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Abstract. The first part of this work is devoted to the study of higher derivatives of pressure
functions of Holder potentials on shift spaces with finitely many symbols. By describing
the derivatives of pressure functions via the central limit theorem for the associated random
processes, we discover some rigid relationships between derivatives of various orders. The
rigidity imposes obstructions on fitting candidate convex analytic functions by pressure
functions of Holder potentials globally, which answers a question of Kucherenko and Quas.
In the second part of the work, we consider fitting candidate analytic germs by pressure
functions of locally constant potentials. We prove that all 1-level candidate germs can be
realised by pressures of some locally constant potentials, as long as the number of symbols
in the symbolic set is large enough. There are also some results on fitting 2-level germs by
pressures of locally constant potentials obtained in the work.
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1. Introduction

This work deals with traditional topics in thermodynamic formalism [Bow, Ruel], which
originates from theoretical physics. We focus on shift spaces with finitely many symbols
here, which model dynamics of some smooth systems such as Axiom-A diffeomorphisms
through Markov partitions. Given a symbolic set A of finitely many symbols and a con-
tinuous potential (observable) ¢ on the shift space AN, a core concept in thermodynamic
formalism is the pressure P (¢). People are particularly interested in the pressure function
P(t¢) with the variable > 0 representing the inverse temperature. A sharp change in the
pressure function (or other terms) is usually termed a phase transition as ¢ varies, see for
example [IT1, IT2, KQW, Lopl, Lop2, Sar].

Check f
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For Holder continuous potentials, Ruelle [Rue2] proved that the pressure function
P(t¢) is analytic for ¢ € (0, co) (in fact, he proved that P(y) depends analytically on
¥ for ¥ in the Holder space C(X) with X being a transitive subshift space of finite type
and 0 < h < 1 being the exponent [GT]). A key ingredient in his proof is the use of the
Ruelle (transfer) operator [BDL, GLP] acting on functions in the Holder space. Moreover,
the equilibrium measure of 7¢ for any # > 0 and Holder potential ¢ is always unique, so
there are in fact no phase transitions in this case. Let
d"P(t¢)

dt"
be the nth derivative of the pressure function P (t¢) with respect to ¢ € (0, co) for some
fixed Holder potential ¢p. We also write

PO =P @), PPw)=P'@1), PP0)=P"1),...

P™ () = P (1g) =

intermittently in the following. We discover that there is some rigid relationship between
the derivatives of the pressure function.

THEOREM 1.1. For a Holder potential ¢ on a full shift space with finitely many symbols,
let P(t) = P(t¢) be its pressure. Then there exists some positive number My depending
on ¢, such that

V2r3(PP )2 1P (1)) < 9P (1) + 2| PP (1) + 3V2m3 My (PP (1)) (1)
foranyt > 0.

The constants are chosen for convenience rather than optimality. It would be difficult to
obtain explicit optimal bounds, which is not required for our application here.

A potential ¢ is said to be generic (or we say it defines a non-lattice distribution, cf.
[CP, Fel, PP)) if for any normalised potential ¥, the spectral radius of the complex Ruelle
operator Ly 44 is less than 1 for any ¢ # 0. These potentials form an open dense set. In
particular, the complement is nowhere dense and closed (in both the uniform and Holder
norms) since any function in this complementary set is necessarily cohomologous to a
function in C (A%, 27 7Z), up to a constant. For pressure functions of generic potentials, the
following bounds hold.

THEOREM 1.2. For a generic Holder potential ¢ on a full shift space with finitely many
symbols, let P(t) = P(tp) be its pressure. Then there exists some positive number M
depending on ¢, such that

1P — V2r (PP (1)) < 3Ms PP (1) (1.2)
foranyt > 0.

This means the second derivative of the pressure function of a generic Holder potential
imposes some global subtle restriction on its third derivative. It would be interesting to
try to interpret the meaning of P”(t) = 1/~/2m for the pressure function at individual
parameters. Let o : AN — AN denote the shift map. Both the proofs of Theorems 1.1 and
1.2 require use of the Ruelle operator and the central limit theorem (CLT) for the process
{f o 0"} en, with the latter one depending on a finer CLT in the generic case. Recall that
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Rigidity of pressures of Holder potentials 3

there are some expressions on the higher derivatives of the pressure function by Kotani
and Sunada in [KS1] for smooth systems, and we refer the readers to [KS2] for a CLT for
random walks on crystal lattices.

It is well known that P(t¢) is convex and Lipschitz for continuous ¢, moreover, the
supporting lines of its graph must intersect the vertical axis in a closed bounded interval
in [0, 0o). Kucherenko and Quas have shown that any such function can be realised by the
pressure function of some continuous potential on some shift space [KQ1, Theorem 1],
whose result fits into Katok’s flexibility programme [BKR]. However, the continuous
potentials constructed in their work are not Holder, so they ask the following question
(their original problem is set in the multidimensional case).

Problem 1.3. (Kucherenko and Quas) Can a convex, Lipschitz analytic function with its
supporting lines intersecting the vertical axis in a closed bounded interval in [0, co) be
realised by the pressure function of some Holder potential on some shift space with finite
symbols?

In this work, we are dedicated to an answer to their problem. We first point out that
any convex, Lipschitz analytic function with its supporting lines intersecting the vertical
axis in a closed bounded interval in [0, 0o) can be approximated by sequences of pressure
functions of locally constant potentials (a potential ¢ : A” — R is locally constant if there
exists some integer k > 0 such that for any x = - - - x_jxox; - - - € AZ, the value ¢(x)
depends only on the terms x_g, . . ., xx) on some shift space with finitely many symbols.

COROLLARY 1.4. Let F(t) be a convex Lipschitz function on (o, 00) for some o > 0 with
Lipschitz constant L > 0, such that its supporting lines intersect the vertical axis in [y, V]
withQ <y <y < oo. Then there exists a sequence of locally constant potentials {gbn_},‘:o:l
on some shift space with finite symbols, such that

Jm P(t¢n) = F(1) (1.3)
foranyt € (a, 00).
Proof. This is an instant corollary of the result of Kucherenko and Quas in [KQ1]. Let
A=1{0,1,...,e"]} x {lyd, ... v x{L—=L], ..., L1},

where | | and [ ] represent the floor and ceiling function, respectively. According to [KQ1,
Theorem 1], there exists a continuous potential ¢ : AZ — R, such that

P(t¢r) = F(1)
on (o, 00). Now let
Gn(x) = ¢n—(x) = inf{Ppr(x) : x € [x_pXx_pt1 - X1}

forany x =« - X_(u41)X—n -+ XnXpg1 - € AZ and n € N, where [X_pnx_pnt1 - X0l
means the corresponding cylinder set. Here ¢, is a locally constant potential for any fixed
n. Now fix t € (o, 00) by properties of the pressure function (see for example [Ruel, 6.8]),

|P(tpn) — P(tpp)| < |t] || n — @F lloo- (14)

Since ¢ is continuous, this implies equation (1.3). O]
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One can see that in the above proof, the increasing sequence of pressures { P (1@, —) }neN
satisfies

P(t¢n-) /" F(1)

as n — oo since {¢, _},en 1S an increasing sequence tending to ¢r (see [Wall,
Theorem 9.7(ii)]). Alternatively, one can take

Gn+(x) =sup{dr(x) 1 x € [x_px_py1 - - X0},

which results in a decreasing sequence of locally constant potentials approximating

¢F(x), or

On,— (x) + Gy (x)
5 s

which also results in a sequence of locally constant potentials approximating ¢ (x), while
their pressure functions both approximate F(¢). See Corollary 5.4 for an interpretation of
the result from another point of view.

¢n,:|: (x) =

Remark 1.5. The convergence in Corollary 1.4 is uniform for ¢ in a bounded domain since
AZ is a compact metric space by equation (1.4).

Remark 1.6. A locally constant potential is of course Holder, so according to Ruelle’s
result, the pressure functions {P (t¢,,—)}nen are all analytic.

The following result confirms that some convex analytic functions cannot be fitted by
the pressure of any Holder potential on any shift space, which gives a negative answer to
Problem 1.3.

THEOREM 1.7. For any a > 0, there exist 0 <y <y and a strictly convex analytic
function F(t) on («, 00), with its supporting lines intersecting the vertical axis in the
interval [y, v, such that there does not exist any Holder potential ¢ on any shift space
with ﬁnite_symbols satisfying

P(t¢) = F(1)

on (o, 00).

We note that the supporting lines taking positive intersections with the vertical axis is
due to the associated equilibrium states having positive entropy.

