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ON THE UNITARIZED ADJOINT REPRESENTATION OF 
A SEMISIMPLE LIE GROUP II 

RONALD L. LIPSMAN 

Let G be a connected semisimple Lie group with Lie algebra 31. Lebesgue 
measure on 21 is invariant under the adjoint action of G; and so there is a 
natural uni tary representation TG of G on L2(3() given by 

T0(g)f(x) = /(Ad r*(x)), gtCfeLtm.xe a. 
In the paper [3], I considered the problem of decomposing TG into its irreducible 
consti tuents (see [3, § 1, paragraph 2] for a brief historical comment on this 
problem). There I gave a complete description of the continuous spectrum of 
TG. In this paper I shall prove a result tha t yields information on the discrete 
spectrum. I expect to complete the discussion in [4] (see the last paragraph of 
this paper for my reasons for dividing the consideration of the discrete spectrum 
into two separate articles). 

We begin by quickly recalling the results of [3]. If ZG is the center of G, it is 
obvious tha t TG\ZQ = 1. Thus TG is actually a representation of G/ZG ~ Ad 31. 
We shall therefore assume, without loss of generality, tha t ZG = {e}—that is, 
G = Ad 21. Now let K be a maximal compact subgroup of G, and choose a set of 
representatives P i , . . . , Pr for the associativity classes of proper cuspidal 
parabolic subgroups of G. Write P t = MtA tNt for a Langland's decomposition 
of Pt t ha t is compatible with K, Mt° for the neutral component of M u and at 

for the Lie algebra of At. Finally set F0 = ZK and Ft = Z(KnMro) X I \ , 
i = 1, . . . , r, where I \ = K Pi exp \/ — 1 a* (see [3, § 4]). The Ft are clearly 
compact abelian groups, and if Pi is minimal then Fi = ZMl. Theorems 5 and 9 
of [3] assert t ha t TG is a subrepresentation of the (left) regular representation 
\G of G, has uniform infinite multiplicity, and 

i X @ oo lndFl
G 1 rank G = rank K 

(*) rG^0r 
I X) @ °° Ind F

Gi 1 rank G > mnkK. 
\ i=i 

We also proved (in [3, Theorem 10]) tha t the principal series representations 
of G corresponding to Pt occur in the representation I n d ^ 1. Thus if rank 
G > rank K, then TG ~ \G (see [3, Theorem 12]); and in general to complete 
the description of the consti tuents of TG, we must look a t its discrete spectrum 
to see ' 'how much" of the discrete series occurs therein. 

We first show tha t we may reduce to the case of simple groups. 
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LEMMA 1. Suppose 31 = 2li © . . . © 2L is the decomposition of 21 into simple 

Lie algebras. Then 

r A d 2I ^ ^AdSll X . . . X ^AdSln-

Proof. This is obvious, because G ^ Ad 211 X . . . X Ad %n and L,(2I) ^ 

L 2 ( » i ) ® . . . ® L 2 (»») . 

Remark. Suppose G = Ad 21 is compact and B is a maximal torus. Then by 
[3, Theorem 1] 

TG9ÉOO I n d ^ l . 

Moreover by [3, Lemma 6] 

lndB
G 1 ~ X<?, 

where & denotes quasi-equivalence. T h u s 

P c ^ o o \ G . 

Since G is compact oo AG ^ XG. On the other hand, if G is non-compact then 
oo XG ^ XG. T h u s for the remainder of our deliberations we shall assume 
G = Ad 21 is non-compact and simple. 

The key result of this paper is the following 

T H E O R E M 2. Suppose that some Ft = Z2
S. Then 

lndFl
G 1 ^ \G. 

COROLLARY 3. If one or more of the groups Ftis a product of 2-element groups, 
then TG ^ \G. 

T h e corollary follows immediately from Theorem 2, formula (*), and the 
fact t h a t XG has uniform infinite multiplicity. Now suppose some Ft = Z 2 \ 
Let us write F = Ft. Then we have 

PROPOSITION 4. The representation \ndF
G % is, tip to unitary equivalence, 

independent of x G F. 

Theorem 2 is a consequence of Proposition 4 because 

XG ^ I n d / \F ^ Yf I n d / x = #(P) I n d / 1. 
xeF 

So we concentrate on the 

Proof of Proposition 4. We shall first give the argument in case 1 g i ^ r. Let 
P = P i be the corresponding cuspidal parabolic with P = MAN the Langland 's 
decomposition chosen earlier. Wri te N for the opposed nilradical, ft for its Lie 
algebra. Given x G P, we set 

# - , = ( l e n : A d ( / ) I = x(/)I). 
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Since F ^ Z2
S,X(F) G { ± l } a n d n = E x e ^ x - L e t ^ = {x G F:WX^ {0}}. 

