
J. Fluid Mech. (2024), vol. 983, A10, doi:10.1017/jfm.2024.88

Stability of a photosurfactant-laden viscous
liquid thread under illumination
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This paper investigates the effects of a light-actuated photosurfactant on the canonical
problem of the linear stability of a viscous thread surrounded by a dynamically passive
fluid. A model consisting of the Navier–Stokes equations and a set of molar concentration
equations is presented that capture light-induced switching between two stable surfactant
isomer states, trans and cis. These two states display significantly different interfacial
properties, allowing for some external control of the stability behaviour of the thread
via incident light. Normal modes are used to generate a generalized eigenvalue problem
for the growth rate which is solved with a hybrid analytical and numerical method.
The results are validated with appropriate analytical solutions of increasing complexity,
beginning with a solution to a clean interface, then analytical solutions for one insoluble
surfactant, one soluble surfactant and a special case of two photosurfactants with a
spatially uniform undisturbed state. Presenting each of these cases allows for a holistic
discussion of the effect of surfactants in general on the stability of a liquid thread. Finally,
the numerical solutions in the presence of two photosurfactants that display radially
non-uniform undisturbed states are presented, and details of the impact of the illumination
on the linear stability of the thread are discussed.

Key words: Marangoni convection

1. Introduction

It is known that a perfectly cylindrical liquid jet or thread with surface tension acting on its
interface is unstable to long wave axisymmetric perturbations; such capillary instabilities
emerge for both viscous and inviscid liquid jets/threads. Rayleigh was the first to examine
the linear stability of liquid jets for both inviscid (Rayleigh 1878) and viscous (Rayleigh
1892) liquids. The instability is long wave and all axisymmetric perturbations longer than

† Email address for correspondence: m.mayer@imperial.ac.uk

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 983 A10-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:m.mayer@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.88&domain=pdf
https://doi.org/10.1017/jfm.2024.88


M.D. Mayer, T.L. Kirk and D.T. Papageorgiou

the undisturbed thread circumference become unstable. The axisymmetric modes are the
most unstable in the absence of other effects such as rotation about the axis (Ponstein
1959), and external electric and magnetic fields (Huebner & Chu 1971; Saville 1971;
Eggers & Villermaux 2008) among others. Following Rayleigh’s seminal works, Tomotika
(1935) included the effects of a surrounding viscous fluid and found that the instability
characteristics are analogous even though growth rates can be reduced by the presence of
an outer viscous fluid. This problem is also discussed in the textbook by Chandrasekhar
(2013). For recent reviews on capillary instabilities and consequent breakup see Eggers
(1997) and Eggers & Villermaux (2008).

Of interest in this article is the effect of surfactants on the linear stability of liquid
threads or jets. Surfactants are molecules that preferentially adsorb to liquid interfaces,
thus modulating the coefficient of surface tension. Generally, they are categorized as
insoluble and soluble. Insoluble surfactants are trapped at an interface, whereas soluble
ones kinetically exchange between the bulk and the interface. At low surfactant solubility,
experimental observations suggest that soluble surfactants behave almost like insoluble
ones, and less like monomer surfactants as solubility increases. Numerous authors have
focused on the effect of insoluble surfactants on the stability of liquid threads or jets,
including Whitaker (1976), Hansen, Peters & Meijer (1999), Kwak & Pozrikidis (2001),
Craster, Matar & Papageorgiou (2002) and Timmermans & Lister (2002). These studies
showed that surfactants can have a large effect on jet stability. In particular, Craster et al.
(2002) and Timmermans & Lister (2002) show that an increase in surfactant concentration
leads to a decrease in the growth rates of unstable modes. In the nonlinear regime, the
presence of surfactant concentration gradients leads to Marangoni forces that have been
observed to slow down pinching in liquid threads or bridges – see Craster et al. (2002),
Ambravaneswaran & Basaran (1999) and Liao, Franses & Basaran (2006). In another
study Craster, Matar & Papageorgiou (2009) model and calculate the effects of soluble
surfactants above the critical micelle concentration. They find that the nonlinear breakup
mechanisms in such cases lead to unusually large satellite drops. They also briefly discuss
the role of surfactant solubility, showing that more soluble surfactants increase growth
rates compared with insoluble ones, with the most soluble surfactants displaying behaviour
more akin to a clean interface. Such remobilization phenomena have also been observed
in rising bubble experiments and simulations (Palaparthi, Papageorgiou & Maldarelli
2006). When the surfactant concentrations are above the critical micelle concentration,
phase transitions occur in the bulk and surfactant monomers coexist with micelles. The
theoretical modelling is different, see for example Craster et al. (2009).

One type of surfactant that has not been studied as closely, especially in the context
of stability of systems, is the so-called photosurfactant or ‘light-actuated’ surfactant,
such as the ones in an early paper by Shin & Abbott (1999). They are synthesized
by embedding a light-switchable group such as an azobenzene (see Jerca, Jerca &
Hoogenboom 2022) in between a hydrophilic head and hydrophobic tail group. Due to
this, these surfactants can stably exist in one of two isomer states, cis or trans, that display
markedly different adsorption/desorption behaviour near interfaces. Usually, trans isomers
are more surface active, and cis isomers are less. Azobenzene-type photosurfactants
undergo photoisomerization under light illumination, switching between states at rates
that vary with the wavelength and intensity of incident light. Specifically, ultraviolet (UV)
illumination causes trans-to-cis conversion, and lower-energy light such as visible or
blue light causes reversion back to trans. Due to this switching mechanism and the
different interfacial behaviours of these molecules, equilibrium surface tension values
in systems illuminated with UV light have been shown to be as much as 20 mN m−1
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higher than those under blue (Shang, Smith & Hatton 2003). In the context of fluid
mechanics, photosurfactants have been shown to be a promising means of causing
externally controllable fluid transport via light-induced chromocapillary stress. For
example, Ichimura, Oh & Nakagawa (2000) used photosurfactants and a light gradient
to modulate the liquid–solid tension of a droplet of water, thus driving the droplet through
a wetting mechanism. In the context of surface-tension (liquid–gas) driven flows, point
sources of UV light have been used by Varanakkottu et al. (2013) and Chevallier et al.
(2011) to generate radially inward flows of photosurfactant-seeded water, for which one
application is the capture of interfacial particles at the light source. Recently, Zhao
et al. (2022) showed that light-actuated Marangoni flows can cause a droplet of a
toluene solution entering photosurfactant-laden water to depin more quickly than it would
otherwise.

Our goal then is to examine the effect of these photosurfactants on the linear stability
of viscous liquid threads. In the present analysis we have ignored rheological effects.
These are believed to be important in the behaviour of surfactant-laden interfaces,
especially at larger interfacial concentrations. To model surface rheology the interface is
treated as a two-dimensional compressible fluid, often by the classic Boussinesq–Scriven
approximation (Scriven 1960). This approximation alters the traditional stress tensor
by assigning the interface its own surfactant-dependant surface shear and dilatation
viscosities. In the context of the stability of threads or jets, rheological effects generally
have a dampening effect. For example Martínez-Calvo & Sevilla (2018) reported reduced
instability growth rates when surface viscosity was increased and Wee et al. (2020) showed
that the thinning rate of threads during breakup is reduced when rheological effects are
included. Since surface rheology tends to reduce growth rates, we choose to ignore them
presently in order to reduce the complexity of our model and to isolate the effects of the
photosurfactants on the linear stability of liquid threads.

To do this, first, we begin by comprehensively describing the physical model. This
is followed by a dimensionless analysis and discussion of the numerous relevant
dimensionless parameters. From there, linear stability equations are derived using normal
modes with significant discussion given to the base case, as it is shown a non-uniform
(i.e. spatially varying) base case exists. The numerical framework used to solve the
linear stability eigenvalue problem is then discussed. The results are presented in a way
that provides a holistic understanding of the impact of surfactants on the threads, by
comparing our numerical results with the analytical results of much simpler problems.
This includes the clean interface limit of Tomotika (1935) and the insoluble surfactant
work of Timmermans & Lister (2002), as well as two analytical solutions derived here for
soluble surfactants and photosurfactants in a special limit. We show that photosurfactants
give the ability to change the rate of growth of instabilities simply by varying the
wavelengths and intensity of light but, at least under constant illumination, they have little
impact on the critical wavelength below which all modes are unstable.

2. Problem formulation

We consider an axisymmetric liquid thread of infinite length that is supported by a
surrounding dynamically passive fluid, e.g. air. The undisturbed perfectly cylindrical
thread has constant radius R∗, and under axisymmetric perturbations we denote the radial
thickness by r∗ = S∗(z∗, t∗). The usual cylindrical polar coordinates (r∗, θ, z∗) are used
and all flows considered here are independent of θ . The velocity field is denoted by
u∗ = (u∗, 0,w∗) where u∗, w∗ are the radial and axial velocities, respectively, and the star
superscript indicates that a variable or parameter is dimensional. The thread is seeded with
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cis blue trans

trans UV cis

u∗, c∗
ci, c∗

tr

Γ ∗
ci, Γ

∗∗
tr

S∗ (z∗, t∗)

z∗

r∗

Figure 1. Schematic of a section of the infinite thread considered. The thread is illuminated with a
combination of UV (tighter squiggles) and blue light (longer squiggles) to force the switch between the two
states.

photosurfactants that can exist stably in a cis or trans state, and the bulk concentrations of
these two isomer types are indicated by c∗

ci and c∗
tr, respectively. At the fluid interface, there

exists an excess surface concentration for each surfactant isomer indicated by Γ ∗
ci and Γ ∗

tr ,
respectively. Additionally, the thread is illuminated with a combination of UV and blue
light to force switching of the two isomers. A schematic of the considered problem can be
seen in figure 1.

We seek to model, analyse and understand the novel physics supported by this system.
The general mathematical model governing the dynamics inside the bulk of the liquid
thread is given by the incompressible Navier–Stokes equations

∇ · u∗ = 0, (2.1)

ρ∗
(
∂u∗

∂t∗
+ u∗ · ∇u∗

)
= −∇p∗ + μ∗∇2u∗ (2.2)

and convection–diffusion–reaction equations for the bulk surfactant concentrations

∂c∗
tr

∂t∗
+ u∗ · ∇c∗

tr = D∗
tr∇2c∗

tr − k∗
tr→cic

∗
tr + k∗

ci→trc
∗
ci, (2.3)

∂c∗
ci

∂t∗
+ u∗ · ∇c∗

ci = D∗
ci∇2c∗

ci − k∗
ci→trc

∗
ci + k∗

tr→cic
∗
tr. (2.4)
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At the interface r∗ = S∗(z∗, t∗), with outward-pointing unit normal n∗, the surface excess
(or interfacial surfactant) concentration equations read

∂Γ ∗
tr

∂t∗
+ ∇s · (u∗Γ ∗

tr
)+ Γ ∗

tr n · (∇s · n)u∗ = D∗
s,tr∇2

s Γ
∗

tr + J∗
tr − k∗

s,tr→ciΓ
∗

tr + k∗
s,ci→trΓ

∗
ci,

(2.5)

∂Γ ∗
ci

∂t∗
+ ∇s · (u∗Γ ∗

ci
)+ Γ ∗

cin · (∇s · n)u∗ = D∗
s,ci∇2

s Γ
∗

ci + J∗
ci − k∗

s,ci→trΓ
∗

ci + k∗
s,tr→ciΓ

∗
tr .

(2.6)

In (2.1)–(2.2), ρ∗ is the fluid density and μ∗ its viscosity. Equations (2.3)–(2.4) are
surfactant evolution equations that govern bulk concentrations for each isomer. In
these equations, the respective diffusion coefficients are denoted by D∗

ci and D∗
tr. The

non-negative parameters k∗
ci→tr and k∗

tr→ci indicate switching rates from the cis-to-trans
and trans-to-cis states, respectively. Switching rates are functions of the intensity of the
irradiating light, I∗

0 , and its wavelength, λ∗, as discussed by Shang et al. (2003). For clarity,
they can be written in terms of these parameters as

k∗
tr→ci

(
λ∗, I∗

0
) = ε∗tr (λ∗) φtr−ciλ

∗I∗
0

N∗
Ah∗c∗

�

, (2.7)

k∗
ci→tr

(
λ∗, I∗

0
) = ε∗ci (λ

∗) φci−trλ
∗I∗

0
N∗

Ah∗c∗
�

, (2.8)

where I∗
0 is in units of W m−2 as in Chevallier et al. (2011). In general, the light intensity

can be a function of space and time; however, for this paper we restrict ourselves to
investigating the impact of constant and uniform illumination so that photoisomerization
rates are also constant and uniform. In (2.7)–(2.8), the parameters ε∗ci and ε∗tr are the molar
extinction coefficients in each reaction, φci−tr and φtr−ci are the corresponding quantum
yields, N∗

A is Avogadro’s constant, h∗ is Planck’s constant and c∗
� is the speed of light.

