>l, 

where hn(tn) is defined by equations (10) and (11). In this case, however, equation 
(11) has two roots on (0, 1), and tn is the smaller of these two roots. Moreover, it 
follows from (10) that 

(36) 1 < h2(t2) < . . . < Kik) < n. 

Essentially, the same analysis as in § 7 shows that in the present case we must 
also have that lim tn = 0 and lim hn(tn) = oo. 

I t is somewhat more difficult to deal with the successive infima. The reason 
for this can already be seen when n = 3, where we have that /^(O) = h2{t2) < 
1 = hz(X), and h% (0+) = + o o , ^ 3

/ ( l ) = a. I t is not obvious that hz has 
any zeros on (0, 1), or even if it has, whether inf hz{t) occurs at such a zero, 
or for / = 0. Nevertheless, we shall prove by induction that 

fn(y) = K(tn')y*f>, 
where 

\b < tn' < 1, hn'(tn') = 0, 

\k(a)(t^)1-a< (a + (3tn')/a, 

and b is the unique root on (0, 1) of 

(38) s(t) = (a + # ) ( 1 - 0a+/3_1 = a. 

Note first that 

s(0) = a, s(l) = 0, and s'(t) = (a + p) (1 - /) a +^2{(l - a) - 0/}. 

Hence, 5 is increasing on [0, a] and decreasing on [a, 1], so that (38) has a 
unique root b G (a, 1). Now, if n — 1, then the conditions (37) are satisfied, 

(37) U , - W W M - « 
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by (34), since we may take / / = 1 — e for sufficiently small e > 0. If the result 
is valid for any n ^ 1, then 

Ui(y) = r + / 3 inf hn+1(t) = y«+e'ml{t« + hn(tn')(l - t)~™}. 

We shall prove that hn+1
f (b) < 0. Since 

W O ) = Kitn) Û hn(0) = 1 = A*flU), 

and hn+i(0+) = °°, An+1'(l) = a > 0, it will follow from the character of & 
on (0, 1) that hn+i has precisely two zeros on (0, 1), say tn+1 and tn+\ , and that 
0 < 4+i < a < b < tn+1' < 1. We have that hn+1

f (b) < 0 if and only if 

ab^ < (a + 0 ) ^ ( 4 ' ) (1 - bY+t-^a < (a + P)hn(tn
f)V-«a/{a + 06), 

since b satisfies (38). Hence, hn+± (b) < 0 if and only if 

(a + jMOfc""1 < (a + $)hn{tn
f) = (a + /%') fe')""1 

by (15). The latter inequality is valid by the first of the induction assumptions 
(30), since the function r(t) = (a + /3/)^_1 is strictly increasing on [a, 1] and 
a < b < tn < 1. 

Denoting the two zeros of hn+i by 4+i and 4+ / as above, it follows that 
inf hn+i(t) = hn+i(tn+i) provided we can show that 

hn+1(tn+i') < An+i(0) = hn(tn). 

By (16), this is the case if and only if 

(a + /34+1 ')(l " W / ) ^ " 1 < « , 

and this follows from our remarks concerning the function s since we have 
established that b < tn+i < 1. 

In order to complete the induction, we shall show that if 

y(t) = 1 + {fi/a)t - k(a)fl-°, 

then y it) > 0 for a ^ t ^ 1, in particular for / = 4+i'- To prove this, we 
note first that y {I) = (a + 0)/a — k(a) > 0 by (34). Moreover, 

= i _ / j y*-1 

a \a + P - 1/ 

which is positive if and only if a$a+P~l < (a + ft — l ) a +^_ 1 . The latter inequality 
is easily proved by setting a + ft = x and showing that z(a) = a(x — a)x~l 

is strictly increasing on 0 S oc S 1 for each x > 1. Thus, y (a) > 0 and 
y( l ) > 0. Moreover, y (0 is positive for all t > 0, and 

y (/) = 0 <-> /« = a ( l - a)k(a)/p. 
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Since a ( l — a)k(a)$-1 < aa is equivalent to a^a+^~l < (a + ft — l)***-1, it 
follows that y{t) > 0 for t £ [a, 1]. 

We have shown that 

(39) an(a, P) = hn{tn
f) if O < a < l , a + 0 > 1 . 