We assert tha t Hxe^ Ker % = {<?}• Indeed (since F Q K), any element in the 
intersection must—by [3, Lemma 11]—be central in G. Since ZG = {e}, the 
assertion is valid. This guarantees tha t ^ generates F. For if the subgroup 
A C / ' gene ra ted b y ^ is smaller than F, then \e) ^ {/ € F : X(/) = 1 or all 
\ e A} Q{fe F: x(f) = 1 for all x G &\ = {e}. 

Now choose a minimal set {xi, • • • , Xs} i n ^ which generates F. Then any 
X £ F can be writ ten uniquely x = Xi€1 • • • Xses, where each et is 0 or 1. We 
write 

xj = x i e l • . • xj€j, 1 S-j S- * 

x° = 1. 

In order to prove the proposition, it suffices to show tha t for any ; = 1, . . . , s 

lndF
G

 x
j ~ lndF

G Xs-1-

Fix an integer j between 1 and s. If ej = 0 there is nothing to do—so assume 
ej = 1. Wri te r = x \ r' = xj~l so tha t r = XJT'. Choose W G WXj, W 9* 0. 
Set <2 = exp R W , a one-parameter subgroup of N. Clearly F stabilizes Q and 
FQ is a closed subgroup of G. By induction in stages, it is therefore enough to 
prove 

I n d ^ r ^lndF
FQr\ 

Let E = Ker Xj> Since e;- = 1, the index [F : E] is 2. Choose an element 
z £ F — E and set Z = {s€ : e = 0, 1} = Z2 . Then F is a direct product 
F = EX Z. Also FQ is a direct product FQ = E X (ZÇ). Next put 

r = T\ X r2, ri = T\E, TI — T\Z 

I f w / / / I / / I 

r = n X r-i , n = T \E, r = T \z. 

Clearly, 

\nàF
FQ T = I n d * X z * x ( Z g ) r i X r2 ^ n X I n d z

z e r2, 

and similarly 
I n d ^ r ' ^ n ' X I n d z

z « T 2 ' . 

Bu t since r = T'XJ, we have n = r / ; and so we are reduced to proving the 
following 

LEMMA 5. Let Z ~ Z12, Q ~ R a ^ Ze£ ZÇ be the natural semidirect product 
group. Then the representation lndz

ZQ T is, up to unitary equivalence, independent 

ojrez. 
Proof. Let r0 be the unique non-trivial element in Z. One can prove this 

result by constructing an explicit intertwinning operator for TQ = lndz
ZQ T0 

and 7Ti = lndz
ZQ 1. In fact, we can realize 7r0 and 71-1 on L 2 (R) by 
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Mz'exptW)f(x) = (-l)<f((-l)<X + t), f£L2(R) 

wi(z* exp tW)f(x) = / ( ( - l ) « * + / ) , a 2 f f l ; 

and then the intertwinning operator is exactly the Hilbert transform. We leave 
it to the reader to carry out the details; instead we give a short, a l ternate 
representation-theoretic proof. 

I t is a routine exercise in the use of the Mackey machine (see e.g. [2, I I I A]) 
to compute tha t the irreducible representat ions of ZQ are given by: 

TT(z£exptW) = T(ze), T £ Z 

TP = lndQ
ZQ

 Xp, Xp(exp tW) = e*\ p > 0. 

Fur thermore , the Plancherel measure on {ZQY is just Lebesgue measure on 
the half-line p > 0. (The representations wp occur twice in the regular represen­
tat ion and the representations irT are of measure 0.) But by the Subgroup 
Theorem [2, IIA1] 

*P\z = (lndQ
ZQ

Xp)\z^lndQnz
z
Xp = Xz = 1 0 TO. 

Applying Anh reciprocity [2, I IA4], we conclude tha t 

r® 
Ind/ Q ro^Ind z

Z Q l^ irpdp, 
J
 P>O 

thus proving Lemma 5. 

This also completes the proof of Proposition 4 in the case F = Fu 1 ^ i S Y. 
In case rank G = rank K and F = FQ = Z ^ = Z2

S, Proposition 4 is still valid. 
The method of proof is basically the same, al though the preliminary set-up is 
somewhat different. Let 21 = r + p be a Car tan decomposition of 31 corre­
sponding to the maximal compact subgroup K. This time we diagonalize the 
action of F = ZK C K on p. Examining the details of the proof in the preceding 
case we see tha t the only fact needed is tha t no non-trivial element of F can 
have simultaneous eigenvalue 1. But tha t is true since such an element would 
necessarily be central in G. Having made tha t observation, we leave the precise 
details to the reader. 