The final two equations, (2.5)–(2.6), govern the surface excess of each isomer type and
are only valid at the interface, r∗ = S∗(z∗, t∗). They are similar in form to the derivations
by Stone (1990), Wong, Rumschitzki & Maldarelli (1996) and Pereira & Kalliadasis
(2008), with the addition of the two light-induced switching fluxes. Subscripts s are used
to indicate interfacial quantities (for example, D∗

s,ci, etc.), while ∇s and ∇2
s denote the

surface gradient and surface Laplacian, respectively. The light-switching parameters for
the interface are left in their general form as k∗

s,ci→tr and k∗
s,tr→ci, but usually are taken to

be identical to their bulk counterparts. The terms J∗
ci and J∗

tr are source terms that capture
the kinetic flux of the bulk surfactant c∗

ci and c∗
tr onto the interface. Different schemes can

be used for the fluxes J∗
ci and J∗

tr – see Chang & Franses (1995). In this study a two-species
Langmuir kinetics model is employed, whereby the adsorption of monomers takes into
account the total available space on the interface, while the desorption is modelled as if
the surfactant were an ideal gas. Under this assumption the kinetic fluxes take the form

J∗
tr
(
c∗

tr, Γ
∗

tr , Γ
∗

ci
) = ktr∗

a c∗
tr
(
Γ ∗

∞ − Γ ∗
ci − Γ ∗

tr
)− ktr∗

d Γ ∗
tr , (2.9)

J∗
ci
(
c∗

ci, Γ
∗

ci, Γ
∗

tr
) = kci∗

a c∗
ci
(
Γ ∗

∞ − Γ ∗
tr − Γ ∗

ci
)− kci∗

d Γ ∗
ci, (2.10)

where the constants ktr∗
a , kci∗

a are adsorption coefficients and ktr∗
d , kci∗

d are desorption
coefficients. This kinetic model is only valid when Γ ∗∞, the maximum packing density, is
the same for each isomer type. In general, this is not the case, but certain photosurfactants
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do display this behaviour (Shang et al. 2003). This assumption significantly simplifies the
model and will be pursued here, noting that access to the general case is straightforward.
The corresponding equation of state to this kinetic scheme, that describes the surface
tension coefficient as a function of interfacial surfactant, is given by

γ ∗ = γ ∗
0 + nR∗

gT∗Γ ∗
∞ ln

(
1 − Γ ∗

ci
Γ ∗∞

− Γ ∗
tr

Γ ∗∞

)
, (2.11)

where n is a surfactant style constant, R∗
g is the universal gas constant and T∗ is the absolute

temperature.
The surface tension equation (2.11) is used to define boundary conditions through

viscous stress balances at r∗ = S∗(z∗, t∗), combining the velocity field and interfacial
surfactant concentrations. Separating these into normal and tangential stress balances
provides

p∗
atm + n · τ ∗ · n = γ ∗κ∗, t · τ ∗ · n = t · ∇sγ

∗, (2.12a,b)

where τ ∗ = −p∗I + μ∗(∇u∗ + (∇u∗)ᵀ) is the stress tensor, p∗
atm is the constant pressure

in the outer fluid, t is unit tangent vector in the z∗ direction and κ∗ is the mean curvature
of the thread surface.

A mass balance couples the bulk surfactant and interfacial surfactant concentrations.
It requires that the diffusive flux from the bulk onto the interface balances with the total
kinetic flux according to

D∗
tr
(
n · ∇c∗

tr
) = −J∗

tr, D∗
ci
(
n · ∇c∗

ci
) = −J∗

ci. (2.13a,b)

Finally, a kinematic condition is needed at r∗ = S∗(z∗, t∗) to track the shape of the
interface. This reads

u∗ = ∂S∗

∂t∗
+ w∗ ∂S∗

∂z∗ (2.14)

and closes the statement of the mathematical model.
We additionally introduce the concept of a maximum depletion length (Cicciarelli,

Hatton & Smith 2007) or absorption length (Lin, McKeigue & Maldarelli 1990), L∗∞ =
Γ ∗∞/c∗

0. In Cartesian coordinates this length is the depth of a liquid layer at concentration
c∗

0 that contains enough surfactant to fill an interface at concentration Γ ∗∞. It is small when
there is much bulk surfactant and large when there is not. A cylindrical extension to this
is the definition of a depletion radius, R∗∞, which is the inner radius of an annulus of
liquid with outer radius R∗ and concentration c∗

0 that contains enough surfactant to fill the
interface at the maximum packing density. The geometry leads to the definition

R∗
∞ =

√
R∗2 − 2R∗L∗∞ (2.15)

so that it approaches R∗ when L∗∞ is small. This parameter is notably complex for L∗∞ >

0.5R∗ when there is not enough surfactant in the bulk to saturate a clean interface. These
two parameters are not independent in the formulation, but can be helpful in discussing
the physics of the problem.

Before moving to the dimensionless formulation it should be noted that the above
description of surfactant transport has many similarities with that of charge transport in
leaky dielectric fluids as per the canonical review by Melcher & Taylor (1969).
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3. Dimensionless formulation

Prior to our theoretical investigation, we non-dimensionalize the equations as follows.
Lengths are scaled by the undisturbed thread radius R∗; velocities are scaled with the
capillary scaling U∗ = γ ∗

0 /μ
∗, time by R∗μ/γ ∗

0 , bulk surfactant concentrations c∗
ci and

c∗
tr are scaled with a typical uniform value c∗

0, interfacial concentrations Γ ∗
ci and Γ ∗

tr are
scaled with Γ ∗∞, and the pressure p∗ (taken relative to p∗

atm) and stress tensor τ ∗ are scaled
by γ ∗

0 /R
∗. Here, c∗

0 is taken to be the average total concentration of surfactant in the bulk
of the fluid. As a final step, and in the interest of reducing the number of parameters rather
than any technical barriers, we assume that the rate of switching due to irradiated light is
identical in the bulk and on the interface.

This results in the following dimensionless set of equations, where variables without
asterisks are dimensionless but otherwise correspond to the same dependent and
independent variables as before. The numerous dimensionless parameters that emerge will
be discussed in detail below. Equations (2.1)–(2.6) become

∇ · u = 0, (3.1)

Re
(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u, (3.2)

∂ctr

∂t
+ u · ∇ctr = 1

Petr
∇2ctr − Datrctr + Dacicci, (3.3)

∂cci

∂t
+ u · ∇cci = 1

Peci
∇2cci − Dacicci + Datrctr, (3.4)

∂Γtr

∂t
+ ∇s · (uΓtr)+ Γtrn · (∇s · n)u = 1

Pes,tr
∇2

s Γtr + Jtr − Das,trΓtr + Das,ciΓci,

(3.5)

∂Γci

∂t
+ ∇s · (uΓci)+ Γcin · (∇s · n)u = 1

Pes,ci
∇2

s Γci + Jci − Das,ciΓci + Das,trΓtr.

(3.6)

Defining er = (1, 0, 0) and ez = (0, 0, 1), the normal and tangential vectors read

n = er − Szez√
1 + S2

z

, t = Szer + ez√
1 + S2

z

. (3.7a,b)

The kinetic schemes (2.9)–(2.10) become

Jtr(ctr, Γtr, Γci) = Bitr [ktrctr(1 − Γtr − Γci)− Γtr] , (3.8)

Jci(cci, Γci, Γtr) = Bici [kcicci(1 − Γtr − Γci)− Γci] , (3.9)

while the equation of state (2.11) is given by

γ = 1 + Ma ln (1 − Γci − Γtr) . (3.10)

This is used in the normal and tangential stress balances that become

n · τ · n = γ κ, t · τ · n = t · ∇sγ, (3.11a,b)

where τ = −pI + ∇u + (∇u)ᵀ. The interfacial mass balances are now

ktrχtr

Petr
(n · ∇ctr) = −Jtr,

kciχci

Peci
(n · ∇cci) = −Jci (3.12a,b)
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and the kinematic condition becomes

u = ∂S
∂t

+ w
∂S
∂z
. (3.13)

The dimensionless parameters merit detailed discussion. The Reynolds number Re =
ρ∗U∗R∗/μ∗, the Péclet numbers (e.g. Peci = U∗R∗/D∗

ci) and the interfacial Péclet
numbers (e.g. Pes,ci = U∗R∗/D∗

s,ci) are defined as is typical, comparing inertia with
viscous forces in the case of Re and advection to diffusion in the bulk and at the interface,
respectively, in the cases of the two Péclet numbers. In the surfactant equations, Damköhler
numbers are defined that compare switching rates with advective fluxes. These are given
by

Datr = k∗
tr→ciR

∗

U∗ , Daci = k∗
ci→trR

∗

U∗ , (3.14a,b)

for trans-to-cis reactions and cis-to-trans reactions, respectively. Likewise, the surface
Damköhler numbers are given by

Das,tr = k∗
s,tr→ciR

∗

U∗ , Das,ci = k∗
s,ci→trR

∗

U∗ , (3.15a,b)

but are usually assumed to be identical to their bulk counterparts. The Biot numbers,
encountered in the definition of kinetic flux, are defined by

Bici = kci∗
d R∗

U∗ , Bitr = ktr∗
d R∗

U∗ , (3.16a,b)

for cis-type, and trans-type surfactants, respectively. The Biot numbers represent the
ratio of kinetic desorption to advective flux. Notably, when a Biot number is zero, the
insoluble limit is obtained. The normalized bulk concentrations for cis-type and trans-type
surfactants are given by

kci = kci∗
a c∗

0

kci∗
d

, ktr = ktr∗
a c∗

0
ktr∗

d
(3.17a,b)

and compare the relative importance of adsorption rate with desorption. The Marangoni
number compares the stress due to gradients in surface tension with the viscous stresses in
the fluid and is given by

Ma = nR∗
gT∗Γ ∗∞
μ∗U∗ . (3.18)

The following kinetic parameters also enter:

χci = kci∗
d R∗/

(
kci∗

a Γ ∗
∞
)
, χtr = ktr∗

d R∗/
(
ktr∗

a Γ ∗
∞
)

(3.19a,b)

and upon inspection we have the relationship

χcikci = χtrktr = L−1
∞ , (3.20)

where L∞ = Γ ∗∞/(R∗c∗
0) is the dimensionless maximum adsorption length or depletion

thickness. In Cartesian coordinates this length would refer to the fraction of the domain
required to fill the interface. Its cylindrical extension, the dimensionless depletion radius,
becomes

R∞ =
√

1 − 2L∞ (3.21)

and like L∞, it is related to the fraction of the surfactant in the domain required to fill
the interface. For values below L∞ = 0.5, as L∞ gets smaller (or χcikci and χtrktr grow
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Stability of a photosurfactant-laden viscous thread

Parameter Meaning Definition Range of values used

Re inertial terms to viscous terms
ρ∗U∗R∗

μ∗ 0

Peci adv. to diff.
U∗R∗

D∗
ci

1–10

Daci photoisomerization to adv.
k∗

ci→trR∗

U∗ 1–103

Das,ci photoisomerization to adv.
k∗

s,ci→trR∗

U∗ same as Daci

Bici desorption to adv.
kci∗

d R∗

U∗ 0–103

kci adsorption to desorption
kci∗

a c∗
0

kci∗
d

10−2–103

Ma surface tension to shear stress
nR∗

gT∗Γ ∗∞
μ∗U∗ 0–102

χci kinetic flux parameter
kci∗

d R∗

kci∗
a Γ ∗∞

1–103

L∞ depletion length
Γ ∗∞

c∗
0R∗ 10−1–102

R∞ depletion radius
√

1 − 2L∞ 0–0.95

Table 1. Dimensionless parameters used in the problem statement. Any trans-type dimensionless parameters
are identical in form to their cis-type counterparts after swapping the subscripts from ‘ci’ to ‘tr’. The last
column covers the range of values used in the results section. The values for ktr, Bitr and χtr differ slightly from
the cis-type values as per § 4.1. Abbreviations used: advection (adv.); diffusion (diff.).

larger), R∞ approaches 1, meaning the fraction of the total surfactant in the bulk required
to fill up the interface decreases. Conversely as L∞ → ∞, R∞ → 0 and then becomes
complex indicating the entirety of the bulk surfactant could not fit on the interface. A list
of the dimensionless parameters can be found in table 1. Any trans-type dimensionless
parameters not mentioned explicitly in the text are identical to their cis-type counterparts
after swapping the subscripts from ‘ci’ to ‘tr’.

