
THE SOLUTION OF CERTAIN SIMULTANEOUS PAIRS OF
DUAL INTEGRAL EQUATIONS!

by M. LOWENGRUB

(Received 27 April, 1967)

1. Introduction. In the analysis of mixed boundary value problems by Hankel transforms,
one often encounters dual integral equations of the form

I'
r
Jo

(yelj, (1.1)

(ye/2) , (1.2)

where It = (0, 1), I2 = (1, oo); wt(x), w2(x) are weight functions, \j/(x) is the unknown func-
tion, and f(y), g(y) are functions continuously differentiate on / t and /2 respectively. Many
successful attempts have been made to solve (1.1) and (1.2). These are all discussed in a recent
book by Sneddon [7]. As pointed out in a recent paper by Erdogan and Bahar [4], in mixed
boundary value problems of semi-infinite domains involving more than one unknown function
such as those arising in elastostatics, viscoelasticity, and electrostatics, the formulation will
lead to a system of simultaneous dual integral equations which is a generalization of (1.1) and
(1.2). These equations may be expressed as follows:

y ^ } (1.4)

with i = 1, 2, . . . ,«, where we use the notation

Jo

Erdogan and Bahar [4] solve (1.3) and (1.4) by reducing them to an infinite set of algebraic
equations, using a natural generalisation of the method developed by Tranter [9] for dual
integral equations. In this note, we pay particular attention to the cases which are of most
physical interest—namely wy(0 = t~2"a{J and vu(t) = t~nb{i, a,, and bxi being constants.

By using the Erdelyi-Kober operators of fractional integration described in Erdelyi
and Sneddon [3], we are able to solve the equations in a fairly straightforward manner. In
§§ 3 and 4, we show all the details for the cases of two and three sets of equations while in § 5
we outline the procedure for n pairs of simultaneous dual integral equations.
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Duke University, monitored by the Air Force Office of Scientific Research and in part by a National Science
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PAIRS OF DUAL INTEGRAL EQUATIONS 93

If we make the substitutions w,j(t) = t 2<*a,j, vtJ(t) = t 2^Z>,V, we find that equations (1.3)
and (1.4), assuming the validity of an interchange of order of summation and integration, may
be written in the form:

au Xm [r 2>/0; x] = M (x e /,), (1.5)

= g,(x) (xei2), (1.6)

with/ = 1, 2 , . . . , / j . Erdoganand Bahar [4] show that(1.5)and(1.6)maybe reduced to the pair
of equations

[ r (1.7)

(1.8)
where

<«') =

(1.9)

with (C(j) = C = AB 1, A = (a;,), B = (btJ), i,j = 1, 2 , . . . , n. Hence we shall only discuss the
solution to (1.7) and (1.8), as the solution to the pair (1.5), (1.6) follows immediately from (1.9).

It should be pointed out that the pair of simultaneous dual integral equations considered
by Westman [10], are a special case of (1.5), (1.6), namely that in which n = 2, /ij = v, = v + 2,
\x2 = v2 = v, al2 = a21 = a22 = bi2 = b22 = 1. His method involves a straightforward
generalization of the techniques used by Copson [2] and Lowengrub and Sneddon [5] to solve
dual integral equations.

2. The Erdelyi-Kober and modified Hankel operators. Throughout this note, we shall make
use of various operators of fractional integration whose properties are discussed in Erdelyi
and Sneddon [5]. If a > 0, tj > —$, we define the operator InA as follows:

- f (2.1)

7,i0 is the identity operator and, if — 1 < a < 0, we define Inx by the relation
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94 M. LOWENGRUB

Similarly, if a > 0, rj > — $, we define the operator KnA by the equation

(u2-x2y-1u-2'-2'+1f(u)du, (2.3)

while ^ > 0 is the identity operator and, for — 1 < a < 0, we define Knix by the relation

K<J(X) = Tk^^[\/u2~x2ru~2*~2n+lf(u)du]- {2A)

The modified operator of Hankel transforms is defined by the formula

S,J(x) = 2°x-° ^tl-'J2^a{xt)f{t)dt. (2.5)
Jo

Erdelyi and Sneddon [3] show that the following relations connecting these operators hold:

Aj + a,0 Sr,,tx ~ Sn,* + P ' (2-6)

(2.9)

, , / (2.10)

Sr,.ot Sn + x,p = ^ , t r + p • (2.H)

The inverse operators are given by
/-i _ r

(2.12)

In addition, we shall have occasion to use the following identity connecting S, I and K :

S<r,r = Sa+yz-p_yKa+x-pjIay (2.13)