We shall now run down the list of non-compact real simple Lie groups G to 
see when one (or more) of the groups Ft ~ Z2

S. We use Helgason's listing 
[1, Ch. IX , § 4]. Some of the groups listed there are not centerless; thus it is to 
G/ZG t h a t our comments apply. 

(i) G has a complex s t ructure . Since rank K < rank G, we have TG ~ \G by 
[3, Theorem 12]. 

(ii) G = SL(n} R ) , n ^ 2. G is R-split . Therefore in a minimal parabolic 
subgroup P = MAN, we have M = T ^ Z2

S, 5 ^ rank G. T h u s TG ̂  \G by 
Corollary 3. 
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(iii) G = Sp(w, R ) , n ^ 2. G is R-split and 7 ^ ^ XG. 
(iv) G = SU*(2n), n^2. Since rank K < rank G, TG ^ XG. 
(v) G = Sp(m,n),m ^ n ^ 1. Here in = Sp(ra) X Sp(n) and F = ZK~ Z2

2 . 
(vi) G = SOe(m, n), m ^ n ^ 1, w + n ^ 2, 4. If m and w are both odd, 

then rank K < rank G. Otherwise 7£ = SO(m) X SO(n); and in a minimal 
parabolic P = AL4iV, M ^SO(m - n) X Z2

n~1. Thus at least one of ZK or 
Z M is of the form Z2

S unless m — 4 and n = 2. Note for future reference tha t 
5 0 e ( 4 , 2) and 5/7(2, 2) are locally isomorphic. 

(vii) G = 50*(2?z), n ^ 3. In a minimal parabolic P = MAN here, we have 

M ^ / ^ ^ ( 2 ) X . . . X 5/7(2), » = 2fe, * copies of 5/7(2) 
~ (5 /7 (2) X . . . X 5*7(2) X T, n = 2* + 1, ife copies of 5/7(2). 

Thus , for » even, ZM^ Z2
n/2. Hence for G = 5 0 * ( 4 w ) , n ^ 2, we have T^ ^ XG. 

(viii) G exceptional. We use the notation of [1, p. 354, Table I I ] : 
(a) £ 7 , EV, EVIII, FI and G2 are R-split; 
(b) EIV has rank K < rank G; 
(c) £77 has K ^ Spin (9), so ZK ^ Z 2 ; 
(d) £ 7 X has K^E7X SU"(2), so Z * ^ Z2

2 ; 
(e) £ 7 7 has 7C ÊË Spin(12) X 5/7(2), so Z * ^ Z2

3 ; 
(f) £ 7 / 7 has in a minimal parabolic Af° = Spin (8), so ZM C Z2

5 ; 
(g) £ 7 7 has i£ = 5/7(6) X 5/7(2) . But the universal covering group has 

center ~Z& and so Z ^ corresponding to Ad 21 is = Z 2 . 
In the remaining groups—namely SU(m, n), SO*(4n + 2), and £777—the 

subgroups F always have a non-trivial toral part . In any event we can sum­
marize our discussion in 

T H E O R E M 6. Let G = Ad §1 be non-compact semisimple with none of its simple 
factors locally isomorphic to SU(m, n), m ^ n ^ 1, m + n ^ 3, SO*(4« + 2) , 
n^l,or EIII. Then TG ^ XG. 

Regarding the original problem, it remains to conside: only the three types 
of groups enumerated in Theorem 6. Each of these falls among the class of 
semisimple groups G for which G/K has a hermitian symmetric s tructure. In 
particular, in those cases the holomorphic discrete series is present. We shall 
address ourselves to these types in [4]. We decided to separate these out 
because the techniques we will employ there will be entirely different from 
those used here. Specifically, we shall rely heavily on recent work of Schmid on 
7£-types of discrete series representations (holomorphic and otherwise) to 
obtain results on weights of these representations when restricted to smaller 
subgroups of K. Here we employed non-compact reciprocity and independence 
theorems more analogous to the methods of [3]. I close with the following 
remark. Work in progress on several other problems in semisimple groups has 
led to the investigation of representations of G induced from maximally com­
pact Car tan subgroups. Both techniques discussed in this paragraph a r e 
proving useful in tha t investigation. 
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Added in proof. Due to the tardiness of Advances in Mathematics, this article, 
which is a sequel to [3], will appear first. [3] was submitted in Fall 1974 and 
accepted in Spring 1975. I write these lines in Fall 1977. I regret any possible 
inconvenience to the reader. Please write to me for preprints of [3] and see 
Notices AMS, vol. 22, p. 371. 
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