Our objective is to study the linear stability of this intricate physical system. Unlike
single species surfactant systems that support uniform trivial base states, the present
multispecies system allows radially non-uniform surfactant distributions that have a
significant impact on flow stability. We analyse permissible base states next before moving
on to their stability.

4. The undisturbed states

To calculate the base states we consider a motionless, perfectly cylindrical thread of radius
r = 1 under constant and uniform illumination. The last assumption implies that the light
induced switching rates are precisely captured by the two Damköhler numbers, Daci and
Datr. With these assumptions the concentration profiles become uniform in the z-direction
and all gradients in that direction vanish, creating a so called photostationary state. Then,
if we denote base state variables with a bar, the unknowns to be calculated are the radially
dependent bulk surfactant concentrations c̄tr(r) and c̄ci(r), and the constant interfacial
surfactant concentrations Γ̄tr and Γ̄ci. The equations in the bulk ((3.1)–(3.4) in the absence
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of fluid flow) reduce to

1
Petr

1
r

d
dr

(
r

dc̄tr

dr

)
= −Dacic̄ci + Datrc̄tr, 0 < r < 1, (4.1)

1
Peci

1
r

d
dr

(
r

dc̄ci

dr

)
= Dacic̄ci − Datrc̄tr, 0 < r < 1. (4.2)

These must be solved subject to the steady-state boundary conditions coming from
(3.5)–(3.6), and the kinetic schemes (3.8)–(3.9) that read, on r = 1,

Das,ciΓ̄ci − Das,trΓ̄tr = −χcikci

Peci

dc̄ci

dr
, (4.3)

−Das,ciΓ̄ci + Das,tr Γ̄tr = −χtrktr

Petr

dc̄tr

dr
, (4.4)

χtrktr

Petr

dc̄tr

dr
= −Bitr

[
ktr c̄tr

(
1 − Γ̄ci − Γ̄tr

)− Γ̄tr
]
, (4.5)

χcikci

Peci

dc̄ci

dr
= −Bici

[
kci c̄ci

(
1 − Γ̄ci − Γ̄tr

)− Γ̄ci
]
. (4.6)

The details of the solution of the above equations are discussed in Appendix A. It is shown
that the solutions for c̄tr and c̄ci take the form

c̄tr(r) = ηC0I0(
√
ζ r)+ αM

η + α
, (4.7)

c̄ci(r) = M − C0I0(
√
ζ r)

η + α
, (4.8)

where I0 is the zeroth-order modified Bessel function, C0 is a constant determined from
conditions on the interface and M is a controllable parameter related to the total amount of
surfactant in the system. If the Péclet numbers are the same, then M is the dimensionless
total amount of surfactant in the bulk and therefore necessarily equal to 1. The parameters
α and η represent the ratios of Damköhler and Péclet numbers, and ζ is a parameter
involving both Damköhler and Péclet numbers, given by

α = Daci

Datr
, η = Petr

Peci
, ζ = DaciPeci + DatrPetr = DatrPeci(α + η). (4.9a–c)

It is important to note that these solutions necessarily satisfy the following mass balance
throughout the liquid thread:

χtrktr

Petr

dc̄tr

dr
= −χcikci

Peci

dc̄ci

dr
. (4.10)

Physically this means that at all locations in the domain the diffusive flux of one species is
exactly equal and opposite to that of the other species. It follows from (4.5)–(4.6) that the
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Stability of a photosurfactant-laden viscous thread

interfacial surfactants can be written in terms of these bulk concentrations as follows:

Γ̄tr =

(
1

Bitr
+ kcic̄ci

Bitr
+ ktrc̄tr

Bici

)
χtrktr

Petr

dc̄tr

dr
+ ktrc̄tr

1 + kcic̄ci + ktrc̄tr
, (4.11)

Γ̄ci =

(
1

Bici
+ kcic̄ci

Bitr
+ ktrc̄tr

Bici

)
χcikci

Peci

dc̄ci

dr
+ kcic̄ci

1 + kcic̄ci + ktrc̄tr
. (4.12)

Inserting the solutions (4.7)–(4.8) into (4.11)–(4.12) enables the explicit determination of
C0 (see Appendix A for details). This constant is a rather complicated function of the many
dimensionless parameters, but can be viewed in a simple way as a coefficient related to the
rate of diffusion of the two isomer species onto and off of the interface. It is in general
non-zero because of the steady state requirement that the light-switching rate balances the
adsorption rate, thereby forcing diffusion onto and off of the interface. The existence of
a non-uniform base case is typically not considered when studying photostationary states,
i.e. in the use of typical surfactant isotherm models to estimate surface tension in Shang
et al. (2003) and Chevallier et al. (2011). The counter diffusion of our two species affects
the amount of each isomer on the interface, possibly throwing into doubt the values of the
fitting parameters determined in those studies.

4.1. Example solutions for the base state
Given the large number of parameters present in the model, we focus our theoretical efforts
by identifying physically relevant cases motivated by previous experimental investigations.
Chevallier et al. (2011) provide many of the required parameters, and these are reported in
table 2.

Of particular interest are the ratios of the adsorption and desorption coefficients, which
are seen to be

kci∗
a

ktr∗
a

≈ 10,
kci∗

d
ktr∗

d
≈ 300. (4.13a,b)

This implies that even though the adsorption of cis-type isomers is faster than trans-type
ones, the desorption rate is much greater, leading to a preference of cis-type isomers to
leave the interface. Mathematically, this difference in kinetic behaviour dictates values of
Bici to be 300 times larger than those of Bitr, while at the same time ktr is 30 times larger
than kci. Subsequently, due to (3.20), we find that χci is 30 times larger than χtr. Using
these fixed ratios reduces these six parameter choices to three, namely Bici, kci and χci,
and hence simplifying the parameter space while maintaining salient essential physical
characteristics of the system. Crucially, the Peclét numbers are now the same, implying
η = 1 and M = 1, and we additionally make the assumption that the bulk Damköhler
numbers and surfaces ones are identical.

A first parameter of interest is the size of the reaction–diffusion layer at the interface. If
this layer is thin, i.e. when diffusion is slow, we denote the width of this region as δ and
by balancing diffusion and the reactions terms in the bulk equations it can be shown that

δ ∼ ζ−1/2, (4.14)

which is unsurprisingly the inverse of the argument of the Bessel functions in (4.7) and
(4.8). It also could be expected since ζ is linear in both Péclet numbers Petr and Peci, and
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ζ = 110, δ = 0.468

Datr = 10, Daci = 10 

ζ = 200, δ = 0.341

Increasing kci

Increasing kci

Increasing kci

ζ

δ

c̄ c
i

c̄ c
i

c̄ c
i

r

r

r

(a)
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Figure 2. Relationship between ζ and δ. For all panels Bici = 103, Bitr = 3.33, χci = 1, χtr = 30 and
Petr = Peci = 10.

hence δ ∼ Pe−1/2
tr ∼ Pe−1/2

ci if both are large. To confirm this relationship we calculated a
numerical δ value from the exact solution. It was defined when η = 1 as the distance from
the interface at which c̄tr and c̄ci have changed by 99 per cent of the difference between
their values at r = 1 and r = 0. Explicitly, δ is such that

c̄tr(r = 1 − δ) = c̄tr(r = 0)+ 0.01 [c̄tr(r = 1)− c̄tr(r = 0)] . (4.15)

Figure 2 shows the solution to this equation for a range of ζ values, showing the expected
negative square root behaviour at larger values of ζ .

Additionally, figure 2 contains some illustrative plots displaying the effect of varying
the Damköhler numbers and normalized bulk surfactants on the undisturbed states. To
help explain them we begin with a discussion of the impact of the Damköhler numbers.

Figure 2(a,b) have the same value of ζ = 110, but different values of Damköhler
numbers, with figure 2(a) having Datr > Daci and figure 2(b) the opposite. The differing
Damköhler numbers are important in setting the relative amount of each surfactant. For
example, in figure 2(a) when Datr > Daci there are significantly more cis isomers than
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Stability of a photosurfactant-laden viscous thread

trans (recall c̄ci + c̄tr = 1), while the opposite is true in figure 2(b). This can be attributed
to the solutions in (4.7) and (4.8) which reveal that for small enough values of δ then as
r → 0 the bulk concentrations tend to

c̄tr = Daci

Daci + Datr
, c̄ci = Datr

Daci + Datr
, (4.16a,b)

a limiting behaviour which can be seen in all the panels of figure 2 as r → 0. Figure 2(c)
shows a case with a larger value of ζ , but equal Damköhler numbers. Consequently, δ is
smaller (the diffusion layer is thinner) than in figures 2(a) and 2(b), but c̄ci tends to 0.5 as
r → 0.

Figure 2(a–c) also show the impact of increasing the normalized bulk concentration, kci.
Since this is the only parameter that contains c∗

0 (the dimensional average total surfactant
concentration) in our problem set-up, this can be viewed as increasing the amount of
surfactant in the system. In all cases, we observe that as kci increases, the solution
tends to the constant far field value everywhere. This happens because as kci → ∞, it
necessarily follows that dc̄ci/dr → 0, so that the interfacial surfactant equations remain
bounded. Therefore, the coefficient C0 → 0. The physical reason for this behaviour is that
as kci increases, adsorption dominates over desorption, but at the same time the interface
becomes saturated, thereby also shutting off the driving force for adsorption. Since there
is no adsorption or desorption there can be no diffusive flux to or from the interface, and
the bulk equations yield constant uniform states. This can be understood in another way
in the context of R∞, the depletion radius. As kci increases with χci held constant, R∞
approaches 1. This essentially means there is much surfactant very close to the interface
in the bulk. Therefore, any kinetic fluxes onto or off the meniscus will do little to change
bulk surfactant distributions, leading to near constant values of the bulk solutions in r.

The saturation of the interface as kci increases is shown in figure 3(a) which plots the
total interfacial surfactant (defined to be Γ̄tot = Γ̄ci + Γ̄tr), as a function of kci for four
different combinations of Damköhler numbers. It is seen that for all cases the interface
becomes completely saturated with surfactant as kci → ∞. However, before complete
saturation is reached, the choice of Damköhler numbers has a large effect on interfacial
surfactant levels as we discuss next. When Daci and Datr are equal, e.g. the solid black and
red curves corresponding to Daci = Datr = 1 and Daci = Datr = 10, respectively, there
are similar amounts of interfacial surfactants on the interface, with the larger Damköhler
case showing only slightly less amounts. The interfacial surfactant concentrations are
nearly identical because similar amounts of the two surfactants are present in the system.
The small difference can be attributed to an increase in the diffusion rates of the two
isomers at larger values of Damköhler numbers due to the decrease in the size of the
reaction–diffusion layer. To help explain this phenomenon, it is helpful to look at the
analytical form of the base-case interfacial surfactants. It is easily shown by adding Γ̄tr
and Γ̄ci ((4.11) and (4.12)) that

Γ̄tot =
kcic̄ci + ktrc̄tr + χcikci

BiciPeci

dc̄ci

dr
+ χtrktr

BitrPetr

dc̄tr

dr
1 + kcic̄ci + ktrc̄tr

, (4.17)

where the two terms with gradients are the mass fluxes from the bulk and capture the
impact of the non-uniform solutions for the bulk surfactant distributions on Γ̄ci and Γ̄tr.
From this expression we can infer the role of the mass flux.

First, using (4.10) and the fact that Bici > Bitr, we know the trans flux term will have
a greater impact on Γ̄tot than the cis flux term. The direction of diffusion of both species
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Figure 3. Plot of total interfacial surfactant concentration for a base case as a function of kci for four cases of
Damköhler numbers. In this graph 30kci = ktr, Bici = 103, Bitr = 3.33, χci = 1, χtr = 30 and Petr = Peci =
10.