For an explicit example of convex analytic functions in Theorem 1.7, one can simply
take

22 43t +te e

F31() = ;

on (o, oo) for any o > 0. See Proposition 4.2 for a family of such examples. Thus, one
can see that there are in fact elementary functions which cannot be fitted by pressures of
Holder potentials on shift spaces with finite symbols.
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Remark 1.8. After this paper was completed, we became aware of an elegant paper of
Kucherenko and Quas [KQ2] which showed that there is a precise lower bound on the
‘speed’ that the pressure function of a (cohomologously non-constant) Holder potential
approaches its asymptote. In particular, they used this analysis to give a negative answer
to Problem 1.3. We refer the reader to [KQ2] for other interesting rigidity results on the
pressure functions of Holder potentials.

In the following, we consider fitting convex analytic functions locally instead of glob-
ally, only by pressures of locally constant potentials on shift spaces with finite symbols. Let

A, ={1,2,...,n}
be the symbolic set of #n symbols.

THEOREM 1.9. Lett, > 0 and (ag, a;) € R? satisfying

ag

— >a. (1.5)
Ly

Then for any n € N large enough, there exist some 0 < my, q5a;n < My, a9a1,n < 00

depending on ty, ay, ai, n, such that for any ax € [my, ay.a;.n, Ms, ag,ay.n), there exists some

sequence of reals {c; n};_,, such that the locally constant potential

o(x) = Cxo.n
forx = ---x_1x0x1 - - - € [x0] on the full shift space A,ZL satisfies
a2 2 3
P(th)=ao+a1(t—t*)+5(t—t*) + O0((t — 1)) (1.6)

on [ty — &y, tx + 8,1 for some 5, > 0.

This means we can fit some germs of level 2 at t, by pressures of some locally
constant potentials when the number of symbols of the shift space is large enough. The
values §,,, {ci,n}f‘: , all depend on ¢, ag, a1, n and a; in fact, while we only indicate the
dependence of my, 4 ,,n and My, 4, q,.n as we are particularly interested in their values in
the context of Theorem 1.9. There are some results on the values of

{mt*,ao,m M Mt*,ao,al N }n eN

subject to t, > 0 and (ap, a;) € R? satisfying equation (1.5) at the end of §5.

We choose to present all our results in the one-dimensional case, although many of
these results can in fact be extended naturally to convex Lipschitz or analytic functions
F(t1, 12, . . ., t,y) of m variables. Most of our results also hold on transitive subshift spaces
of finite type, with some technical adjustments in their proofs involving the transition
matrix. We lay emphasis on two-sided shift spaces with finite symbols in this work;
however, some concepts and proofs will be given directly on one-sided shift spaces as we
are to employ the Ruelle operator in due course. Since every Holder potential on two-sided
shifts induces a cohomologous Holder potential on one-sided shifts, these extend naturally
onto two-sided ones.
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The organisation of the work is as follows. In §2, we introduce some basics in
thermodynamic formalism and the CLT for the process generated by a potential and the
shift map on the symbolic space with finite symbols. We give an explicit bound on the tail
term in the CLT. Section 3 is devoted to the proof of Theorems 1.1 and 1.2. We formulate
some expression of the derivatives of the pressure (Corollary 3.11) linking directly to the
CLT, which allows us to unveil the relationship between derivatives of the pressure function
of various orders. Section 4 is devoted to the proof of Theorem 1.7. In §5, we consider
fitting 1- and 2-level candidate analytic germs locally by pressure functions of locally
constant potentials (Problem 5.2) on symbolic spaces with finite symbols. We conjecture
that any reasonable germ of finite level can be fitted by the pressure function of some
locally constant potential locally, as long as the number of the symbols is large enough.

2. Thermodynamic formalism and the CLT

In this section, we collect some basic notions and results in thermodynamic formalism for
later use. We start from the pressure. Let A be some symbolic set with finite symbols, and
AN be the shift space equipped with the metric

d(x,y) = IEx)

for distinct x = xpx1x2 ...,y = YoV1y2 ... € AN, where
I(x,y) =min{i € N: x; # y;}.

For a continuous potential ¢ : AN — R on the compact metric space AV, let

m—1

Sme() =Y oo’ (x)

i=0

for m € N, where o is the shift map.

Definition 2.1. The pressure P(¢) of a continuous potential ¢ on AN is defined to be

1
P($) = lim — log > S,

oM(x)=x

One can refer to [Wall, p. 208] for a definition for continuous potentials on general
compact metric spaces. It satisfies the well-known variational formula

P(¢) = sup {h(u) + / ¢ du : uis a o-invariant measure on AN}.
Let C° (AN) be the collection of all the continuous potentials on AN, Two potentials ¥, ¢ €

CO(AN) are said to be cohomologous [Wal2] in the case where there exists a continuous
map ¢ : AN — R such that

Y(x) — @) =(x) =L oa(x).
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Rigidity of pressures of Holder potentials 7

We write ¢ ~ ¢ to denote the equivalence relationship between two potentials cohomolo-
gous to each other. The maps in

{Lx)—¢oa):¢ec®aM)

are called coboundaries. The importance of the cohomologous relationship is revealed in
the following result.

PROPOSITION 2.2. If Y ~ ¢, then P(¥) = P(¢). Moreover, v and ¢ share the same
equilibrium states.

Another important tool in thermodynamic formalism is the Ruelle operator.

Definition 2.3. For a continuous potential ¥ : AN — R, define the Ruelle operator Ly
acting on CO(AN) as

LyHo = Y Vf@y)

yio(y)=x

for f € CO(AN).
One can see easily that its compositions satisfy

LpHx =Y D ry) @.1)

yiom (y)=x

for any m € N. For ¢ € C*(AY), it admits a simple maximum isolated eigenvalue
A = eP¥) such that

(Lywy)(x) = e Py (x) (2.2)
for some eigenfunction wy, (x) € C h(AN), refer to [Ruel]. It then follows that
Py (x) (2.3)

for wy (x) € ch (AN). A potential ¥ is said to be normalised if

(Lhwy)(x) = e

P()=0 and wy =1,n,
where 1 ,n is the identity map on AN In the case of ¥ being not normalised, we call

Y =y +logwy —logwy oo — P()

the normalisation of . It is easy to check that v is a normalised potential. Moreover, ¥
and ¢ share the same equilibrium state.

The unique equilibrium measure for a Holder potential v is denoted by iy in the
following. Now we turn to the CLT for the random process {¢ o o'/ (x)}?":0 with the
equilibrium measure iy defined by some Holder potential v, while ¢ is also assumed
to be Holder. It deals with the asymptotic behaviour of the distribution of S, 4/+/m with
respect to py as m — oo. The Ruelle operator comes in here, see [CP, Lal, Rou]. Let

Sm
Gu(y) =M¢/{x e AN: % < y}
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fory e R.Fora,b € Rand b > 0, let N, 5 (y) be the normal distribution with expectation
a and standard deviation /6 on R, that is,

dNap(y) _ 1 o~ (—a)/2b
dy V2nh

for y € R. For Holder potentials ¥, ¢ on a shift space, since the pressure P({¥ + t¢) is
analytic in a small neighbourhood around 0, denote by

Am = P™ (Y +1$)]i=0

for m € N for convenience, while the readers can understand its dependence on ¥/, ¢ easily
from the contexts in the following. Let

[ee) A 3 A
PO +1¢) =) — = > —" + 1t (),
m=0 m=0

where k(1) = Y o o(Apta/(m + 4™,
We now come to one of the key ingredients in the proofs of Theorems 1.1 and 1.2.

CENTRAL LIMIT THEOREM. Let V¥, ¢ be Holder potentials on a shift space with ¢ being
not cohomologous to a constant. If f ¢ duy =0, we have

G (y) = Noa, (V) + O(1//m),

where
9|A3| 4 2| A4l

V213m(Ay)3/2

The convergence is uniform with respect to y. In the case of ¢ being generic, we have

0(1//m) = (2.4)

Gm (y) = NO,Az (y) + Hp, (y) + 0(1/\/%)’ (25)
where Hy () = (A3/6:/m)(1 — (y2/Az))e=07/282),

The bounds of error terms in equations (2.4) and (2.5) will be used in the proofs of
Theorems 1.1 and 1.2, respectively. In the following, we will justify equation (2.4), while
equation (2.5) follows from existing results.