Here, the functions hn are defined by equations (10), and each of equations (11) 
has two roots on (0, 1), tn

f being the larger of these two roots. 
Since a = (1 — a)/(3 < b < tn

r < 1 for all n, while {hn(tn')} is strictly 
decreasing and the function k is increasing on [a, 1), it follows that the 
sequence {tn') is also strictly decreasing. Moreover, since r is strictly increasing 
on [a, 1] we have that 

(40) hn{tn') > ^ r Ç ^ Î™ a11 n ^ L 

a -f- p 
Writing lim tn = t, we have that t ^ 6. Using (15), (16), and the decreasing 
character of the function 5 on [b, 1], it is easily seen that t = b, and 

(41) Yimhn(tn')=°^-^ba-\ 
a -|- p 

10. a > l , 0 < a + / 3 < l . This case is similar to that of the preceding 
section, but roughly with the roles of t and 1 — t interchanged. Hence, we shall 
deal with this case more briefly. We have that hn(0) = &n_i(/n_i) > 0, 
hn(l) = 1, hn'(0) = - (a + /3)^_!(4_!) < 0, and hn

f(l-) = - « . On the 
other hand, k is now increasing on [0, a] and decreasing on [a, 1] with 
k(0) = ife(l) = 0, where a = (1 - a)/p = (a - l ) / ( - / 3 ) , and 

/.ON Z,/„N ( - g y . « + g 
[a — i) (1 — a — pj a 

since /z2' has at least two, hence precisely two, zeros on (0, 1). Dealing with 
successive infima we obtain 

(43) On(a, 0) = hn(tn) if a > 1, 0 < a + 0 < 1, 

the numbers hn(tn) again being defined by equations (10) and (11). In this case, 
equation (11) has two roots on (0, 1) and tn is the smaller of these roots. The 
sequence {tn} is strictly decreasing and tn < a for n > 1. Moreover, it is clear 
that 1 > hi(ti) > . . . > hn(tn) > . . . . The analysis of § 5 again shows that 
lim tn = 0 and lim hn(tn) = 0. 

Denoting the successive suprema by hn(tn')y one may prove by induction 
that, in this case, we have that 

b <tn
f < 1, hn'iti) = 0, k(a)(tn'y-« > (a + fit*')/**, 

where b is again the unique root on (0, 1) of equation (38). The proof is 
essentially the same as before except that now the functions s, r, and y intro-
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duced in § 9 satisfy the following conditions: s is decreasing on [0, a] and 
increasing on [a, 1]; r is decreasing on [a, 1]; y{t) < 0 for / Ç [a, 1] (here the 
significant inequality is ( — /3)i-(«+0) < «(1 — a — /3)1-a~'3, which is valid for 
a > 1, 0 < a + 0 < 1). In this case we conclude that 

(44) i4n(a, P) = /U4 ' ) # a > 1, 0 < a + 0 < 1. 

For gacfe w ^ 2, /w' w /fte larger of the two roots of equation (11). The sequence 
\tn) is strictly decreasing with lim/„ = b, {hn(tn')) is strictly increasing, and 

(45) l i m ^ C O = 2 L ± i h « - \ 
« + P 

11. a + P = 1, a > 0. We have already dealt with the case 0 = 0 in (22), 
so that only the cases 0 < / 3 < l , 0 < a < l , and P < 0, a > 1 remain. We 
shall handle these cases simultaneously. For both, we note that hn(0) = 
hn-i(tn-i) and hn(l) = 1. However, hn is convex if a > 1, while —hn is convex 
if 0 < a < 1. I t follows at once that 

(46) An(a,(3) = l ifa>l,a + P = l, 

(47) an(a,p) = l if 0 < a < 1, a + P = 1. 

Moreover, from (11) and (14), k is increasing on [0, 1] from 0 to 1 if a > 1, 
while k decreases from +oo to I o n (0,1) ifO < a < 1. In both these cases, 
we can solve (11) explicitly for tn to obtain 

(48) tn = ( ^ - i f e - i ) ! 1 ^ i f » è 2, 

on noting that /zw_i(4-i) = inf Aw_i(0 < 1 if a > 1, while fen_i(£n_i) = 
sup hn-i(t) > 1 if 0 < a < 1. J^e £/ms Âaiœ J t o 

(49) fl»(a, P) = A»(0 # a > 1, a + 0 = 1, 

(50) i4n(a, 0) = *»&) # 0 < a < 1, a + P = 1, 

where the A n(0 are defined by equations (10) and (48). From (10) we see 
that {hn(tn)} is strictly decreasing if a > 1, and strictly increasing if 0 < a < 1 ; 
hence, {tn) is strictly decreasing in either case, by (48). Using (16) we easily 
obtain the bounds 

hn(tn) > oTn ifa>l,a + P=l, 

hn(tn) <oTn ifO < a < l , a + p = 1, 

and, by the usual argument, also obtain lim tn = 0, and 

l i m i n e ) = 0 if a > l , a + p = 1, 

lim hn(tn) = oo if 0 <a <l,a + p = 1. 

(51) 

(52) 

https://doi.org/10.4153/CJM-1969-022-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-022-1


232 PAUL R. BEESACK 

Using (48) and either (10) or (15), we see that the hn = hn{tn) are also given 
as the solution of the finite difference equation 

(53) yH = h 

From (53) we can show that if 0 < a < 1, a + /3 = 1, then 

(54) hn ^ 1 + (» - l)$aa,v ^n for n è 1, 

which is a better estimate than (51) for large n (or for all n if 0 < a < 3 - 1 / 3) . 