(and therefore the sign of C0) is thus crucial to determining whether the mass fluxes are
adding or subtracting from the total surfactant on the interface. It is shown in Appendix A
that for the parameter set we are considering, and assuming that the surface Damköhler
numbers and bulk ones are the same, C0 is always negative. This means that at steady
state cis isomers will always have a net desorption off the interface and trans isomers will
have a net adsorption on to the interface, a claim supported by the subplots in figure 2.
Returning to (4.17), we know dc̄ci/dr > 0 and dc̄tr/dr < 0 by (4.10), meaning the mass
fluxes reduce the total interfacial surfactant due to the ordering Bici > Bitr. This is reflected
in figure 3 when Γ̄tot decreases as the Damköhler numbers increase from Daci = Datr = 1
to Daci = Datr = 10.

For the cases when Daci /= Datr, figure 3(b,c) shows larger values of cis concentrations
on the interface when Datr is greater than Daci and larger values of trans concentrations
on the interface when the opposite is true. This can be attributed to the bulk values of each
species in each case. However, because ktr is much larger than kci, the impact of these two
states on the surface tension is quite different. This means trans isomers are much more
likely to stay attached to the interface than the cis isomers. As a consequence, when Daci
is greater than Datr there are significantly higher total interfacial concentrations at lower
values of kci than when Datr is greater than Daci, as seen in figure 3(a). Physically this
means that for a given bulk surfactant concentration, illumination with more blue light than
UV radiation (Daci > Datr) leads to more surface excess, while more UV illumination
than blue (Daci < Datr) leads to less. This ability to control surface excess through light
gives a clear technological pathway to the control of surface tension.

4.2. Summary of the undisturbed states
The considered reaction–diffusion problem displays a radially non-uniform steady state
that arises because photoswitching of the surfactants on the interface ensures that the
surfactants fail to reach equilibrium (namely zero diffusion) at the interface. The result is
two counter-diffusing species, where one species is adsorbing onto the interface and the
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other is desorbing at an equal rate. The amount of each type of surfactant in the system
is generally determined by the ratio of the Damköhler numbers as given by (4.16a,b). The
values of ζ and C0 are important parameters that affect the gradient of surfactants in the
bulk; here ζ determines the size of the reaction–diffusion layer, and C0 is a complicated
function of every dimensionless parameter in the problem and multiplies the gradients.
When ktr > kci, but Bitr < Bici, as is the case with the surfactants in Chevallier et al.
(2011), C0 is always negative. This means that for all parameter sets cis isomers desorb
off the interface and trans isomers adsorb onto the interface. With this undisturbed state in
mind, we now turn to hydrodynamic stability aspects with particular interest on the effect
of chromocapillary mechanisms on classical Rayleigh–Plateau instabilities.

5. Linear stability

We consider small axisymmetric perturbations to the undisturbed quiescent cylindrical
liquid thread and corresponding radial distribution of the two surfactant species analysed
in the previous section. Additionally, we assume that the thread is in the Stokes regime
(Re = 0). The interface is perturbed by writing r = 1 + εŜ exp(ikz + ist)+ c.c. where
ε 	 1 is infinitesimally small, Ŝ is a constant and c.c. denotes the complex conjugate of
the preceding term. We also write φ(r, z, t) = φ̄(r)+ εφ̂(r) exp(ikz + ist)+ c.c., where
φ can be any of our dependent variables, and it is understood that bars correspond to the
steady basic states calculated previously. Plugging this into our system of (3.1)–(3.6) and
linearizing with respect to ε, yields the linear system

dû
dr

+ 1
r

û + ikŵ = 0, (5.1)

∇̂2û − 1
r2 û = dp̂

dr
, (5.2)

∇̂2ŵ = ikp̂, (5.3)

sĉci + û
dc̄ci

dr
= 1

Peci
∇̂2ĉci − Daciĉci + Datrĉtr, (5.4)

sĉtr + û
dc̄tr

dr
= 1

Petr
∇̂2ĉtr − Datrĉtr + Daciĉci, (5.5)

sΓ̂ci + ikŵΓ̄ci + ûΓ̄ci = − k2

Pes,ci
Γ̂ci + Ĵci − DaciΓ̂ci + DatrΓ̂tr, (5.6)

sΓ̂tr + ikŵΓ̄tr + ûΓ̄tr = − k2

Pes,tr
Γ̂tr + Ĵtr − DatrΓ̂tr + DaciΓ̂ci, (5.7)

where

∇̂2 = d2

dr2 + 1
r

d
dr

− k2. (5.8)

Here the assumption that the bulk and surface Damköhler numbers are equal has been
applied. We note that a Taylor expansion at r = 1 has been carried out to arrive at (5.6)
and (5.7), and an analogous expansion is used for boundary conditions (3.11a,b), (3.12a,b)
and (3.13). It follows that the linearized form of the normal and tangential stress balances
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(3.11a,b) reads

p̂ − 2
dû
dr

= γ̄
(− Ŝ + k2Ŝ

)+ γ̂ ,
dŵ
dr

+ ikû = − ikMa
1 − Γ̄ci − Γ̄tr

(
Γ̂ci + Γ̂tr

)
. (5.9a,b)

Here the perturbation to the surface tension, γ̂ , is given in terms of Γ̂ci and Γ̂tr by
linearization of (3.10) from which we find

γ̂ = −Ma

(
Γ̂ci + Γ̂tr

1 − Γ̄ci − Γ̄tr

)
. (5.10)

The bulk surfactant problem (5.4)–(5.5) must satisfy the boundary conditions

kciχci

Peci

(
dĉci

dr
+ Ŝ

d2c̄ci

dr2

)
= −Ĵci,

ktrχtr

Petr

(
dĉtr

dr
+ Ŝ

d2c̄tr

dr2

)
= −Ĵtr, (5.11a,b)

which follow from linearization of (3.12a,b), and where the linear kinetic schemes are
given by

Ĵci = Bici

[
kcic̄ci(−Γ̂tr − Γ̂ci)+ kci

(
ĉci + Ŝ

dc̄ci

dr

) (
1 − Γ̄ci − Γ̄tr

)− Γ̂ci

]
, (5.12)

Ĵtr = Bitr

[
ktrc̄tr(−Γ̂tr − Γ̂ci)+ ktr

(
ĉtr + Ŝ

dc̄tr

dr

) (
1 − Γ̄tr − Γ̄ci

)− Γ̂tr

]
, (5.13)

that in turn follow from linearizing (3.8) and (3.9). Finally, the kinematic condition
becomes

û = sŜ, (5.14)

completing the set of boundary conditions that need to be satisfied at r = 1. In addition,
we require boundedness of perturbation velocities and surfactant concentrations at r = 0.

Notably, the non-uniform basic states c̄ci(r) and c̄tr(r) appear in both the bulk surfactant
equations and kinetic flux boundary conditions. As a result, a general solution of this
system is unattainable analytically; however, many physically relevant limits are amenable
to analysis and are discussed later when the results are presented. We begin by outlining the
general solution of the problem that is the basis of the numerical solution of the eigenvalue
problem.

To solve the Stokes equations we define a Stokes stream function ψ̂ given by

û = − ik
r
ψ̂, ŵ = 1

r
dψ̂
dr
. (5.15a,b)

Elimination of p̂ provides (
d2

dr2 − 1
r

d
dr

− k2
)2

ψ̂ = 0, (5.16)

and terms of ψ̂ the normal and tangential stress balances become

1
ik

[
d3ψ̂

dr3 − d2ψ̂

dr2 + (
1 − 3k2)dψ̂

dr
+ 2k2ψ̂

]
− γ̂ = γ̄ Ŝ

(
k2 − 1

)
, (5.17)

d2ψ̂

dr2 − dψ̂
dr

+ k2ψ̂ = − ikMa
1 − Γ̄ci − Γ̄tr

(
Γ̂ci + Γ̂tr

)
. (5.18)
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Equation (5.16) is readily shown to have the following solution that is regular at r = 0:

ψ̂ = C1(k)rI1(kr)+ C2(k)r2I0(kr), (5.19)

where I1 and I0 are modified Bessel functions of the first kind and the determination of
the velocity fields has now been reduced to finding C1(k) and C2(k). Equations (5.17)
and (5.18) can be used to solve for these coefficients in terms of Γ̂ci and Γ̂tr. However,
C1(k) and C2(k) are also coupled to the concentration perturbations via (5.4)–(5.7) along
with the boundary conditions (5.11a,b)–(5.13). This part of the problem must be addressed
numerically as we describe next.

5.1. Numerical method
Although for some simplified cases analytical solutions for ĉci(r) and ĉtr(r) can be
found, for the general case they must be resolved numerically. Moreover, because of
the coupling of all fields at the interfacial boundary, this means that all unknowns must
be determined numerically and simultaneously. The full set of unknowns in the general
problem are the coefficients of the stream function, C1(k) and C2(k), the bulk surfactant
concentrations, ĉci and ĉtr, the interfacial surfactant concentrations, Γ̂ci and Γ̂tr, the shape
of the interface Ŝ and the growth rate s. Our goal is to construct a numerical scheme
that simultaneously resolves these eight unknowns. To do this, we employ a Chebyshev
pseudospectral method as discussed by Trefethen (2000). We first discretize the radial
domain into N + 1 points, denoted by rj and defined as the Gauss–Lobato points such
that rj = (1 + cos( j/(N)))/2 for j = 0, . . . ,N so that r0 = 1 and rN = 0. We then define
ĉtr = [ĉtr,0, . . . , ĉtr,N]T and ĉci = [ĉci,0, . . . , ĉci,N]T to be the vectors of the numerical
values of the bulk surfactants at the Gauss–Lobato points; these also have length N + 1.
Differential matrices were constructed to enable matrix representation of the governing
equations of the bulk surfactant. The use of these pseudospectral methods means that the
full problem now requires a solution for 2(N + 1)+ 5 unknowns along with an eigenvalue
s. The unknowns are C1(k), C2(k), the N + 1 unknowns at the collocation points for each
bulk surfactant, Γ̂ci, Γ̂tr and Ŝ. Even though Ŝ could be eliminated from the problem using
the kinematic condition, (5.14), it was kept as an unknown to keep the problem linear in s
and allow the construction of a generalized eigenvalue problem.

To set up the eigenvalue problem, two (2(N + 1)+ 5)× (2(N + 1)+ 5) matrices,
As and Ans, were constructed to be multiplied by our unknown solution vector
vsol in such a way that the governing equations and boundary conditions of
the problem are enforced. Importantly, the matrices were constructed such that
As contained all terms that are multiplied by the eigenvalue s, while Ans
contained all terms not multiplied by s. The solution vector was defined as vsol =
[C1(k),C2(k), ĉtr,0, . . . , ĉtr,N, ĉci,0, . . . , ĉci,N, Γ̂tr, Γ̂ci, Ŝ]T . The matrix system to be
solved takes the form

sAsvsol = Ansvsol, (5.20)

where all rows corresponding to ĉci(rj) and ĉtr(rj), j = 1, . . . ,N − 1 enforce the governing
equations (5.4)–(5.5), and the rows corresponding to Γ̂ci and Γ̂tr enforce the governing
equations (5.6)–(5.7) for these variables. In terms of boundary conditions, the rows
corresponding to C1(k) and C2(k) enforce the normal and tangential stress conditions
(5.17)–(5.18), the row corresponding to Ŝ enforces the kinematic condition (5.14), the
rows corresponding to r0 (r = 1) enforces mass balance between the bulk and interfacial
surfactant for each surfactant isomer type, and the rows corresponding to rN (r = 0)
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enforce regularity. After construction of the two matrices, s and its corresponding
eigenvectors were solved using readily available methods. We never use less than 50
nodes in the bulk, leading to relative error of approximately 10−9 compared with analytical
results.

6. Results

Although the theory presented above considers the stability of a thread containing
light-switchable photosurfactants, some important previously studied problems can be
recovered by taking appropriate limits. Comparing our results to such cases serves two
purposes. First, these comparisons act as validation of our numerical solutions, which
is very important particularly in the absence of experimental data. Second, concepts
from each of the cases considered contributes to the understanding of the numerous
different effects photosurfactants can have on thread stability. By considering surfactant
effects sequentially and in increasing order of complexity, we are able to isolate and
discuss certain effects as they arise, building to a full understanding of the impact of
photosurfactants. Throughout the results, we neglect the effect of surface diffusion (i.e.
set Pes,ci = Pes,tr = ∞) following Timmermans & Lister (2002) who stated it would have
a small destabilizing effect – thus it would only slightly modify our results and is not a
focus of this work. To begin, we start with the simplest case, that of a clean interface in
the absence of surfactants.