This fits into special cases of the Berry—Esseen theorem [Fel]. A significant point in
the version here comparing with [CP, Theorems 2, 3] or [PP, Theorem 4.13] is the explicit
bound on the tail term O (1/4/m) in equation (2.4). In the following, we justify this explicit
bound. To do this, let

X (2) = / e/

be the Fourier transformation of G, (y). Note that the Fourier transformation of N a, (y)
is e~ (@ 02/2)
ise .
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LEMMA 2.4. Let \r, ¢ be Holder potentials on a shift space with ¢ being not cohomolo-
gous to a constant. For € > 0 small enough, we have

27 Jo z T 12/mm(Ay)3/2

for any m € N large enough.

Proof. According to [PP, equation (4.6)], we have

evim | > Ay _ 2
/ @) — @22 | 1283 —@aad)| o o1 /m)
0 z 6./m
for € > 0 small enough. So
1 [fevm g 2 A3 VM )
_ _ _ ,—(27A2/2) dz < 01 3 2 —(z A2/2)d '
271/0 ZXm(z) e z< (/m)+—12nﬁ T z
2.7
By
/oo Zze_(zzAz/z) dz = A/ 2w
—c0 (Ap)3/2
we obtain equation (2.6) from equation (2.7). O

Equipped with Lemma 2.4, we can justify the explicit bound on the tail term in the CLT
in equation (2.4).
Proof of the tail term in CLT.

Proof. Without loss of generality, suppose ¥ is normalised and [ ¢ duy = 0. It suffices
for us to justify equation (2.4) by [CP, Theorems 2, 3]. Similar to the proof of [CP,
Theorem 2], apply [Fel, Lemma 2] with the cumulative functions G, (y) and Ny a,(y),
in our case, one gets (cf. [CP, (20)])

G () = Nosy 0] < /Wl @) —e @) gy 22 g
y) — NoaA, V) = — —|XmZ) —e Z . .
m 2 27 Jo z| ™" e/2mm3 A,

Now let us take

1 2 (A A
T (% +i 5)
for some small § > 0, such that it satisfies (cf. [CP, (10)])
1 > max {i(@ + t/c(t)), iK(t)}
€ Ay \ 6 Ar
for any |t| < € in equation (2.8). By equation (2.6), we have

|G (y) — No,a, (0]

S YN 2 2 (18] (A
T Ryam(A)? 0 Sommda, A2\ 6 24
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__ YAMsL L 8IAsL L 2A 485 2.9)
12mm(82)3%  273m(A2)32  N2r3m(A2)32 N2mim(An)32
- 9|As| n 2| Ayl n 488 .
T V2m3m(A)32  V2m3m(A2)32 T NV 2m3m(An)3/2
Finally, letting 6 — 0 in equation (2.9), we get equation (2.4). ]

We will deal with the pressure function P(y + t¢) for t > 0 and v/, ¢ € C"(AY) for
some 0 < & < 1 in the following sections. By [Rue2], P(y + t¢) depends analytically on
t in the case that v, ¢ are Holder. We will often assume that

/¢duw=0

in the following when dealing with the higher derivatives of P(y + t¢) because if
[ ¢ duy =c #0, we have
Py +1(p—c) =P +1¢)—ct,
then
d"P(Yy +t(¢p—c)) d"P(Y+1¢)
drn B drn
for any n > 2 while [(¢ — ¢) diy = 0. We can also assume that ¥ is normalised when

dealing with the derivatives of P (i + t¢). If this is not the case, we can simply change
to its normalisation v while

d"P(y +14) d"P(Y +19)
dmm N dt"

(2.10)

.11

for n > 1 because

Py +1tp) =P +1td) — P()

for any r € R.

3. Derivatives of the pressures of Holder potentials
In this section, we formulate some explicit expressions for the derivatives of the pressure
P(t¢) = P(¢) in terms of the derivatives of the eigenfunction of £;4 for ¢ € C h (AN with
respect to t. We give basically two expressions of the derivatives, one of which allows the
introduction of the random stochastic process {¢ o o/ (x) ’}’:0 for m € N. The CLT for the
random process {¢ o o'/ (x)}?‘;o takes core role in our proofs of Theorems 1.1 and 1.2.
First we define some basics to deal with the higher derivatives of compositional
functions by the Faa di Bruno’s formula. For an integer j € N, we say

T=TT2- Ty

with ¢ € N is a partition of j if the non-increasing sequence of positive integers j >
1 >1 > > 14 > 1 satisfies Z;’:] 7; = j. Denote the collection of all the possible
partitions of j by 3(j). For example, Table 1 lists all the partitions in J(5).

https://doi.org/10.1017/etds.2024.9 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.9

Rigidity of pressures of Holder potentials 11

TABLE 1. Partitions of 5.

5 qg=1
4,1 g=2
32 qg=2
3,11 g=3
22,1 g=3

2111 g=4
1,1,1,1,1 qg=>5

TABLE 2. The coefficients Bs.

5_
ol
B =5
B* =10
B =10
B =15
B2 Z 10
1LLL11
B, 1
We sometimes simply write T to denote the set {z1, 72, . . . , 74} for convenience in the

following, so #t = g. Now for 7 being a partition of j > 1, let {BJT.} be the number of
different choices of dividing a set of j different elements into #7 = ¢ sets of sizes {r,~}l.q=1
(with no order on the sets of partitions). Set Bg = 1 for convenience. For example, consider
the cases j =5 and t = 3, 1, 1, the number of different choices of dividing a set of 5
different elements into g = 3 sets of sizes 3, 1, 1 respectively is

ci=10=B>""

Table 2 lists all the numbers { B3 };cq3(5).-
For a smooth map f : R — R on the real line (which suffices for our purposes in this
work) and some partition T = 71, 72, . . . , Ty € ‘B(j) with j > 1, let

FO@ = fP@f ™00 0

be the product of the derivatives. For j = 0 and 7 = 0 € *J(0), set f ©)(x) = 1. Then for
two smooth functions f : R — Rand g : R — R, we have

di(go f(x) _

dx Y Be" (e ) (3.1)

TeP()
by virtue of Faa di Bruno’s formula.
Now we turn to the higher derivatives of the pressure function. We start from some
standard case, then extend the result to the general case.

THEOREM 3.1. Let ¥, ¢ € C"(AN) with y being normalised for some finite symbolic
set A. Assume f ¢ duy =0, where y is the equilibrium state of . Let w(t, x) be
the eigenfunction of the maximum isolated eigenvalue e V+'®) of Ly 114, which depends
analytically on t in a small neighbourhood of 0. Considering the derivatives of the pressure
Sfunction P(Y + t@) att = 0, we have
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P(”)(w +tP)|i=0 = Z C,{ /;\N(d)(x))jw(n*j)(o’ x) dl/h//(x)

Jj=1

n—2

SYd Y BPOw @l [ 00,0 diy
N

j=2 TeP(Igr A

- Y BPOW (3.2)
tePn),{1,n}Nt=0

for anyn > 2.
Proof. According to the above notation, note that
(Ly+rpw(t, ) (x) = " VHPu(, x). (3.3)
The nth derivative of (Ly 1w (t, ) (xX) = 3,5z €/ TPV u(, y) gives

d" Ly 1rpw(t, -)(x)

dar
n +t
_ Z Z djew (216 WDt )
yio(y)=x j=0
n .
— Z ZC,j,e(w+t¢)(y)(¢(y))'iw(n_j)(t,y) (3.4)
yio(y)=x j=0

n
=Y CiLy (@) w" ), ).
j=0
All derivatives are with respect to ¢. In the case of # = 0, this means

=" ClLy (@) w" =, )). (3.5)

t=0 j=0

d"Lyrgw(t, ) (x)
dl»ﬂ

Note that the dual operator E”v‘/ fixes wy, so integration of both sides of equation (3.5)
gives

/ d" Ly gw(t, ) (x)
dth

Iy (x) = Zc’ f (@) w0, )y (x).  (3.6)

l=0 j=0

To get the nth derivative of P(y + t¢), differentiating e” Y+ (¢, x) for n times by
equation (3.1), we get

d" (PP, x))
d"
1 djeP(W+t¢)

—Z

w7, x)
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ol e P ) d"ePW+i9)

_ J (n—j)
—ZOC"TW" P+ e )
]:

n—1
— Z erz Z B;P(T)(lﬂ + t(p)eP(l//-H(P)w(n—j)(t, x)
Jj=0 TeP(j)

+ > BP9 VTP, x)

T€P(n)

n—1 )
:Zc,{( > BPOW A+ Y B]’-P(’)(l//+t¢)>
Jj=0 TeP().1¢t TeP(j).letr

% eP(ertgb)w(”*j)(t, x)