3. Two pairs of dual equations. In this section, we shall consider the solution to the set of
equations

I cu ^(x)l = Pi(x) (x eI,), (3.1)

,.2fUx) = 0 (xel2), (3.2)
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Following the techniques of Copson [2] and Peters [6] for dual integral equations, we set

<t>i(x) = S4.Vl+p>i.(/,1_Vl)_a_fl/i1(x) + SiV2+pii(/J2_v:!)_a_/,/i2(x), (3.3)

<£2(x) = SiV2+piiill2.V2)-a.p h3(x), (3.4)

where hfac) = 0, xel2, i = 1, 2, 3.
From (2.13), it is clear that the representation (3.3) and (3.4) satisfies equation (3.2).

Substituting into the relations given by (3.1), we find that the case i = 1 yields

(xelj

If we choose h2 and h3 such that

Cnh2(x) + c12h3(x) = 0 (xe/,u/2), (3.5)

then it is clear that
1 ) , (3.6)

provided that c n # 0 .
Substitution of (3.3) and (3.4) into (3.1) for / = 2 yields the following relation:

Inversion of the preceding equation with the use of (3.6) and (2.7) yields

c2l h2(x) + c22h3(x) =

Thus we find that

h3(x) = -— ——• Iill2+Xf-i(fl2-y2)-a+i, p2(x)
C 2 2 C 1 1 ~ C 2 1 C 1 2

r n 7 - TC 2 2 C 1 1 ~ C 2 1 C12

provided that c22 c u — c21 c12 # 0, while A2(x) = — cfi 'c^ /i3(x). The solution for $ j and (/>2

is then given by the representations (3.3) and (3.4).

4. Three pairs of dual equations. We shall now discuss the solution to the set of dual
relations

S*,l-*.2/r0i(*) = O (xe/a), (4.2)

where / = 1, 2, 3, / t = (0, 1) and I2 = (1, oo).
F
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Using the methods described in § 3, we set

0 l (* ) = ^v,+p,i(/i i-v,)-ot-p' l l(x) + ^ V 2 + fl,i(M2-vj)-«-^'l2(:x) + S^V3 + pji.(^-V3)_a_fl/l3(x), (4.3)

<t>i(x) = SiV2+pj4( /12_V2)_a_p hA(x), (4.4)

<f>3(x) = SiVi+p<i(ll3.Vl).^fi hs(x), (4.5)

where ht(x) = 0, xel2, i = 1, 2, 3, 4, 5.
It is a simple matter (by use of (2.13)) to verify that (4.3)-(4.5) satisfy the relations (4.2).
Substituting (4.3) into (4.1), for i = 1, we obtain

3(x) + c13hj(x)} =/?2(x)

If we select h2(x), h3(x), K{x), hs(x) such that

(4.6)

we see that

(xe/i), (4.7)

provided that c n ^ 0.
In the like manner, we find that substitution of (4.3)-(4.5) into (4.1), for i = 2, yields, using

the properties (2.6)-(2.12),

/ , ) , (4.8)

where

F(x) = •«4M + a,-4(^2-v2)-(i + pP2( ; ' c )~ c 2 lS^ 2 - 0 I , -^ 2 _v 2 ) + a + ^ S i v i + W ( > , 1 + Vl)_a_^/l1(x), (4.9)

while substitution into (4.1), for i = 3, gives us the relation

[ ] /0 , (4.10)

with

G(x) = ^ w + a,-i(M-v3)-a + pP3(x)~C31^3-a , -^(w-V 3) + a + /jS^vl+p>i(pi_Vl)_a_^/l1(x). (4.11)

By making use of equations (4.6), we see that

hs(x) = V! G(x)-y2S^3_a>_i(w_V3)+a+pSiV2+^>i(^_V2)_a_^/i4(x), (4.12)

while
(4.13)
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where

c l l C32C11~C31 C12
7i = > 72 >

C33C11~C13C31 C33C11~C13C31

_ CU _C23C11~C21^13
C 2 2 C 1 1 ~ C 1 2 C21 C 2 2 C 1 1 ~ C 2 1 C12

We must, of course, make the assumption that

C33C11-c13c31 ^ 0 and c ^ C n - c ^ c ^ ^ 0.