6.1. Clean interface – no surfactants
In this case, the surfactant is completely absent from the system. In our code, we can
retrieve this limit by setting Ma = 0, thus removing any effect of the surfactants on the
flow field. Tomotika (1935) considered this case by examining the stability of a clean
liquid thread surrounded by another liquid. For a passive outer fluid, as is the case in our
problem, he showed that the dispersion relationship for the dimensionless growth rate is

s = 1
2

k2 − 1

k2 − 1 + k2
[
I0(k)/I1(k)

]2 . (6.1)

The relation (6.1) is plotted in figure 4 as blue (+) markers, and agreement with our
numerical solution for Ma = 0 is excellent. Equation (6.1) and the results in figure 4 clearly
show the thread to be unstable for k < 1 and stable for all other values, something that is
well known and expected on physical grounds.

6.2. Single species – insoluble surfactant
Next, we consider the case where there is some interfacial surfactant Γ that only exists on
the interface. To retrieve this limit from our model, we set Daci = 0, Datr = const. > 0,
Bici = 0 and allow Ma to be non-zero. The Damköhler numbers are chosen in this way so
that at steady state Γtr = 0 and is therefore removed from the problem. Choosing Bici =
0 decouples the interfacial surfactant from the bulk surfactant, making the cis-type an
insoluble surfactant that is only present at the interface. Hence, Γci is the only relevant
surfactant concentration.

Timmermans & Lister (2002) extensively studied the effects of insoluble surfactants on
the stability of a liquid thread. They conducted a comprehensive investigation, considering
the linear and nonlinear stability of a thread in both the viscous and inertial regimes.
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Tomotika (1935)
T & L (2001), β = ∞

Figure 4. Dimensionless growth rate versus wavenumber k for different values of Ma scaled by the
dimensionless surface tension of the base state. Here, the concentration of the base case is given by Γ̄ =
0.00909.

Of particular interest to us is their growth rate for a viscous thread ignoring surface
diffusion, which was given to be the solution of

2
s
γ̄

(
F(k)2 − 1 − k2)− (

1 − k2)+ β
(
1 + k2)− βγ̄

1 − k2

2s

(
k2 + 2F(k)− F(k)2

) = 0,

(6.2)

where

F(k) = kI0(k)
I1(k)

(6.3)

and to match with our choice of equation of state we have

β = Ma
(1 − Γ̄ )

Γ̄

γ̄
, (6.4)

where we denote Γ̄ = Γ̄ci as there is only a single relevant surfactant species. Equation
(6.2) is plotted in figure 4 for different values of Ma, lying directly on top of our numerical
solutions, with Γ̄ = 0.00909 and surface diffusion ignored. The flow is clearly unstable
for values of k < 1 and stable for all others, exactly as in the case of a clean interface
(Tomotika 1935). In fact, the cutoff wavelength above which the flow is stable is unchanged
from that of a clean interface. This can be seen clearly by setting k = 1 in (6.2) which
becomes

2
s
γ̄

[
s
γ̄

(
F(1)2 − 2

)
+ 2β

]
= 0, (6.5)

which clearly has s = 0 as a solution. Since F(1) ≈ 2.24 and β > 0, the other solution is
always negative.
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Although surfactants do not affect the value of k at which the thread becomes stable,
they do have a marked impact on the overall stability behaviour by damping growth rates
compared with a clean thread. This is because in liquid threads, the pinching instability
generates flows from regions of larger curvature to regions of smaller. If surfactants are
present, advection gives rise to surfactant gradients that work to resist the deformation of
the interface, slowing the growth of the instabilities, a phenomenon seen in Kamat et al.
(2020). The impact of this can be observed in the decrease in the magnitude of the growth
rates as seen in figure 4.

When the strength of the surfactant is weak and Ma is small, the effect on the growth
rates is modest, acting only to mitigate the severity of the instabilities. However, if
the surfactant strength is large enough, the interface becomes rigidified, with incited
Marangoni flows acting to completely resist interfacial compression and dilatation caused
by tangential flow. In this case, the surface becomes incompressible with ∇s · u = 0
(Manikantan & Squires 2020; Baier & Hardt 2022). This situation is only weakly unstable
and is captured by the β = ∞ curve in figure 4, determined by taking the limit as β → ∞
in (6.2) which yields

s = γ̄
1 − k2

2(1 + k2)

(
k2 + 2F(k)− F(k)2

)
. (6.6)

We find excellent agreement with this curve when Ma = 100, corresponding to β ≈ 200.
Finally, it can be noticed that as Ma is increased the k = 0 case becomes stable, correcting
the spurious Stokes flow result of a non-zero value of s when k = 0 that was pointed out
by Timmermans & Lister (2002).

6.3. Single species – soluble surfactant
Next, we allow the surfactant to absorb and desorb from the interface. In this case, a single
species of surfactant is present in either the bulk (with concentration denoted by c) or the
interface (with surface concentration denoted by Γ ). The bulk and interfacial surfactants
are coupled through a balance of bulk diffusion and kinetic flux in the same way as in
(3.12a,b), except now for only one surfactant. To retrieve the soluble surfactant limit with
our numerical method, we relax the assumption for the insoluble case Bici = 0 described in
§ 6.2, and allow for kinetic flux onto the interface. The system of equations for this problem
is given by the Stokes equations along with the two surfactant perturbation equations

sĉ = 1
Pe

(
d2ĉ
dr2 + 1

r
dĉ
dr

− k2ĉ
)
, (6.7)

sΓ̂ + ikŵΓ̄ + ûΓ̄ = − k2

Pes
Γ̂ + Ĵ, (6.8)

where

Ĵ = Bi
[−ksurf Γ̂ + ksurf ĉ

(
1 − Γ̄

)− Γ̂
]
, (6.9)

and ksurf = k∗
ac∗

0/k
∗
d is the normalized bulk concentration for the surfactant species

with concentration c. The constants k∗
a and k∗

d are the adsorption and desorption
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coefficients, respectively. The boundary condition coupling ĉ to Γ̂ is given by

χksurf

Pe
dĉ
dr

= −Ĵ, at r = 1. (6.10)

The perturbation stream function solutions and boundary conditions are as before, see
(5.19)–(5.18), except that Γ̂ci + Γ̂tr and Γ̄ci + Γ̄tr are replaced by Γ̂ and Γ̄ , respectively.
If we apply a base state where c̄ = 1 and Γ̄ = ksurf /(1 + ksurf ), values corresponding to
thermodynamic equilibrium, a dispersion relation is amenable analytically.

We start with the solution to (6.7) which is

ĉ = C3I0(
√
λ3r), λ3 = k2 + sPe, (6.11)

where the coefficient C3 can be written in terms of Γ̂ using (6.10) and, subsequently the
problem can be recast into matrix form. If we ignore surface diffusion (Pes = ∞), the
eigenvalue s is found by solving∣∣∣∣∣∣∣∣∣∣∣

ik

[
kI0(k)+ kI2(k)+ γ̄

(
k2 − 1

)
s

I1(k)

]
2ik2I1(k)+ ikI0

γ̄
(
k2 − 1

)
s

Ma/(1 − Γ̄ )

2k2I1(k) 2k (I1(k)+ kI0(k)) ikMa/(1 − Γ̄ )

ik2

2
(I2(k)+ I0(k)) Γ̄ ik (I0(k)+ kI1(k)) Γ̄ s − χksurf

Pe
Ω(s, k)

∣∣∣∣∣∣∣∣∣∣∣
= 0,

(6.12)

where

Ω(s, k) =
√
λ3(s, k)I1(

√
λ3(s, k))Bi

(
ksurf + 1

)
χksurf

Pe
√
λ3(s, k)I1(

√
λ3(s, k))+ Bi ksurf (1 − Γ̄ )I0(

√
λ3(s, k))

(6.13)

is a function that arises from the constant C3 determined earlier. The dispersion relation
(6.12) is a nonlinear equation for s, and a root finding algorithm is employed. Solutions for
the growth rate Re(s) versus k are plotted in figure 5 for χ = 1, and in figure 6 for χ =
1000, for different values of the Marangoni number Ma ranging from 10 to 100. In both
figures we ignore surface diffusion (i.e. set Pes = ∞), and fix the bulk Péclet number to
Pe = 1. The Bi = 0 curve is generated analytically from (6.2). We also take the parameter
ksurf = 10−2 which implies that Γ̄ = 0.00909 for all curves in figures 5 and 6.

Although the magnitude of the effect on the growth rate differs as Bi increases from
case to case in figures 5 and 6, an underlying finding is that increasing Bi increases
the instability of the thread. This is due to the increasing reaction speed of the mass
balance between the thread interface and the bulk surfactant. The mass balance acts as
a normalization of the surfactant on the interface, ensuring that when the local interfacial
concentration is below its local equilibrium value, surfactant is added to the interface,
whereas it is removed when it is above this value. This normalization occurs much more
quickly when Bi is large, and if it is large enough the kinetic flux of the surfactant at
the interface dominates the flux caused by advection or compression (dilatation). As
a consequence, disturbances to a uniform surfactant concentration are smoothed out,
Marangoni flows are diminished and the thread can behave more like a thread of constant
surface tension. The extent to which this effect can affect the thread is not solely dependent
on Bi, which is made clearer here.

Figure 5 displays results for when Pe = 1, χ = 1 and Ma = 10, 25, 50 and 100. We
observe that when Bi is small the stability of the thread is nearly identical to that of a
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Figure 5. Plots of the growth rate Re(s) (scaled by the base case surface tension γ̄ ) versus wavenumber
k for different Biot numbers Bi as labelled. Other parameters are ksurf = 10−2, χ = 1, Pe = 1 and
(a) Ma = 10, (b) Ma = 25, (c) Ma = 50, (d) Ma = 100. The black curves are the numerical solution and the
red dashed lines the analytical. The blue dashed curve is the solution of a clean interface as solved by Tomotika
(1935).

thread with insoluble surfactant, as expected. Then, when Bi increases, the growth rates
approach a limiting curve that differs from that of a clean interface for all values of Ma;
the clean interface result is due to Tomotika (1935) and is superimposed with dashed blue
curves. Figure 6 shows analogous results for the case of Pe = 1 and a much larger value
of χ = 1000. Like the case χ = 1, at small Bi the stability approaches that of an insoluble
surfactant. The clear difference between the case χ = 1 and χ = 1000 is that for the latter
scenario depicted in figure 6, the stability characteristics as Bi → ∞ approach those of a
clean interface for all four values of Ma considered (except for the small k region for Ma =
100). This means that the increase in solubility has completely neutralized the impact of
the surfactant on the stability of the thread. This type of behaviour is completely in line
with the findings of Craster et al. (2009), who showed that an increase in solubility led
to faster breakup of surfactant-laden liquid jets. Interestingly, the case Ma = 100 reveals
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Figure 6. Plots of the growth rate Re(s) (scaled by the base case surface tension γ̄ ) versus wavenumber k
for different Biot numbers Bi as labelled. Other parameters are ksurf = 10−2 χ = 1000, Pe = 1 and Ma = 1.
The black curves are the numerical solution and the red dashed lines the analytical. The blue dashed curve
is the solution of a clean interface as solved by Tomotika (1935). (a) Ma = 10, (b) Ma = 25, (c) Ma = 50,
(d) Ma = 100.

that at this large value of χ it is possible for a thread to exhibit the stability behaviour of
an insoluble surfactant with strong surfactant effects or that of an almost completely clean
interface, depending on the value of the Biot number.

To explain the difference in the behaviour of the thread when χ = 1 versus χ = 1000
at large Bi, we turn to our definitions of the depletion length and radius, L∞ and R∞,
respectively. By holding ksurf = 10−2 constant when χ = 1 gives L∞ = 100, whereas
when χ = 1000 we have L∞ = 0.1. Likewise the depletion radius R∞ is complex when
L∞ = 100 because there is not enough surfactant in the bulk to fill the interface, but when
L∞ = 0.1 we have R∞ ≈ 0.95, meaning the total amount of surfactant located within 5 %
of the radius of the interface could fill the interface. A simple way to understand this is
to note that there is much more surfactant available near the interface when χ = 1000
than when χ = 1, affecting the ability of the bulk to supply surfactant to the thread
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upon perturbation. When χ = 1, even as Bi increases, the limitation of a relatively small
amount of surfactant near the interface means that the interfacial surfactant concentration
can never be made fully uniform by kinetic fluxes, leading to convergence of the curves
in figure 5 that do not overlie the clean solution of Tomotika (1935). However, when
χ = 1000, there is plenty of surfactant in the neighbourhood of the interface that is able
to help make uniform the interfacial concentrations, leading to threads that behave exactly
as those considered by Tomotika (1935) and shown in figure 6.