+ Z BZP(T)(I/I + t¢)eP(1//+t¢)w(t’ x) + P(")(w + t¢)eP(¢+t¢)w(t, x).
tePn),n¢r
3.7
Remember P(y¥) = 0 and w(0, x) = 1 as ¢ is normalised [PP, p. 66]. Taking r = 0 in
equation (3.7), we get

d* (VT PDw(, x))

dr” =0

n—1 )

= Zc;{( > Bl POW+i)i—o+ Y. BIPOw+ t¢>|t:o)

Jj=0 TeP()).1¢7 TeP(j).ler

x w0, x)

+ > BIPOW +t)limo + PP + )]0 (3.8)
tePB(n),ng¢r

Since [ ¢ duy = P’ (Y +t$)l;=0 = 0 and [ w’(0, x) duy = 0 [PP, p. 66], integrat-
ing both sides of equation (3.8) with respect to wy, we get

/- dn (eP(‘p“‘l’)w(t, X))
dt"

diLy
t=0

n—1
=Y Y BPOw @ [ w00 duy

J=0 teP().1¢r

+ > BI PO +1h)li=0 + P (W + 1¢)li=0. (3.9
ePn),{1,n}Nt=0

Finally, combining equations (3.6) and (3.9) together, we get equation (3.2). O

Remark 3.2. The terms

n—2
- G Y, BIPOW +19)li=o f w0, x) dpay (x)

i=2 rePGigr Al
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and
- > By PO (W +1¢)li=o
TeP®n),{1,n)NT=0
in equation (3.2) are null in the case of n < 3. This also applies to the corresponding terms

later.

Remark 3.3. These expressions are inductive formulae, although one can always get
explicit expressions through substituting the lower derivatives P™ ( + t¢)|,—¢ by their
non-inductive versions depending only on ¢(x), {w(j )(0, x)};?zl and py (x). This also
applies to Theorem 3.7.

One can find some description of derivatives of the pressure function by covariance
of the sequence of functions {¢ o o/} jen in [KS1, Corollary 1] for smooth ¢. Without
the assumptions of i being normalised and f ¢ duy =0, Theorem 3.1 evolves into the
following form.

COROLLARY 3.4. Let , ¢ € C"(AN) with some finite symbolic set A. Here, Ly 114
admits a maximum isolated eigenvalue e? V19 close to e V) with eigenfunction w(t, x)
whose projection depends analytically on t in a small neighbourhood of 0. Considering
the derivatives of the pressure P (Y 4 t¢) att = 0, we have

PO +1¢)li—o =Y Ci /A NGO / ¢ diiy)’ w0, x) dpy (x)
j=1

n—2

=Yl Y BIPOW +1e)l=o f w"=(0, x) dpy (x)

=2 tePOlgr AN

- Y BIPOW+lo (3.10)
tePn),{1,n}Nt=0P

foranyn > 2.
Proof. Let
¥ =¥ +log wy (x) —logwy oo — P(P),

where wy (x) is the eigenfunction of £y corresponding to the eigenvalue e W) Taking
pressure in the following equation:

Y+t =y +1¢+log wy(x) —log wy oo — P(¥),
then applying Proposition 2.2, we see that

P +1¢) = P(Y +1¢) — P().
This implies

d"P(f +1¢) _d"P() +1¢)

P P (3.11)
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Rigidity of pressures of Holder potentials 15

for any n > 1. Now applying Theorem 3.1 to the normalised potential ¥ and ¢ — [ ¢ duy,
(note that [(¢ — [ ¢ duy) diy =0 and py = 1), we justify the corollary by equa-
tion (3.11). O]

In the following, we present some concrete formulae of some special order n by virtue
of Theorem 3.1 for later use.

COROLLARY 3.5. Let ¥, ¢ € C"(AN) with ¢ being normalised. Let [y be the equilib-
rium state of ¥ and [ ¢ dpy = 0. Let ePWHP) be the maximum eigenvalue of Ly 1t
with eigenfunction w(t, x) for small t. Then we have

P +td)|imo = 3 / dw” (0, x) djry +3 / ¢*w' (0, x) djy + / ¢ dpy. (3.12)

Proof. This follows instantly from Theorem 3.1 with n = 3, along with some direct
computations on the Faa di Bruno’s coefficients { B };cqp3)- O]

COROLLARY 3.6. Let yr, ¢ € C"(AN) with i being normalised. Let Wy be the equilib-

rium state of ¥ and [ ¢ dpy = 0. Let ePWHP) be the maximum eigenvalue of Ly 114
with eigenfunction w(t, x) for small t. Then we have

P" (Y +19) =0
=4/¢w’”(0, x) d,u,/,—l—6/¢2w”(0,x) dpy +4/¢3w/(0,x) duw+/¢4 diiy

—6P" (Y +1h)]i1—0 / w” (0, x) dty — 3(P" (Y + 1¢)]1=0)*
= 4] dpw” (0, x) dpy + 6[ ¢*w" (0, x) duy +4 / 3w’ (0, x) dpy —i—f ¢* dpy

—6(/¢2 dpy +2/¢w’(0,x) duw)/w”((),x) duy

2
—3</¢2 d iy +2/¢w/(0, x) dmp) . (3.13)

Proof. The first equality follows instantly from Theorem 3.1 with n = 4 along with some
direct computations on the Faa di Bruno’s coefficients {BZ}Tqu(A;). The second one is
true as

P"(Y + t§)|i=0 = / ¢ duy +2 f dw' (0, x) dpiy.
The latter description depends only on ¢ (x), {w (0, x)}?z1 and f1y (x). O

One can also get some precise formulae for some particular n in Corollary 3.4, and
some non-inductive ones as we indicate in Remark 3.3. While equations (3.2), (3.10),
(3.12), (3.13) all give interesting descriptions of the derivatives of the pressure function
P(y + t¢), it seems to us difficult to discover any essential rigid restriction on them,
or relationships between them. In the following, we turn to the description of them by
the random stochastic process {¢ o o'/ (x)}?‘;o. This is not a new idea on exploring the
regularity of the pressure function P (i + t¢), as one can recall it from many others’ work
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in thermodynamic formalism. Again, we first consider some standard case, then extend to
the general case.

THEOREM 3.7. Let yr, ¢ € C"(AN) with  being normalised. Let Wy be the equilibrium
state of Y and [ ¢ duy = 0. Let PV e the maximum isolated eigenvalue of Ly11g
with eigenfunction w(t, x) whose projection depends analytically on t. Considering the
derivatives of the pressure P(y + t¢) att = 0, we have
P +19)li=0
1
= lim —< Z C) /AN(Sm,d)(x))Jw(n—J)(O’ x) d iy (x)

m—o0 m
j=2

n—2
Syd Y e EPOw e [ w0 diy )

=2 tePOidr AN

- m#fBZP“’(qub)h:o) (3.14)

tePn),{1,n}Nt=0

for anyn > 2.

Proof. The proof follows the routine of Proof of Theorem 3.1. Considering equation (2.1),
we take n-derivatives on both sides of equation (2.3), take + = 0, then integrate both sides
with respect to (i (x), divided by m, and we get

P™ (Y + t¢)]io

1 " : i )
j=1

n—2
“Yd Y e POw e [ w00 diy )

=2 PG AN

- > m** BT P (y + t¢)|,:0) (3.15)

eP ) {l.n}Nt=0

as equation (3.2). Now since w~1 (0, x) is bounded on X, the ergodic theorem guarantees

1
lim — / S )W D0, x) dpry (x) = 0. (3.16)
m—>00 m JAN
Then equation (3.14) follows from equation (3.15) as m — oo by equation (3.16). ]

Theorem 3.7 establishes some link between the derivatives of the pressure function and
the process {¢ o o'/ (x)}?’;o through S, 4 with respect to the equilibrium state (. We also
formulate a general version of the result.

COROLLARY 3.8. Let ¥, ¢ € C"(AN) with Wy be the equilibrium state of . Here,
Ly 11 admits a maximum isolated eigenvalue ePWHD) close to e V) with eigenfunction
w(t, x) whose projection depends analytically on t in a small neighbourhood of 0.
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Rigidity of pressures of Holder potentials 17

Considering the derivatives of the pressure function P (Y + t¢) at t = 0, we have
P +19)li—0

. 1 n ) j B
= lim_ E( 2; Lo} /AN (Sm,d) —m f ¢ dw) w0, x) dpy (x)
/:

n—2
Yl Y mTBIPOW + i) f w00, ) diy ()

i=2 e P(idr AN

- > m* BT PO (¢ + r¢)|t:O> (3.17)

ePn),{1,n}Nt=0

foranyn > 2.