12. Application to other discrete inequalities. The discrete analogue of 
(an extension of) Opial's inequality which, as mentioned in the Introduction, 
was recently proved by Wong (3), may be stated in the following form. / / all 
%j ̂  0, and p ^ 1, then 

(55) t xi i x)v ^ ̂ ±-f ± xr. 
Somewhat earlier, Yang (4, Lemma 7) proved the following generalization 
of Opial's inequality. If y is absolutely continuous on [a, X] with y (a) = 0, 
then for p, q ^ 1, 

(56) T \y\'\y'\9dx ^ - f - (X - a)p f * \yTQ dx. 
J a P T" O J a 

Yang's proof of (56) is actually valid for all p ^ 0, q ^ 1. Opial's inequality 
is the special case of (56) obtained by setting a = 0, p = q = 1. Wong's 
result (55) is clearly the discrete analogue of (56) with q = 1. Recently, 
Lee (1) has obtained other discrete analogues of (56) involving both p andg. 

In order to obtain discrete analogues of (56) from the inequalities (1) and 
(2), we may make use of the following results: 

(57) tT1 Z x? ^ ( 2 Xi)7 ^ Ê *ty ifallxt ^ 0,0 ^ y ^ 1; 
2=1 V i=l / i = l 

(58) £ x? ^ ( È xt) è r?-1 JZ x? ifallxt ^ 0, y è l ; 

(59) 
/ n \y n 

( Z) Xi) g n7'1 X) X? ifallxt > 0, y < 0. 
\ Ï = I / t=i 

These results may be easily proved by the same methods used earlier, or by 
using Holder's inequality, or the convexity of xy if y > 1, or y < 0, or of 
- xy if 0 < 7 < 1. 

As a first example, if p + q ^ 1 and g e l , then using (22), (46), and (58), 
we have that 

(60) 
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When q = 1, the constant nv in (60) is larger than Wong's constant 
(n + l)p/(p + 1) in (55) for all p > 1 and sufficiently large n, and in fact, 
for all n ^ 1 if p = 1. However, (55) is false for p < 1, while (60) is still 
valid. Although Wong's result is sharp only for p = 1, (60) is never sharp since 
equality is attained in (1) under different conditions than in the right-hand 
part of (58). 

As a second example, if 0 < g < 1, 0 < /> + g < 1, then using (28), (29), 
(30), and (57) we have that 

(61) n^-1 £ xrq ^ Ê xt\ t , * ; ] ^ K(tn) Ê *iP+a <njl x?+q. 
i=l i=l \ j=l / i=\ i=l 

Again, these inequalities are not sharp, for the same reason as before. 
Another method of obtaining inequalities of the form (60) or (61) is to 

make use of the sharp special cases of such inequalities contained in (21), (46), 
(47), (49), and (50), which we rewrite as 

n n / i \ / 3 

(62) 2 « ^ E a^a[ S aj) if allat > 0, a < 0, a + 0 = 1, 
1=1 i=l \ j=l / 

n n / i \ / 3 n 

(63) Z di^T, a A Z a,) é *,(/») Z «< */0 < « < 1, a + 0 = 1, 
i=l i=l \ ;=1 / i= l 

(64) hn(Q £ a, £ J « A I J ^ t « i «/a > 1,« + 0 = 1. 
i = l z=l \ ;=1 / i= l 

Now, considering the left side of (60), we let at = Xip+Q\ therefore xt = a,i1/(p+Q) 

and xt
Q = aiQ/(p+Q\ whence, 

Y l/(p+ff) Z *A Z *J = Z «. 'M Z a,1' 
i= l \ j=l / i=l \ j=l 

Making use of (57)-(59) we have, for example, that 

Z *«'( Z *yY ^ Z a^+4 £ a , " ^ ) if 0 g p g 1 or p< 0, 
i = l \ j=l / i=l \ j=l / 

Z x,{ Z *,Y =S n»"1 Z «//(*+s)( Z a,"™) itpZl. 
i = l \ j = l / i=l \ j=l / 

Setting a = q/(p + q), P = p/(p + q), it now follows from (63) that 

(65) E xA É xX ^ hn(tn) è *; 
t = i \ j = i / t = i 

P+Q 

if p < 0, q < 0 or 0 ^ p S 1, q < 0. 
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Here, hn(tn) ^ 1 + (» - l)pqq/p(p + ff )-<*+»>* g, n by (54). Similarly, it 
follows from (64) that 

(66) £ x,\ Ê * ,Y ^ w"-1 £ x / + 8 î j n U + g < 0 . 
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