The most important takeaway from the addition of solubility is that it only acts to
decrease stability from the insoluble limit. This is because, similarly to diffusion (which is
known to decrease stability, see Timmermans & Lister (2002)), solubility acts as a spatially
uniforming flux, causing the surfactant to accumulate more evenly on interfaces. This then
reduces the gradients in surface tension, decreasing the magnitude of the Marangoni flows
that led to the reduction of growth rates in the insoluble problem.

6.4. Two photoswitchable surfactants – uniform base states
In this section we introduce the photosurfactants. Conveniently, before moving to the
general problem, there is a test case that can be solved analytically. This occurs when
the base state concentrations c̄ci and c̄tr are uniform in r, which only occurs when
kci = ktr. The details of the derivation are given in Appendices C and D, where an
analytical dispersion relation is given (solutions must be found numerically using root
finding). Interestingly, the total amount of interfacial surfactant in the base state, defined
as Γ̄tot = Γ̄ci + Γ̄tr, is given by

Γ̄tot = kcic̄ci + ktrc̄tr

1 + kcic̄ci + ktrc̄tr
, (6.14)

and because kci = ktr and c̄ci + c̄tr = 1 (since we have taken Peci = Petr) this reduces to

Γ̄tot = kci

1 + kci
, (6.15)

which is identical to the base state for the single soluble surfactant.
In general, the photosurfactant isomers can be viewed as differing in two critical ways.

First, their solubilities are vastly different as captured by the different Biot numbers.
Second, their tendency to accumulate at the interface differs, as captured by the differing
adsorption/desorption ratios, kci and ktr. This second effect manifests most critically
as different base states, as can be observed in figure 2. From this lens, the case of
kci = ktr considered here is useful in isolating the effect of the different solubilities of
the surfactants on thread stability, since the base states, for a given Ma, are the exact same
for any combination of Biot numbers.

To illustrate the effect of the differing solubilities under different light illuminations,
figure 7 plots four different combinations of Daci and Datr with χci = χtr = 1, kci = ktr =
10, Peci = Petr = 1, Bici = 1, Bitr = Bici/300 and Ma = 10−1. In particular figure 7 shows
that systems where Daci < Datr, ones with more cis isomers than trans, show increased
instability to cases where Daci > Datr. This is because the Damköhler numbers influence
the amount of each type of surfactant in the system, guiding the overall behaviour of the
system towards one type of surfactant or another. Since Bici = 300Bitr, systems with more
cis isomers than trans will behave like a more soluble system which we know increases
instability. Thus, light has the ability to toggle the effective solubility of the surfactant in
the system, giving control over the growth rates of the instability.
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Figure 7. Plot of the growth rate Re(s) scaled by the base case surface tension γ̄ versus the wavenumber k,
for different combinations of Daci and Datr . This is an example where c̄ci and c̄tr are uniform. In this figure
χci = χtr = 100, kci = ktr = 101 and Peci = Petr = 1. The Biot numbers are Bici = 100 and Bitr = Bici/300
with Ma = 10−1. The black lines are the numerical solution and the red dashed lines the analytical.

6.5. Two photoswitchable surfactants – general case
Having addressed several important limits that are amenable analytically, we now turn
to the general case having non-uniform base states and described by the mathematical
model given in § 5. We concentrate on the parameter sets presented in § 4.1 where the base
case c̄ci(r) has been depicted in figure 2 (recall that c̄tr(r) = M − c̄ci(r), and M = 1). The
results are presented around two different plots of growth rates, figures 8 and 9. We set
kci = 10−2 in both, the minimum value of kci considered in figure 2, and plot the growth
rate for different values of Daci and Datr.

Figure 8 corresponds to Ma = 1, and our goal is to showcase the ability to smoothly
change the behaviour of the system between two bounding growth rate curves. The
Damköhler numbers were specifically picked to illustrate this. The maximal value of the
growth rate is achieved when the system is cis-only (shown with plus (+) symbols in the
plot), while the minimum is obtained when it is trans-only (shown with cross (×) symbols
in the plot). By choosing the correct combination of Damköhler numbers it follows that
we can smoothly tune the growth rate curve between these two bounding curves. Notably,
when Daci < Datr the stability nearly matches the solution of cis-type-only isomers and
has relatively large growth rates, showing increased instability. In light of the discussion
in § 6.4 this is perhaps not surprising since cis isomers are more soluble than trans
isomers. However, an additional effect that has not been discussed yet, is the effect of
the differing values of normalized bulk concentration, kci and ktr. The physical constraint
kci < ktr means that, all other things being equal, cis isomers are disproportionately
unlikely to remain on the interface while trans isomers are disproportionately likely to
remain. This phenomenon can be seen in figure 3, where lower values of Γtot are obtained
when Daci < Datr. This means that cis-dominated systems have cleaner interfaces than
trans-dominated ones, a destabilizing effect that adds to the increased instability due to
differing solubilities. Consequently, when Daci > Datr there is a noticeable decrease in
the growth rates of the instability of the system in figure 8, with the behaviour approaching
that of trans-type-only surfactant as Daci becomes large.
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Figure 8. Plot of the growth rate Re(s) scaled by the base state surface tension γ̄ , versus the wavenumber
k for different combinations of Daci and Datr. The Marangoni number is Ma = 1. In this graph kci = 10−2,
ktr = 30kci, Bici = 103, Bitr = Bici/300, χci = 1, χtr = χci/30 and Petr = Peci = 10.

In figure 9 we present results for a larger Marangoni number Ma = 10. There are two
reasons for this. First, for this particular set of parameter values, Ma = 10 generates
a system with the near maximal swing in the stability behaviour between different
illumination states. Second, the larger value of Ma allows us to visualize the effect of
the non-uniformity of the base state on the stability of thread. This is done by keeping
the ratio of Damköhler numbers constant but increasing their absolute value, therefore
decreasing the value of δ and increasing the diffusive flux onto and off of the interface.

To demonstrate the first point, figure 9 displays a system such that when Datr = 10
and Daci = 1 the growth rates nearly match those of the limiting cis-only case, which
itself nearly matches the clean interface solution of Tomotika (1935). On the other hand,
when Datr = 1 and Daci = 10, the stability is more akin to the infinite Ma case studied by
Timmermans & Lister (2002) and depicted in figure 4. This indicates that by judiciously
altering the incident light, the same thread can show the stability behaviour of a thread with
constant surface tension or a rigid thread where large Marangoni forces resist interfacial
dilatation. It should be noted that in figure 9 the trans-only solution is not plotted because
it led to an unphysical negative value of γ̄ . This non-physical manifestation is due to the
limitations of our equation of state (i.e. the model fails when Ma ln(1 − Γ̄ci − Γ̄ci) < −1).

The additional cases of increasing, but equal Damköhler numbers included in figure 9
are included to demonstrate the effect of the non-uniform nature of the base state bulk
surfactant concentrations. When Daci = Datr, there are equal total amounts of each
surfactant in the bulk and identical ‘far-field’ (i.e. away from the interface) characteristics,
with the primary difference being the thickness of the diffusive boundary layer at the
interface which scales with (Datr + Daci)

−1/2. Figure 9 reveals that the growth rates
increase slightly as the Damköhler numbers (and therefore reaction rates) grow and Daci =
Datr, indicating that increasing intensity of light illumination has a slight destabilizing
effect. This effect appears to be a minor one compared with simply using differing
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Figure 9. Plot of growth rate Re(s) scaled by the base case surface tension γ̄ , versus wavenumber, for different
combinations of Daci and Datr. The Marangoni number is Ma = 10. In this plot kci = 10−2, ktr = 30kci, Bici =
103, Bitr = Bici/300, χci = 1, χtr = χci/30 and Petr = Peci = 10. The trans-only curve is not included due to
limitations in the Langmuir equation of state (γ̄ was negative).

values of Damköhler numbers, but is interesting nonetheless. To help further explain this,
figure 10 looks at the relationship between the Damköhler numbers and the perturbation
interfacial surfactant concentrations for the parameter set of figure 9, and with k = 0.1.
Clearly, as the Damköhler numbers grow, the total interfacial surfactant concentration
perturbation decreases. This effectively lowers the magnitude of Marangoni stress acting
on the surface of the thread, negatively affecting the ability of the surfactant to resist
dilation and compression of the interface and leading to larger growth rates. This decrease
in surfactant concentration when Damköhler numbers are equal and grow is also seen in
the total interfacial surfactant concentration in the undisturbed state as discussed in § 4.
Interestingly, at extremely large Damköhler numbers figure 10 shows that Γ̂ci ≈ Γ̂tr. This
is a regime where the system is dominated by the photoisomerization of the surfactants,
which, since Daci = Datr, means the surfactant concentrations must be equal.

As a final remark on figures 8 and 9, both plots display growth rates normalized by the
base state surface tension values γ̄ . This normalization was adopted to allow comparison
between cases since different Damköhler numbers create significantly different base states
in this general problem – for example, many of the cases included in figure 8 can be found
in figure 3a. In practice, the difference in actual growth rates between the different curves
is actually exacerbated. This is due to the fact that trans-dominated systems have a more
packed interface than cis-dominated ones, so as we traverse the growth rate curves in
figures 8 and 9 from top to bottom, the value of Γtot increases and therefore γ̄ decreases.
Therefore, the real growth rates of trans-dominated threads are even smaller compared
with cis-dominated ones than is depicted in the normalized results of figures 8 and 9,
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Figure 10. Plot of perturbation interfacial surfactant concentrations versus Damköhler number when Daci =
Datr . The solid line is total interfacial surfactant and the dashed and dot–dash lines are trans and
cis concentrations, respectively. The Marangoni number is Ma = 10 and we have selected k = 0.1 as a
representative value. In this plot kci = 10−2, ktr = 30 kci, Bici = 103, Bitr = Bici/300, χci = 1, χtr = χci/30
and Petr = Peci = 10.

suggesting a larger real-world effect of light illumination than that apparent from the
depiction of the data.

7. Conclusion

This paper concerns the impact of light-switchable photosurfactants on the canonical
problem of the linear stability of a liquid thread or jet. These surfactants are unique
because they can be reversibly switched between two stable states, cis or trans, which show
markedly different interfacial properties. As a consequence, the surface tension of systems
can be altered simply by illumination with light of different wavelengths and intensities. To
understand their impact on a liquid thread, we used normal modes to derive a linear system
that included photoisomerization or light-induced switching of these surfactants under
constant illumination. The steady states (base cases) for the bulk surfactants in this system
were shown to be non-uniform, in general, with the two surfactant isomers displaying
counter-diffusion in the radial direction. This is due to the light-induced switching in
combination with the differing interfacial properties of the two types, which ensures that
the individual surfactants never achieve equilibrium under illumination. The linear system
was treated as an eigenvalue problem to solve for the growth rate of the thread instability.

We compared our results with the canonical clean interface solution of Tomotika (1935)
and solutions for insoluble surfactants by Timmermans & Lister (2002). Additionally,
comparisons were made with two analytical solutions: first, a derived solution for soluble
surfactants, and second a new solution for photosurfactants in which the steady base
case is uniform. These comparisons aided in a discussion of the multitude of the effects
surfactants can have on the capillary instabilities of a liquid thread, in addition to validating
our numerical work.
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The growth rates of a thread containing photosurfactants were shown to vary smoothly
between those for a thread containing only cis or trans isomers, depending on how the
thread was illuminated. In some cases, this meant that the thread could transition from
behaving as if its interface were perfectly clean to one where the interface was completely
rigidified by surfactants. This is a potentially powerful result and clearly points to the
promising impacts of these surfactants as sources of control of interfacial fluid systems.