Proof. Equipped with Theorem 3.7, the proof follows in line with the Proof of
Corollary 3.4. O

The following is a classical result on the second derivative of the pressure [PP, Ch. 4].

COROLLARY 3.9. Let yr, ¢ € C"(AN) with  being normalised. Let Wy be the equilib-
rium state of ¥ and [ ¢ dpy = 0. Let ePWH9) be the maximum eigenvalue of Ly 114
with eigenfunction w(t, x) for small t. Then we have

N R
P//(w + t¢)|t=() = mh—l;noo ; / Sm,¢) dﬂw (318)
Remark 3.10. Here, P"( + t$)|;=o is called variance of the random process {¢ o
o/ (x)}‘l?ozo, whose name can be interpreted from the CLT. See [Ruel, PP].

Now we give some precise descriptions of the third and fourth derivatives of P(y + t¢)
by virtue of Theorem 3.7.

COROLLARY 3.11. Let ¥, ¢ € C"(AN) with yr being normalised. Let j1y, be the equilib-
rium state of ¥ and [ ¢ dpy = 0. Let ePWHD) be the maximum eigenvalue of Lyt
with eigenfunction w(t, x) for small t. Then we have

.3 ) 1
P" (Y +th)|i—0 = mh—>moo P / S,?quw/(o, x)dpy + mh—I>noo - / Sr3n,¢> diy. (3.19)

Proof. This follows instantly from Theorem 3.7 with n = 3. O

COROLLARY 3.12. Let yr, ¢ € C"(AN) with  being normalised. Let Wy be the equilib-
rium state of  and f ¢ duy =0. Let ePYH19) pe the maximum eigenvalue of Lyt
with eigenfunction w(t, x) for small t. Then we have

PO +1)]i=o
. 6 2 " 4 3 i 1 4
= lim | — | §; sw"(0,x) duy + o Snow (0, x) duy + P Smg diy

m—o00 \ m

—6P" (Y +1¢)li=0 / w” (0, x) dpy — 3m(P" (Y + t¢)|z—o)2)
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= lim 6 $2 w0, x)du —i—i S3 w0, x)du —i—l st du
m,¢ > 14 m m,¢ > 14 m m,¢ ¥

m—o0 \ m

6 3 2
_;/Srzw diy f w”(0, x) dpiy _;(/ S,%W duv,) ) (3.20)

Proof. The first equality follows instantly from Theorem 3.7 with n = 4, while the second
one is true by equation (3.18). The last description depends only on ¢ (x), {w/ (0, x)}3:1
and py (x). O]

Through the above formulae, we see the importance of the asymptotic distribution of the
random variable S, with respect to uy, which is described by the CLT for the process
{poo’ (x)}j?ozo. Equipped with all the above results, now we are in a position to prove the
rigidity results on the third derivatives of P(y + t¢) using Corollary 3.11. We first show
Theorem 1.2.

Proof of Theorem 1.2. From now on, we fix t, € (0, 00). Let ¥ = t,¢. Simply by making
a change of variable, we can see that

PD () = PD(td)i=, = P + t¢)li=0
for any n > 0. So equation (1.2) is equivalent to
|P" (Y + td)i=o(1 — V2 (P" (Y + t$)|1=0)*")| < 3MyP"(y +t$)li=0.  (3.21)

We can assume ¥ is normalised as otherwise we can change it to its normalisation by
equation (2.11). Moreover, it suffices for us to prove it under the assumption [ ¢ duy =0
by virtue of equation (2.10). If P” (v + t¢)|;=0 = 0, then ¢ is cohomologous to a constant
according to [PP, Proposition 4.12]. This forces P (¢ + t¢)|;=o0 = 0, so equation (3.21)
is satisfied in this case. In the following, we assume P” (Y + t¢)|;—o > 0. We resort to
Corollary 3.11 to justify equation (3.21) under the above assumptions. We first estimate the
term 1/m [ Ssl’ o Ay in equation (3.19). Since we are assuming the potential is generic,
we can apply the CLT with equation (2.5):

1 3

o (5

= ﬁ/ ¥ dGpu(y)
= ﬂ/ ¥ dNo.pr(y+1¢)),—o(¥) + ﬂ/ v} dHyu(y) + /m - o(1//m)
P" (Y + t¢)|1—0 y2 ) 2 apr )
- 0 34 1 — Y2/2P" (Yr+1)]i=o
o +/ g ( 6 ( Py + )=o) °

+ /m - o(1//m)
= P" (Y + 1) =0V 21 (P" (¥ + t$)]1=0)*/* + /m - o(1//m).
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By taking m — oo, we get

1
lim — f Sy o dity = P"' (Y + 19)|=ov27 (P" (Y + 1) ]1=0)*/%. (3.22)

m—00 m

By equation (3.19), we have

3
P +19)l—o(1 = V2 (P" () +19)i=0)*) = lim = / S (0. %) dpayy.
(3.23)

Since w’(0, x) depends continuously on x € X, there exists some My depending on ¢,
such that

[w' (0, x)| < My. (3.24)

Now taking absolute values on both sides of equation (3.23), we justify equation (3.21) by
equations (3.24) and (3.18). O]

The proof of Theorem 1.1 on the pressure functions of non-generic Holder potentials
follows a similar way.

Proof of Theorem 1.1. Fixing t, € (0, 0o), we can simply assume i = t,¢ is normalised
and f ¢ dy = 0.1In the case where P”( + t¢)|;—0 = 0, so ¢ is cohomologous to a con-
stant, equation (1.1) holds obviously. In the following, we assume ¢ is not cohomologous
to a constant, so P” (v + t¢)|;=0 > 0. We again resort to Corollary 3.11 to justify equation
(1.1) under these assumptions. Now for the term 1/m f SS1,¢ dy in equation (3.19), by
virtue of the CLT with equation (2.4),

1
— | S . 4a
m/ m,p MY

- (%)
= ﬂf ¥ dGp(y)

INP" (Y +tP)i=ol + 2| PD (Y + t$)]i=ol
< 3 dNo pr +
< ﬂ/ y 0,P" (Y4110 (V) Jm */m(P”(lﬁ D)
P (Y + t$)li=o| + 2| PP (Y + t$)];0]
=m0+

Vm V213 (P" (Y + 1¢)|1=0)3/?
_ P (W + 19) =0l + 2/PP (W + 1¢) =0

(3.25)
V213 (P (Y + t¢)]i=0)*/?
for m large enough. By taking m — oo in equation (3.25), we get
1 9P t$)li=ol + 2| P@ @)=
lim L / S 4 dity < [P + tP)li=ol + 2[P™ (Y + th)li=0l (3.26)
m=eom J Vam (P +19)l1-0)
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Taking modulus on both sides of equation (3.26), we get

|P"" (¢ + t¢)=ol

lim — / Sp d,uw' +| dim 2 / Sy ow' (0, x) duw‘
m—oo m ’ m—o0 m ’

_ P W+ 1) =0l + 21 PO W + 1)li=0]
- V23 (P ( + 1¢)]1=0)3/?
9P (W + )=l + 2/ PD (W + 1) =0l
B V23 (P (Y + 1) li—0)3/2

for some |w’(0, x)| < Mg, which results in equation (1.1). ]

<

.3
+3M¢'m1ime/s,ﬁ,¢ duw‘

+3MyP" (Y + 1) 1=0 (3.27)

One can predict from Corollary 3.12, Theorem 3.7, and the proof of Theorems 1.1, 1.2
that some more rigid relationships between higher derivatives of the pressure function
{P™(t¢)},en are possible. These rigidity relationships impose restrictions on fitting
convex analytic functions whose supporting lines intersect the vertical axis in some
bounded set in [0, co) by pressures of Holder potentials.

4. Global fitting of convex analytic functions via pressures of Holder potentials
This section is dedicated to the proof of Theorem 1.7. We start from the following result
on some global behaviour of the pressure functions of generic Holder potentials.

THEOREM 4.1. Let a > 0. If there exists a strictly convex analytic function F(t) on
(ax, 00), with its supporting lines intersecting the vertical axis in [y,y] C [0, 00), such
that

F///(t) -
sup H ) — V2T F' (1)

t€(a,00)

} = o0, 4.1)
then there does not exist a shift space with finite symbols with a generic Holder potential
¢ satisfying

P(tg) = F(1)

on (o, 00).