If we substitute (4.13) into (4.12) and make use of the fact that 7,i0 is the identity operator,
we find the following simple result for hs(x):

hs(x)= I1 G(x)- y2J* Si<,3-«,-M,,,-,,)+«+,Si,,.f,,i0,2..,,a)..«.,F(x) (xe/,), (4.14)
1 7 7 * 7 Y

provided that 72 7s ^ 1.
Putting (4.14) into (4.13) we find that, for xe / , , h4(x) is given by

7i 7s

1 -72 75

^ W ^ ^ V 3 ) - « - / | G ( x ) ) ( 4 . 1 5 )

where ^(JC) and (J(x) are given by (4.9) and (4.11) respectively, and we assume that y2 ys # !•
The results for h2(x) and /?3(x) are given by (4.6) while the </>,• (/ = 1, 2, 3) are easily found

from (4.3M4.5).

5. Examples. In this section we consider two examples of sets of simultaneous equations
arising in the mathematical theory of elasticity. (See Sneddon and Lowengrub [8], Chapter 3,
§3.5.) Both sets of equations appear in the solution to the problem of determining the stress
field in the neighbourhood of a penny shaped crack in a solid under shear.

We first consider the set of equations
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It is a simple matter to show that the above equations may be rewritten in the form

where Ix = (0, 1) and I2 = (1, oo).
Following the methods indicated in §3, we see that

C 2 2 C 1 1 ~ C 2 1 C12
since

f~^lJ^at)Jyi{bt)dt = 0 for 0 < b < a
o

and Re v > Re/i > - 1 . (See Abramowitz [2], p. 487.)
Hence h2(p) = 0 and B(p) = 0. We have assumed that c t , # 0.
For the second example, we consider the set of equations

(5.9)

where/>! = \,p2=P3 = ^Ii = (°> 1) and 72 = (1, oo).

( 5 3 )

(5-4)

A(p) = Si-_ihl(p)+Sit_ih2(p), (5.5)

B(p) = Sii_ih3(p), (5.6)

where h,(p) = 0, p e / 2 (« = 1, 2, 3). Hence, from equation (3.6), we find that

- l - l 2

and then

c^^~p^Ji(p), (5.7)

while (3.7) yields

i> * = U , 3 ) , (5.8)
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Using the notation of § 2, we may rewrite the above set as follows:

so,o E CU4>I(P) = i,

-*.i[tfiG>)] = 0,

Using the relations (4.3)-(4.5), we observe that

where on /2 , ht(p) = 0 (/ = 1, 2, 3), while on lx (see 4.14 and 4.15)

-75 S^,! S1>0 hs(p),

= - — hs(p),c

with

and

Hence

CU7I

G(p)= -

/>3(P) = 0,

(0<P<D,

99

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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and

where 74 = c 1 1 (c 2 2 c 1 1 -c 2 1 c 1 2 ) " 1 and yu y2, y3 and y5 are given in §4.

6. The general case. We shall discuss briefly the method of solving the set of n equations
given by (1.7) and (1.8). If we use the representation given for SnaL in (2.5), we see that we wish
to solve the set of dual equations given by

.1"£ ctJ 0 /x) l = p,(x)

(xe/2),

(6.1)

(6.2)

1,2, . . . ,«) .
Suppose that we let

where /jj(x) = 0 for x e / 2 . If we make use of the property (2.13), then we see that the repre-
sentations (6.3) satisfy the equations given by (6.2).

Proceeding as in §§3 and 4, we first substitute (6.3) into (6.1) for / = 1. This yields

Cu
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If we select the ht(x), xelt such that

(6.4)

c l l ^n(x) + cln ' I2n-l(x) = 0>

then we find that h^x) for xeli is given by

(6.5)

provided that c t l ^ 0.
The remainder of the analysis proceeds in precisely the same way as in the case n — 3.

The relations (6.3) are first systematically substituted into the remaining n — 1 relations in
(6.1) and then, using (6.5) and the various properties of the /operator, we obtain representa-
tions for linear combinations ofht{x) and />„+(!_!)(*)• By use of (6.4) and these representations
we can obtain the ht{x), for xellt after noting the same cancellation of operators that occurs
in §4. These results are extremely cumbersome and will not be reproduced here. For most
mixed boundary value problems, the results for n = 2 and n = 3 will suffice. It should be
pointed out that careful use of the S operator is necessary, for, since we do not know the
component ofpfa) for xel2, we cannot evaluate Sni<[p£x).

By making similar representations as in (6.3), the problem of finding solutions to the set of
equations (1.3) and (1.4) with any continuous functions wti{t), v^t) is reduced to that of solving
a simultaneous system of Fredholm equations with a singular kernel. This is briefly discussed
in § 4 of the Erdogan and Bahar [4] paper. We might just add that for these problems it is
best to let the $/s be represented as follows:

where h^x) = 0 for xel2-
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