Future directions where photosurfactants may be even more impactful, include the
relaxation of the assumption of constant illumination. Illumination of the thread with
light gradients will also induce axial surfactant gradients that generate the Marangoni
stresses that are so vital to the stability of the surfactant-laden thread. When combined
with active control protocols based on light illumination, these surfactants may be able
to delay the onset of instability. This could have an impact on numerous engineering
applications such as inkjet printing (Basaran, Gao & Bhat 2013; Lohse 2022). Certainly
too, surface rheology effects should be included in future work. Most interestingly, the
surface rheology of the two isomer types could be quite different, possibly exacerbating
the difference in the behaviour of the thread under different illumination conditions.
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Appendix A. Solution of base case

To solve the system given by (4.1)–(4.6) (where we drop the bars for brevity) we will first
look at the equations for the bulk surfactants which we recast as

1
r

d
dr

(
r

dc
dr

)
+ Ac = 0, (A1)

where c = [ctr, cci] and

A =
[−DatrPetr DaciPetr

DatrPeci −DaciPeci

]
. (A2)

The eigenvalues λ of the matrix A satisfy the equation

λ (λ+ DatrPetr + DaciPeci) = 0, (A3)

with solutions λ1 = 0 and λ2 = −(DatrPetr + DaciPeci). The corresponding eigenvalue
and eigenvector matrices are then

D =
[

0 0
0 λ2

]
, P =

⎡⎣Daci

Datr

Petr

Peci
1 −1

⎤⎦ . (A4a,b)
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Then since A = PDP−1, the system given by (A1) can be recast as

1
r

d
dr

(
r

dP−1c
dr

)
+ DP−1c = 0, (A5)

P−1 = 1
Daci/Datr + Petr/Peci

⎡⎢⎢⎣1
Petr

Peci

1 −Daci

Datr

⎤⎥⎥⎦ . (A6)

This creates two linearly independent equations

1
r

d
dr

(
r

d (ctr + ηcci)

dr

)
= 0, (A7)

1
r

d
dr

(
r

d (ctr − αcci)

dr

)
− ζ (ctr − αcci) = 0, (A8)

where ζ = −λ2. Then the solutions, regular at r = 0, to this pair of equations are given by

ctr + ηcci = M, (A9)

ctr − αcci = C0I0(
√
ζ ), (A10)

where M is an unknown constant related to the total amount of surfactant in the system,
η = Petr/Peci is a ratio of Peclét numbers, α = Daci/Datr is a ratio of the light intensities
and ζ = DatrPetr + DaciPeci. Lastly, C0 is a constant to be determined from the conditions
at r = 1. Expressions for the bulk surfactant concentrations are given by

ctr = ηC0I0(
√
ζ r)+ αM

η + α
, (A11)

cci = M − C0I0(
√
ζ r)

η + α
. (A12)

From (4.5) and (4.6) we can write down equations for the interfacial surfactants. These are

Γtr = 1
1 + ktrctr

[
χtrktr

BitrPetr

dctr

dr
+ ktrctr (1 − Γci)

]
, (A13)

Γci = 1
1 + kcicci

[
χcikci

BiciPeci

dcci

dr
+ kcicci (1 − Γtr)

]
. (A14)

Eliminating Γci, we get

Γtr = 1
1 + ktrctr

[
χtrktr

BitrPetr

dctr

dr
+ ktrctr

(
1 − 1

1 + kcicci

[
χcikci

BiciPeci

dcci

dr
+ kcicci (1 − Γtr)

])]
.

(A15)

Then rearranging,

Γtr

(
1 + ktrctr − ktrctrkcicci

1 + kcicci

)
=
[
χtrktr

BitrPetr

dctr

dr

+ ktrctr

(
1 − 1

1 + kcicci

[
χcikci

BiciPeci

dcci

dr
+ kcicci

])]
. (A16)
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Multiplying through by 1 + kcicci,

Γtr [(1 + kcicci) (1 + ktrctr)− ktrctrkcicci] =
[
(1 + kcicci) χtrktr

BitrPetr

dctr

dr

+ ktrctr

(
(1 + kcicci)−

[
χcikci

BiciPeci

dcci

dr
+ kcicci

])]
, (A17)

which can be simplified to

Γtr [1 + kcicci + ktrctr] =
[
(1 + kcicci) χtrktr

BitrPetr

dctr

dr
− ktrctrχcikci

BiciPeci

dcci

dr
+ ktrctr

]
. (A18)

Now, knowing that at steady state there can be no accumulation on the interface, then

χtrktr

Petr

dctr

dr
= −χcikci

Peci

dcci

dr
, (A19)

which can also be verified in the solutions. This means the formula for Γtr can be further
simplified to

Γtr =

(
1

Bitr
+ kcicci

Bitr
+ ktrctr

Bici

)
χtrktr

Petr

dctr

dr
+ ktrctr

1 + kcicci + ktrctr
, (A20)

and likewise

Γci =

(
1

Bici
+ kcicci

Bitr
+ ktrctr

Bici

)
χcikci

Peci

dcci

dr
+ kcicci

1 + kcicci + ktrctr
. (A21)

Our attention now turns to the last two equations in our system – they are in fact both the
same due to mass conservation – given by

Das,trΓtr − Das,ciΓci − kciχci

Peci

dcci

dr
= 0. (A22)

This takes the form[
−Das,tr

Bitr
− Das,ci

Bici
− (

Das,tr + Das,ci
) (kcicci

Bitr
+ ktrctr

Bici

)
− 1 − kcicci − ktrctr

]
× kciχci

Peci

dcci

dr
+ Das,trktrctr − Das,cikcicci = 0, (A23)

which cannot be simplified much further. The next step is to substitute for the bulk
concentrations and derive an equation for the unknown coefficient C0. To do so, we require
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(each evaluated on r = 1)

ctr = ηC0I0(
√
ζ )+ αM

η + α
, (A24)

cci = M − C0I0(
√
ζ )

η + α
, (A25)

dcci

dr
= −√

ζC0I1(
√
ζ )

η + α
, (A26)

dctr

dr
=

√
ζηC0I1(

√
ζ )

η + α
, (A27)

cci
dcci

dr
= −√

ζC0MI1(
√
ζ )+ √

ζC2
0I0(

√
ζ )I1(

√
ζ )

(η + α)2
, (A28)

ctr
dcci

dr
= −√

ζαC0MI1(
√
ζ )− √

ζηC2
0I0(

√
ζ )I1(

√
ζ )

(η + α)2
. (A29)

The final equation for C0 is obviously quadratic. The solutions are thus

C0 = −b ± √
b2 − 4ac

2a
, (A30)

where

a =
[(

ktrη

Bici
− kci

Bitr

) (
Das,ci + Das,tr

)− kci + ktr

]
kciχci

√
ζ

Peci (η + α)
I1(
√
ζ )I0(

√
ζ ), (A31)

b =
[

1 + Das,tr

Bitr
+ Das,ci

Bici
+ (

Das,ci + Das,tr
) ( ktrαM

Bici (η + α)
+ kciM

Bitr (η + α)

)
+M (kci + ktrα)

η + α

]
kciχci

√
ζ

Peci
I1(
√
ζ )+ (

Das,cikci + Das,trηktr
)

I0(
√
ζ ), (A32)

c = (
Das,trktrα − Dac,ciskci

)
M. (A33)

The physically relevant solution is the (+) branch as the (−) leads to either bulk surfactant
values below 0 or interfacial surfactant values below 0.

A.1. Determination of the sign of C0

It is clear by inspection of (A12) that when C0 < 0, then dc̄ci/dr is positive, implying
diffusion of cis isomers off the interface and trans isomers onto the interface. Given that
b > 0 (see (A32)), we conclude that C0 < 0 when a and c are both positive or both
negative. From (A33) we see that c > 0 when ktr > kci, and c < 0 when ktr < kci, and
hence in our case c is always positive. The determination of the sign is left to the sign of a
given by (A31). We assume now that the bulk and interfacial Damköhler numbers are the
same. Since I0(

√
ζ ) and I1(

√
ζ ) are always positive, we only need to examine the term in

square brackets in (A31). It can be easily shown that

a > 0 if ktr

(
Daci + Datr

Bitr
+ 1

)
> kci

(
Daci + Datr

Bici
+ 1

)
. (A34)

Since the parameters in table 2 restrict ktr > kci and Bici > Bitr, then (A34) always holds,
meaning that dc̄ci/dr > 0 as seen in the results of figure 2. The result is that at steady state
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Parameters Value Reference

ρ∗ 997 kg m−3 —
ν∗(= μ∗/ρ∗) 1.0035 mm2 s−1 —
D∗

ci 9.00 × 10−10 m2 s−1 Chevallier et al. (2011, p. 5)
D∗

tr 9.00 × 10−10 m2 s−1 Chevallier et al. (2011, p. 5)
D∗

s,ci same as D∗
tr —

D∗
s,tr same as D∗

tr —
ε∗tr(330 nm) ≈2150 m2 mol−1 Chevallier et al. (2011, figure A)
ε∗ci(330 nm) ≈900 m2 mol−1 Chevallier et al. (2011, figure A)
ε∗tr(440 nm) ≈230 m2 mol−1 Chevallier et al. (2011, figure A)
ε∗ci(440 nm) ≈300 m2 mol−1 Chevallier et al. (2011, figure A)
φci−tr 0.50 Chevallier et al. (2011, p. 3)
φtr−ci 0.65 Chevallier et al. (2011, p. 3)
Γ ∗∞ 8.0 µmol m−2 Chevallier et al. (2011, p. 4)
ktr∗

a 4.38 × 103 m3 mol−1 s−1 Chevallier et al. (2011, p. 6)
ktr∗

d 6.88 s−1 Chevallier et al. (2011, p. 6)
kci∗

a 4.38 × 104 m3 mol−1 s−1 Chevallier et al. (2011, p. 6)
kci∗

d 2.06 × 103 s−1 Chevallier et al. (2011, p. 6)
n 2 Chevallier et al. (2011, p. 4)

Table 2. Representative parameter values taken from Chevallier et al. (2011). Relevant to this manuscript are
the ratios of the adsorption and desorption coefficients and that the diffusion coefficients are equal.

cis isomers will always have a net desorption off the interface and trans isomers will have
a net adsorption onto the interface.

A.2. Linear validation
An analytical way to verify our nonlinear solutions for C0, is to consider a linear kinetic
scheme valid when the interfacial surfactant concentrations are small. This results in the
boundary conditions

χtrktr

Petr

dc̄tr

dr
= −Bitr

[
ktrc̄tr − Γ̄tr

]
, r = 1, (A35)

χcikci

Peci

dc̄ci

dr
= −Bici

[
kcic̄ci − Γ̄ci

]
, r = 1. (A36)

In this case the constant C0 is denoted by C0,lin and is given by

C0,lin =
(−Das,trktrα + Das,cikci

)
M

kciχci

Peci
(1 + Daci/Bitr + Datr/Bici)

√
ζ I1(

√
ζ )+ (

Das,trktrη + Das,cikci
)

I0(
√
ζ )

.

(A37)

Notably, C0,lin can be derived by taking the limit of C0 when kci 	 1 (in which case C0 =
−c/b). Figure 11 plots C0 and C0,lin as functions of kci for the case of Daci = Datr = 1 as
discussed above. The linear and nonlinear coefficients show excellent agreement for small
kci, but they move apart as kci increases and the assumption of linear kinetics is no longer
valid, as expected, with C0 approaching 0 as kci → ∞.
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–0.05

–0.04
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Figure 11. Plot comparing C0 and C0lin as kci changes for Datr = Daci = 1. In this graph 30kci = ktr ,
Bici = 103, Bitr = 3.33, χci = 1, χtr = 30 and Petr = Peci = 10.

Appendix B. Derivation of the stress boundary conditions

To begin we define a stream function ψ given by

û = − ik
r
ψ̂, ŵ = 1

r
dψ̂
dr
. (B1a,b)

After insertion and eliminating pressure, the Stokes equations collapse to(
d2

dr2 − 1
r

d
dr

− k2
)2

ψ̂ = 0, (B2)

which is readily shown to have a solution

ψ̂ = C1(k)rI1(kr)+ C2(k)r2I0(kr), (B3)

where the modified Bessel functions k0 and k1 have been thrown out by regularity at r = 0.
The pressure is given by z-momentum equation as(

d2

dr2 + 1
r

d
dr

− k2
)(

1
r

dψ̂
dr

)
= ikp̂; (B4)

then,

p̂ = 1
ik

[
1
r

d3ψ̂

dr3 − 1
r2

d2ψ̂

dr2 +
(

1
r3 − k2

r

)
dψ̂
dr

]
. (B5)

The hydrodynamic boundary conditions are given by

p̂ − 2
dû
dr

= γ̄
(−Ŝ + k2Ŝ

)+ γ̂ ,
dŵ
dr

+ ikû = − ikMa
1 − Γ̄ci − Γ̄tr

(
Γ̂ci + Γ̂tr

)
. (B6a,b)

983 A10-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.88


Stability of a photosurfactant-laden viscous thread

Since

û = − ik
r
ψ̂, (B7)

this means that the normal stress condition is

1
ik

[
1
r

d3ψ̂

dr3 − 1
r2

d2ψ̂

dr2 +
(

1
r3 − k2

r

)
dψ̂
dr

]
+ 2ik

1
r

dψ̂
dr

− 2ik
1
r2 ψ̂ = γ̄ Ŝ

(
k2 − 1

)+ γ̂ .