Proof. This follows directly from Theorem 1.2 in fact. Suppose on the contrary that there
exist some shift space X with finite symbols and some generic Holder potential ¢ € C”(X)
satisfying P (t¢) = F(¢) on («, 00), then according to Theorem 1.2, we have

sup HF ® V2m F(t)

te(a,00) F//(t)

}§3M¢

for some finite My > 0. This contradicts equation (4.1). O]

Be careful that we cannot exclude the possibility that one can locally fit some convex
analytic function through the pressure of some generic Holder potential on some shift
space with finite symbols by Theorem 1.2. This is because for any strictly convex analytic
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function F () on (o, o0) and o < @ < &, we always have
F/// t
sup HA — V27 F" (1) } < 0.

a<t<a U F "(t)
So one cannot exclude the possibility that there exists some generic Holder potential ¢ on
some shift space satisfying

P(t¢) = F(1)

on [«, o] through Theorem 1.2. See §5 for more results on the problem of local fitting of
some convex analytic functions through the pressures of Holder potentials.
Now for o > 0, let

Fo = {F(t): F(¢) is a strictly convex analytic function on (&, 00) satisfying equation (4.1),
its supporting lines intersect the vertical axis in a bounded interval in [0, c0)}.

We will show that F, # @ for any o > 0 in the following.

PROPOSITION 4.2. For any a > 0, we have

2 2
at> + bt +te " 7
t

Fou= { Fupe(t) = C Fo.

(a,00) }a,b>0,c>l/2\/§
Proof. The restricted functions on («, 00) are of course analytic. By considering the
second derivative of a function Fy 4 (t) € Fq, we have

2 2 2 2
(1) = 4c*t3e —er? +4ctte ™ —2ce™ " 4 2ct Ve 42137

abc

for t € (0, o). Now since
4c*t +2¢t7 ' > 283 > 2¢,

considering ¢ > 1/2+/2, we can see that Fa”bc

() > 0 on (0, co). This shows that for any
a>0,Fup.(t) € .7?0, is a convex function. Considering the third derivative of a function
Fupc(t) € Fy, we have

— — —ct2 ) A4 2
L;//bc(t)__gc} 3 —ct? 86‘3 2 —ct? +12€216 <t _ 6ot 26 ot _ 6t 46 ct

for t € (0, 0o0). Then we have

F"” (1) -8 31‘3 —ct?

. ab,c " ¢ N

A, <F” @ Fabc(t)) =l e T T
ab,c ct-e

This means that F, 5 -(t) € Fy satisfies equation (4.1). To see that the supporting lines of
a function F, .(t) € F, intersect the vertical axis in a bounded domain in [0, 00), write
the function as

Fapelt) = at + b+ =" 4171t

Its graph on (0, 0co) is a strictly convex smooth curve with asymptotes y = at 4+ b and
t=0. O
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FIGURE 1. Graph of F31(¢).

In Figure 1, we provide the readers with the graph of the function

712

22+ 31 +te " Fe
t

F31(1) =

on (0, 00).

This means that any function in the family F,, cannot be fitted by any generic Holder
potential on any shift space globally, by Theorem 4.1. In the following, we exclude the
possibility that they can be fitted by non-generic Holder potentials on shift spaces with
finite symbols. One can show that [PP, Ch. 4] if ¢ is non-generic, then there exists a
continuous functionu : X — R, ¢y € R, and a locally constant potentialg?b : X — R, such
that

P(x) = uoo(x) —ux)+cs + Px). (4.2)

PROPOSITION 4.3. For any o > 0 and any Fyp.(t) € Fo witha,b>0,c > (1/2\/5),
there does not exist a shift space with finite symbols with a non-generic Holder potential ¢

satisfying
P(t¢) = F(1)

on (o, 00).

Proof. Note that for a non-generic Holder potential ¢ on a shift space with finite symbols,
according to equation (4.2), we have

P(t¢) = tcy + P(t9),

where ¢ is some locally constant potential. By the explicit formula (see for example [Wall,
p. 214]) for the pressure functions of locally constant potentials on shift spaces with finite
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symbols, we see that any F,; (¢) cannot be fitted by pressure of any non-generic Holder
potential ¢ globally. O

Equipped with all the above results, Theorem 1.7 follows instantly from Propositions
4.2 and 4.3.

5. Local fitting of prescribed germs via pressures of locally constant potentials

In this section, we deal with the local fitting of analytic functions by the pressures of
Holder potentials, especially the pressures of piecewise constant ones. First, we borrow
some notion originating from analytic continuation.

Definition 5.1. A germ of level ((t € NU {oo}) at ¢, is the formal power series
[75) 2 as 3 a, .
gty =ao+ai(t —t) + E(t_t*) + ;(l — L)+t L_‘(t — Iy)
for some (ag, ai, . . ., a,) € RTL

The convergent radius (the superior of values § > 0 on [, — 8, tx + §] such that the
germ converges) of the power series is called the radius of the germ. Any finite-level germ
admits infinite radius while an infinite-level germ may admit some finite radius. We are
only interested in germs of radius § > 0. The following problem will be our concern in
this section.

Problem 5.2. For a germ
a a
g0 =ao+art =)+ S =t o =)

of level ¢ (t € NU {oo}) at ¢, with some strictly positive radius, does there exist some
Holder potential ¢ on some shift space with finite symbols and some § > 0, such that

P(t$) = g(t) + O((t — t,)'h

on [t, — 6, ty +6]?

We assume O ((t — #,)°°) = 0 in Problem 5.2. The question can still be understood in
Katok’s flexibility program in the class of symbolic dynamical systems, or even in some
smooth systems. Obvious conditions to guarantee a positive answer to the problem are
equation (1.5) and

a >0 (GRY)

in the case ¢ > 2. The condition in equation (5.1) guarantees convexity of the germ (in some
neighbourhood of z,), while equation (1.5) guarantees the supporting lines of the germ
intersect the vertical axis in a bounded set in [0, co) (also in some neighbourhood of ).
We are especially interested in its answer when the Holder potential in Problem 5.2 is
required to be a locally constant one. We have seen the importance of the family of locally
constant potentials in approximating convex analytic functions in Corollary 1.4. In fact,
Corollary 1.4 has some interesting interpretation in approximation theory [Tim, Ch. I]
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when we consider the explicit expressions of the pressures of locally constant potentials
on the shift space. For n € N, recall that

A, ={1,2,...,n}.
LEMMA 5.3. For an integer k > 0, consider some locally constant potential

¢ (x) = CX X1+ X0 X1 Xk
Z

n’

P(1¢) = log > ek

(¥ yeentp) €DK

forx =---x_1x0x1 - € [X_ - - - xx] on the shift space A7}, we have

foranyt € (—o0, 00).

Proof. This follows from [Wall, Theorem 9.6] by some direct calculations through
Definition 2.1 of the pressure. U

Now combining Corollary 1.4 and Lemma 5.3, we have the following result.

COROLLARY 5.4. Let F(t) be a convex Lipschitz function on («, 00) for some o > 0, such
that its supporting lines intersect the vertical axis in [y, y] with 0 <y <y < oo. Then
there exists some K € N and some sequences of constants

fen Vi),
such that
Kl’l
. tens _
lim logX;e i = F(@) (5.2)
j:

foranyt € (o, 00).

Proof. Take K = #A for the symbolic set in the proof of Corollary 1.4, then the locally
constant potential ¢, (x) = ¢, —(x) admits K" constant values on corresponding level-n
cylinder sets. Denote these values by {c, ; }f:n | forn € N. According to Lemma 5.3,

KYI
Pign,-) =log ) e'r
j=1

for any n > 1. This gives equation (5.2) by virtue of equation (1.3). O

Corollary 5.4 indicates that logarithm of the finite sums of the exponential maps in the
family {e’“}.cr are dense in the space of certain convex Lipschitz maps on (c, o). The
above approximation is uniform with respect to ¢ in a bounded set. This makes the family
{e'“}cer (family of locally constant potentials) important in detecting the properties of
certain convex Lipschitz maps (among continuous or Holder potentials).