(B8)
Since

ŵ = 1
r

dψ̂
dr
, (B9)

the tangential boundary condition becomes

1
r

d2ψ̂

dr2 − 1
r2

dψ̂
dr

+ k2

r
ψ̂ = − ikMa

1 − Γ̄ci − Γ̄tr

(
Γ̂ci + Γ̂tr

)
. (B10)

These two conditions are evaluated at r = 1 so this means that the normal stress condition
is

1
ik

[
d3ψ̂

dr3 − d2ψ̂

dr2 + (
1 − 3k2) dψ̂

dr
+ 2k2ψ̂

]
− γ̂ = γ̄ Ŝ

(
k2 − 1

)
. (B11)

The tangential boundary condition becomes

d2ψ̂

dr2 − dψ̂
dr

+ k2ψ̂ = − ikMa
1 − Γ̄ci − Γ̄tr

(
Γ̂ci + Γ̂tr

)
. (B12)

These two conditions can be used to solve for C1(k) and C2(k).

Appendix C. Solution of bulk surfactants

The bulk equations are given by

sĉtr + û
dc̄tr

dr
= 1

Petr

(
d2ĉtr

dr2 + 1
r

dĉtr

dr
− k2ĉtr

)
− Datrĉtr + Daciĉci, (C1)

sĉci + û
dc̄ci

dr
= 1

Peci

(
d2ĉci

dr2 + 1
r

dĉci

dr
− k2ĉci

)
− Daciĉci + Datrĉtr. (C2)

To determine two linearly independent solutions, we cast this system into matrix form as

1
r

d
dr

(
r

dĉ
dr

)
+ Aĉ = F , (C3)

where ĉ = [ĉtr, ĉci] and

A =
[−DatrPetr − sPetr − k2 DaciPetr

DatrPeci −DaciPeci − sPeci − k2

]
, (C4)

and

F =
[

Petrûdc̄tr/dr
Peciûdc̄ci/dr

]
. (C5)
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Here A has two unique eigenvalues which we call λ1 and λ2 given by

λ1 = − (sPeci + k2), (C6)

λ2 = − [(s + Datr)Petr + DaciPeci + k2]. (C7)

The eigenvector matrix P is

P =
⎡⎣ Daci

Datr
−DatrPetr + s (Peci − Petr)

DatrPeci
1 1

⎤⎦ . (C8)

Then, we cast recast our system as

1
r

d
dr

(
r

dP−1ĉ
dr

)
+ DP−1ĉ = P−1F , (C9)

where

P−1 = 1
Daci

Datr
+ DatrPetr + s (Peci − Petr)

DatrPeci

⎡⎢⎣ 1
DatrPetr + s (Peci − Petr)

DatrPeci

−1
Daci

Datr

⎤⎥⎦ .
(C10)

Then our equations become

1
r

d
dr

(
r

d
(
ĉtr − β ĉci

)
dr

)
+ λ1

(
ĉtr + β ĉci

) = Petr

(
û

dc̄tr

dr
− ûβ

dc̄ci

dr

)
, (C11)

1
r

d
dr

(
r

d
(−ĉtr + αĉci

)
dr

)
+ λ2

(−ĉtr + αĉci
) = Peci

(
−û

dc̄tr

dr
+ ûα

dc̄ci

dr

)
, (C12)

where

β = DatrPetr + s (Peci − Petr)

DatrPeci
, (C13)

and

α = Daci

Datr
. (C14)
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Appendix D. Solution of dispersion relation for uniform base states

The base states are exactly uniform only when kci = ktr. In this case the bulk surfactant
equations (C11) and (C12) reduce to

1
r

d
dr

(
r

d
(
ĉtr + β ĉci

)
dr

)
+ λ1

(
ĉtr + β ĉci

) = 0, (D1)

1
r

d
dr

(
r

d
(−ĉtr + αĉci

)
dr

)
+ λ2

(−ĉtr + αĉci
) = 0, (D2)

which can be solved analytically to give

ĉtr + β ĉci = C5I0(
√

−λ1r), (D3)

ĉtr − αĉci = C6I0(
√

−λ2r), (D4)

after applying the condition of regularity at the origin. Subtracting the first from the second
we can solve for the two surfactant equations as

ĉci = C5I0(
√−λ1r)− C6I0(

√−λ2r)
β + α

, (D5)

ĉtr = αC5I0(
√−λ1r)+ βC6I0(

√−λ2r)
β + α

. (D6)

The boundary conditions on the surfactants require that

kciχci

Peci

dĉci

dr
= −Ĵci,

ktrχtr

Petr

dĉtr

dr
= −Ĵtr, (D7a,b)

where the linear kinetic schemes are given by

Ĵci = Bici
[
kcic̄ci(−Γ̂tr − Γ̂ci)+ kciĉci

(
1 − Γ̄ci − Γ̄tr

)− Γ̂ci
]
, (D8)

Ĵtr = Bitr
[
ktrc̄tr(−Γ̂tr − Γ̂ci)+ ktrĉtr

(
1 − Γ̄tr − Γ̄ci

)− Γ̂tr
]
. (D9)

These can be rearranged to give

kciχci

Peci

dĉci

dr
+ Bicikciĉci

(
1 − Γ̄ci − Γ̄tr

) = −Bici
[
kcic̄ci(−Γ̂tr − Γ̂ci)− Γ̂ci

]
, (D10)

ktrχtr

Petr

dĉtr

dr
+ Bitrktrĉtr

(
1 − Γ̄ci − Γ̄tr

) = −Bitr
[
ktrc̄tr(−Γ̂tr − Γ̂ci)− Γ̂tr

]
. (D11)

The coefficients are then given by

C5 = ωciC6 + (β + α)Bici
[
kcic̄ciΓ̂tr + (1 + kcic̄ci) Γ̂ci

]
δci

, (D12)

C6 = −αδtrC5 + (β + α)Bitr
[
ktrc̄trΓ̂ci + (1 + ktrc̄tr) Γ̂tr

]
βωtr

, (D13)
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where

δci = kciχci

Peci

√
−λ1I1(

√
−λ1)+ Bicikci

(
1 − Γ̄ci − Γ̄tr

)
I0(
√

−λ1), (D14)

δtr = ktrχtr

Petr

√
−λ1I1(

√
−λ1)+ Bitrktr

(
1 − Γ̄ci − Γ̄tr

)
I0(
√

−λ1), (D15)

ωci = kciχci

Peci

√
−λ2I1(

√
−λ2)+ Bicikci

(
1 − Γ̄ci − Γ̄tr

)
I0(
√

−λ2), (D16)

ωtr = ktrχtr

Petr

√
−λ2I1(

√
−λ2)+ Bitrktr

(
1 − Γ̄ci − Γ̄tr

)
I0(
√

−λ2), (D17)

which reduce to

C5 = (β + α)
(
βωtrBici

[
kcic̄ciΓ̂tr + (1 + kcic̄ci) Γ̂ci

]+ ωciBitr
[
ktrc̄trΓ̂ci + (1 + ktrc̄tr) Γ̂tr

])
βδciωtr + αδtrωci

,

(D18)

C6 = (β + α)
(−αδtrBici

[
kcic̄ciΓ̂tr + (1 + kcic̄ci) Γ̂ci

]+ δciBitr
[
ktrc̄trΓ̂ci + (1 + ktrc̄tr) Γ̂tr

])
βδciωtr + αδtrωci

,

(D19)

written in terms of the unknown variables Γ̂tr and Γ̂ci.
The interfacial surfactants Γ̂tr and Γ̂ci are governed by conservation equations

sΓ̂ci + ikŵΓ̄ci + ûΓ̄ci = − k2

Pes,ci
Γ̂ci + Ĵci − DaciΓ̂ci + DatrΓ̂tr, (D20)

sΓ̂tr + ikŵΓ̄tr + ûΓ̄tr = − k2

Pes,tr
Γ̂tr + Ĵtr − DatrΓ̂tr + DaciΓ̂ci, (D21)

where

û = − ik
r
ψ̂, ŵ = 1

r
dψ̂
dr
, (D22a,b)

and

ψ̂ = C1(k)rI1(kr)+ C2(k)r2I0(kr). (D23)

The normal stress condition is

1
ik

[
d3ψ̂

dr3 − d2ψ̂

dr2 + (
1 − 3k2)dψ̂

dr
+ 2k2ψ̂

]
= γ̄ Ŝ

(
k2 − 1

)− Ma

(
Γ̂ci + Γ̂tr

1 − Γ̄ci − Γ̄tr

)
,

(D24)

and the tangential boundary condition is

d2ψ

dr2 − dψ
dr

+ k2ψ̂ = − ikMa
1 − Γ̄ci − Γ̄tr

(
Γ̂ci + Γ̂tr

)
. (D25)
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Stability of a photosurfactant-laden viscous thread

This becomes

ik2 [I2(k)+ I0(k)] C1(k)+ 2ik2I1(k)C2(k)

= γ̄ Ŝ
(
k2 − 1

)− Ma

(
Γ̂ci + Γ̂tr

1 − Γ̄ci − Γ̄tr

)
, (D26)

2k2I1(k)C1(k)+ 2k [I1(k)+ kI0(k)] C2(k) = − ikMa
(
Γ̂ci + Γ̂tr

)
1 − Γ̄ci − Γ̄tr

. (D27)

Inserting û = sŜ gives

ik

[
kI2(k)+ kI0(k)+ I1(k)

γ̄
(
k2 − 1

)
s

]
C1(k)

+
[

2ik2I1(k)+ ikI0(k)
γ̄
(
k2 − 1

)
s

]
C2(k) = −Ma

(
Γ̂ci + Γ̂tr

1 − Γ̄ci − Γ̄tr

)
, (D28)

2k2I1(k)C1(k)+ 2k [I1(k)+ kI0(k)] C2(k) = − ikMa
(
Γ̂ci + Γ̂tr

)
1 − Γ̄ci − Γ̄tr

. (D29)

These coefficients can be written as

C1(k) = − iMa
(
Γ̂ci + Γ̂tr

)
2k
(
1 − Γ̄ci − Γ̄tr

)

×

[(
2 + γ̄

(
k2 − 1

)
s

)
kI0(k)+ 2

(
k2 + 1

)
I1(k)

]
(
−2k2 + γ̄

(
k2 − 1

)
s

)
I1(k)2 + k2I0(k) (I0(k)+ I2(k)) + kI1(k) (I0(k)+ I2(k))

,

(D30)

C2(k) = iMa
(
Γ̂ci + Γ̂tr

)
2
(
1 − Γ̄ci − Γ̄tr

)

×

((
2 + γ̄

(
k2 − 1

)
s

)
I1(k)+ kI0(k)+ kI2(k)

)
(
−2k2 + γ̄

(
k2 − 1

)
s

)
I1(k)2 + k2I0(k) (I0(k)+ I2(k)) + kI1(k) (I0(k)+ I2(k))

.

(D31)

Returning to the interfacial surfactant equations

sΓ̂ci + ikŵΓ̄ci + ûΓ̄ci = − k2

Pes,ci
Γ̂ci − kciχci

Peci

dĉci

dr
− DaciΓ̂ci + DatrΓ̂tr, (D32)

sΓ̂tr + ikŵΓ̄tr + ûΓ̄tr = − k2

Pes,tr
Γ̂tr − ktrχtr

Petr

dĉtr

dr
− DatrΓ̂tr + DaciΓ̂ci (D33)
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which can now be written entirely in terms of the two interfacial surfactants and the
eigenvalue. We can recast the system into a 2 × 2 matrix equation[

Γ̃c,c Γ̃c,t
Γ̃t,c Γ̃t,t

] [
Γ̂ci

Γ̂tr

]
=
[

0
0

]
, (D34)

where Γ̃i,j refers to the contribution of surfactant j to the equation for surfactant i. Since
the velocity coefficients and bulk surfactant coefficients have been determined entirely in
terms of Γ̂tr and Γ̂ci , Γ̃i,j contains all information for the equations. The determinant of
this matrix must be zero, giving a nonlinear equation for s, which can be easily solved with
any nonlinear equation solver.
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