From now on, we turn our attention to Problem 5.2, but with restriction to locally
constant potentials. We focus on locally constant potentials defined on the level-0 cylinder
sets, whose theory is equivalent to those defined on the deeper cylinder sets, where the
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symbols are replaced by words (recoding). On the shift space A% with n > 2, consider the
locally constant potential

d(x) = 2xg

forx =---x_1x0x1 - - - € [xp], where {z;}1<i<n are all constants. Let

n
QO([, Z17 ZZ’ AR ) Zn) = Z etZi,
i=1

SO

P(t¢) =log Qo(t, z1, ..., 2n)
by Lemma 5.3. Let

n
Qit, 21,22, -, 2) =y i€
i=1

and

2,14z
Oa(t, 21,20, z) = ) (zi—z))%e! @),
I<i<j<n

Through some elementary calculations, one can check that

dP(t¢)  Q1(t.21, ..., )

P'(1¢) = = ,
dt QO(t’Zl,-w,Zn)
while
d*P(t [ ST
P (1¢) = (2¢>) _ Qi( 21 zn). (5.3)
dt Qo(tvzl9-’zn)
Let
n
Rot, 21,22, -+ z) = ) 7€',
i=1
one can check that
02(t, 2152 20) = Qo(t, 215+ - o> Z)R2(E, 215 - o> Z0) — QX 210 - -+, Zn)-
In the following, we will often fix t = t, > 0, so we will frequently write
Qo(ts, 21,22, - - - Zn) = Qo(21, 225 - - - 5 Zn)
with #, omitted for convenience. Similar notation apply to other terms above. Let
n
Qo1 ..o za) = ) e = e, (5.4)
i=1
n
Q1G1, .. zn) = ) zie" = aje® (5.5)
i=1
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be two equations with unknowns {z, z2, . . . , z,} for fixed t, > 0, (ap, a;) € R? and some
n>2. Let

r{, ={Gzz2,...,20) € R" 1 21,20, ..., 2, satisfy equation (5.4)}
and

ISs ={(z1,22,...,20) € R" 1 21,20, .. ., 2, satisfy equation (5.5)}.

They are both n — 1 dimensional smooth hypersurfaces. We first present readers with
the following result on fitting an analytic function

ag +ai(t — 1) + O((t — 1)%)

with ., ag, a1 subject to equation (1.5) around some fixed 7, > 0 by pressures of locally
constant potentials on general shift spaces.

THEOREM 5.5. Lett, > 0, (ag, ay) € R%Z,n>2 satisfying equation (1.5) and

ap —logn

< aj. (5.6)
Ly

Then there exists some &, > 0 and some sequence {ri,n}?:1 C R, such that the locally
constant potential

¢(x) =rx,
for x = - - - x_1x0X1 - - - € [x0] on the full shift space A% satisfies
P(t§) = ap+ai(t — 1) + O((t — 1:)*)
on [ty — &, tx + 641
Proof. In fact, it suffices for us to show that the system of equations

equation (5.4),
equation (5.5),

with unknowns {zi, z2, ..., z,} admits a solution under conditions of the theorem.
Without loss of generality, we assume

AW=22=-""=2Zn- (5.7)

Under this assumption, it is easy to see that

ap —logn ap
- S Zﬂ <.
1y .
Now we estimate the values of Q1(zy, . . ., z,) with z, approaching the terminals. When

z,, approaches the right terminal from below, we have
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a,
lim 01(1s - 2n) = —2e® > a;e®
(ZI,ZZa---aZ)l)EFgA’ Zn/aO/t* *
by virtue of equation (1.5). When z,, approaches the left terminal from above, we have

. ap — logn
lim Q1(Z1,..-,zn)=—ge
(2122520 €LY 4o 2 \A0/1s [

0 < aqje®

by virtue of equation (5.6). Since I'f, is a smooth hypersurface, by the mean value
theorem, there exists some (71,1, 72,1, - - - » T'nn) € I'S 4 satisfying equations (5.4) and (5.5)
simultaneously. At last, for x = - - - x_jx0x] - - - € [xo] on the full shift space A%, let

o(x) = xo.n

be the locally constant potential. As P(t¢) is analytic, there exists some 8, > 0 such
that

P(t¢) = ap + a1t — 1) + O((t — 1,)%)
fort € [ty — 6,, te + 641. O]

Remark 5.6. The core step in the proof of Theorem 5.5 is in fact finding the extremes
of the function Q(zy, . .., z,) subject to equations (5.4), (1.5) and (5.6). One can detect
the points of extremes by the Karush—Kuhn—Tucker (KKT) conditions [Kar, KT], which
generalises the method of Lagrange multipliers by allowing inequality constraints.

Care must be taken that the {r; ,}7_, all depend on n. Theorem 5.5 induces the following
interesting flexibility result on fitting certain analytic functions locally by pressures of
locally constant potentials on general shift spaces.

COROLLARY 5.7. Let t, > 0 and (ag, a1) € R? satisfy equation (1.5). Then there exists
some N €N, such that for any n > N, there exist some §, > 0 and some sequence
{rin}!_; CR, such that the locally constant potential

¢ (x) = rxom
Jorx =---x_1x0x1 - - - € [x0] on the full shift space A% satisfies
P(t$) = ap + a1t — 1) + O((t — 1,)%)
on [ty — 8p, ti + 8.

Proof. Under conditions of the corollary, for the given values t,, ag, a; satisfying equation
(1.5), choose N € N large enough such that
ap —log N
Iy

<daj.

This means that for any n > N, the condition in equation (5.6) is satisfied for ., ag, a1, n.
Then the conclusion follows from Theorem 5.5. O]
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Note that on some particular symbolic spaces, Theorems 5.5 and 5.7 may be trivial. For
example, for given (ty, ag, a;) € R? without any constraints, by choosing g = e "1,
consider the constant potential

d(x) =a;
on the B-shift space with symbols {0, 1, ..., [ 8]}. It is easy to see that
P(t$) = ao — tyar +ait = ap + a1 (t — t,)

on (—o00, 00). However, our results guarantee conclusions on general shift spaces beyond
these specific ones.

From now on, we go towards the proof of Theorem 1.9. For fixed ¢, > 0, (ap, a1) € R?
and n > 3, let

n N n
1—‘5.4,5.5 - 1—‘5.4 N FS.S

={(z1,22,...,20) € R" : 21, 22, . . ., 2, satisfy equations (5.4) and (5.5)}.

We describe some topological properties of the set I' 4.5.5 in the following result.

LEMMA 5.8. For fixed t, > 0, (ag, a1) € R2 subject to equation (1.5) and n > 3, in the
case Fg44,5.5 # 0 and ay # (ag — log n/ty), it is a compact (n — 2)-dimension smooth
manifold.

Proof. The Jacobian of the functions Q¢(z1, . .., z2,) — €% and Q1(z1, . .., 2y) — aje®
with respect to 21, 22, . . ., Zn 18

7o t*et*ZI t*et*zz . t*et*z"
ef*Zl + Z‘*Zlet*zl et*Z2 + t*zzef*ZZ . et*zn + t*Znef*Zn :

Its rank is strictly less than 2 if and only if
A== =2

Since a; # (ap — log n/t,), this is excluded from points in I's455. By the implicit
function theorem [Lan, Theorem 5.9], if Fg‘ 45,5 18 Not empty, it is an (n — 2)-dimension
smooth manifold locally. The gradient of the function Q¢(z1, . . ., z,) — €™ is

v(Qo(z1, ..., z0) — ™) = (t*et*zl, e, L, t*et*zn),

whose individual components will always be strictly positive. The gradient of the function
0121, ..., 20) —aje®is

V0121, - - - zn) —a1e®) = (€™ + t,z1€™%, €2 + 1z0e™2, L, € 4 1z e™ ),

with the ith individual component vanishing if and only if z; = —(1/#,) for 1 <i < n. So
'Y , and I'? 5 cannot be tangent to each other. Moreover, note that

et 4 tzie™ > 0
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FIGURE 2. T3, | , | (lighter) and T3 , , | (darker).

if z; > —(1/t,), while
et 4 tzie™ < 0

if z; < —(1/t,) for any 1 <i <n. These force the intersection of zeros of the two
functions Qo(z1,...,2,) —e® and Q1(z1,...,2s) —aje® to be connected if the
intersection is not empty. This implies I's 4 5.5 is a manifold globally in the case of being
non-empty. Here, 'Y 4,55 1s compact since it is a bounded set. O

Let
s = {( R3: tisfy %! 2 3 L2
54121 = (1,22, 23) € R 1 21, 22, z3 satisfy ! + €2 + €% = €7}
and
ri = {( )eR?: tisfy z1e¥! @ B =e?
551,21 = W21, 22,23) € 121, 22, 23 satisfy zje*! 4 z0e%? 4 z3€% = €7}

be the corresponding surfaces with ., = 1, ap = 2, a; = 1. Figure 2 depicts parts of the
two 2-dimension surfaces, whose intersection will be a 1-dimension smooth curve.
Equipped with all the above results, now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. First, for the given f, > 0 and (ag, a;) € R? satisfying equation
(1.5), if n is large enough, I'Y , 5 5 is not empty according to Corollary 5.7. So I'f , 5 5 is
a compact (n — 2)-dimension smooth manifold for n large enough. We recall here the Ry
and Q- defined after Corollary 5.4. In the following, we always assume # is large enough.
Now let

Ro(tys 215225 -+ - 5 Zn)
et

. 2.
M, ag,a,n = MiN { —ai (21,22, ..,20) € Fg.4,55}’
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while

Rz(t*a Zl’ Z27 A Zl‘l)
edo

2,
My, 49.ay,n = Max { —ay:(z1,22,...,20) € Fg"4’5.5}. (5.8)

For any my, 4ga;n < a2 < My, 49,a,,n, SINCE Fg’A 55 is a smooth manifold, there exist
{c,-,n};‘:1 C R, such that (c1, c2, - - ., cn,n) satisfies equations (5.4), (5.5) and

_ Qz(t*v cl,n’ cees cn,n) _ RZ(I*, Cl,n’ L) Cn,n) 2

) = = —a (5.9
Q%(t*, Clns -« Cn,n) e !
simultaneously. Now let
¢ (x) = cxom
forx =- - x_1x0x1 - - - € [x0] on the full shift space A%. It is a locally constant potential.
According to equations (5.3) and (5.9), we have
Ty, N
P”(t*qﬁ) — Q;( %> Clon cn,n) — . (5.10)
Qo(t*, Clns -« Cn,n)
Since (¢14, €25 - - - » Cn.n) satisfies equations (5.4) and (5.5), we have
t ’ Ny = = >
Pty = L2 Gl Cna) _ g (5.11)
Qo(tﬂﬁ Cl,ns ] Cn,n)
while
Iy, e
P/(t*(b) _ Oo(t, c1n Cn,n) =a. (5.12)

Q(z)(t*s cl,n’ LR ] Cn,n)

Note that P (z¢) is analytic with respect to 7 on («, 00) for any @ > 0, so there exists some
8, > 0, such that equation (1.6) holds on [#, — J,, t« + &,], by equations (5.10), (5.11) and
(5.12). O

In the following, we illustrate some dependent relationship between
{mt*,ao,al,n’ Mt*,ao,al,n}neN

and some particular z,, ag, ai, n satisfying equation (1.5). There should be some universal
relationship between them, while we hope the following observations will provide some
hints. The first one is that it is possible for m;, 4 .4,,» = 0 for some ., ag, a1, n.

PROPOSITION 59. Let t, >0 and (ag,a1) € R? satisfy equation (1.5). Then
My, ag.a;.n = 0for n > 2 if and only if
ap —logn

. (5.13)

ay =

Proof. Note that m;, 4, 4,,» = 0 1is equivalent to say that there exists some locally constant
potential ¢ on A% such that P”(t,¢) = 0 according to Theorem 1.9. By [PP, Proposition
4.12], this happens if and only if ¢ is a constant potential on A%. In this case, we have
ap —logn

I«

¢(x) =

for any x € A%, which implies equation (5.13). O
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0.2

—0.4 s s ‘ ‘
-20 -15 -10 -5 0 5

FIGURE 3. Graph of ¢(z) = ze®.

This result does not tell things about the sequence

{mi, ap.a1.n) pen large enough

for given ¢, ap, a1, since equation (5.13) will never be true for any n large enough for fixed
t., ag, a1. The following result describes a limiting behaviour of the sequence

(M1, ap.a1.n} nen large enough

fort, =1,a0=2,a; = 1.
PROPOSITION 5.10. Lett, = 1, a9 = 2, a1 = 1, in symbols of Theorem 1.9, we have

lim M2, = o0. (5.14)

n—00

To justify Proposition 5.10, we first illustrate some basic properties about the function
ze™ for t, > 0.

LEMMA 5.11. For t, > 0, ze™% is strictly decreasing on (—oo, —(1/t,)), strictly increas-
ing on (—(1/t,), 00), while it attains its minimum —(1/t,)e~" at z = —(1/t,). It admits
one and only one inflection in (—oo, —(1/t,)).

Proof. One can check these conclusions by some direct computations on the first and
second derivatives of the function ze'*. O

In Figure 3, we depict the graph of ¢(z) = ze*.

Proof of Proposition 5.10. Since we are considering the limit behaviour of M2 1,,
we always assume 7 is large enough throughout the proof. Now consider the following
two equations:

(n — 1)e% + &% = ¢? (5.15)
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and
(n — 1)zg€™ + 7pe% = &* (5.16)
with unknowns z,, zp. Let
['s.15 = {(za, 25) € R? : z4, 25 satisfy equation (5.15)}
and
T's16 = {(za» 2) € R? : 24, 2 satisfy equation (5.16)}.

We describe the graphs of I's ;5 and I's ¢ separately in the following. Here, I's5 5 is a
one-dimensional smooth curve with two asymptotes z, = 2 — log(n — 1) and z;, = 2. Itis
strictly decreasing when we consider the curve as the graph of the function

2 = log(e® — (n — 1)e%)

for z, € (—o00, 2 —log(n — 1)). Here, I's5 16 is also a one-dimensional smooth curve with
two asymptotes z, = g_l(ez/(n — 1)) and zp = g‘l(ez). When we consider the I's5 ¢ as
the graph of the function

2 = 1(zq)

as the implicit function induced by equation (5.16), it is strictly increasing for z, €
(—o00, —1), strictly decreasing for z, € (—1, ¢ Ye?/n — 1)), with its maximum ¢~ ! (e? +
(n — 1)e!) attained at 7, = —1. Let gl_l(—(ez/(n — 1))) be the smaller one of the two
intersections of z; = 2 and I'5 16, then I's 15 and I's j¢ must intersect at some unique point
Can € (=00, 5 (—(€?/(n — 1)))). Obviously,

lim ¢4, = —00
n—oo

since lim;,—; oo gl_l (—(e%/(n — 1))) = —oo. Now we analyse the order of ca,n With respect
tonasn — oo. Let

Zan = —logn —loglogn +1log 1 — 1.
One can check that

lim  ((n — 1)e%n + &%) = €2,
n—00,7p—>2

while

lim  ((n — Dzgpe’en + zpet) = e,
n—00,zp—>2

These imply that

can = — logn —log log n + o(log log n).
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5 -
I's 16
-15 ‘ ‘
-15 -10 -5 0 5
Za
FIGURE 4. F5,|5 and F5.16~
Note that (cqn, Cans - - - » Cans> N(Can)) € 1";14 ssforty =1,a0 =2,a; = 1. Now
RZ(Ca,m Cans---sCans n(ca,n))

=mn- I)CZ,neC“’" + (n(ca,n))zen(ca'n)
= (n — 1)(— log n — log log n + o(log log n))?e~ l0g n—loglogntolloglogm) 4 4,2 4 (1)
= log n + o(log n),

from which it is easy to see that
lim R2(ca,ns Cans -5 Cans n(ca,n)) = Q.
n—oo
This forces
lim Mip1, = 00,
n— o0

by equation (5.8). O

We provide the readers with the curves I's |5 and I's5 16 in Figure 4. Obviously, some
more general conclusions are available if one considers variations of the parameters
tx, ao, a1 in Proposition 5.10. In the proof of Proposition 5.10, we analysed the asymptotic
behaviour of ¢, , as n — oo. To illustrate this, we provide the readers with some solutions
{cantnen and {n(can)}nen in Table 3, from which one can see the order of decay and
increase of the sequences with respect to n clearly.
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TABLE 3. {can}neN and{n(cqn)}nen-

Can

n(Can)

10
10?
103
10*

10°
107
108
10°
1010
1011
1012
1013
10]4
1015
1016
1017
1018
]019
1020
1021
]022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

—1.8599539391797653780996686364493
—4.6278529940301947157458180305676
—7.2278923365046354303919671475052
—9.7529279223041958189401940128674

—12.23426184122178540565187685582
—14.686689485112383196253350885528
—17.118475509130338419321449219176
—19.534737736752111249670741176574
—21.938877884281897893422087428599
—24.333277592346602338263750350022
—26.719672172461371813735932628894
—29.099366670257435261982274861811
—31.473368167571030624456199153849
—33.842470627269595326611535858951
—36.20731141238751139407393422892
—38.568410155198951836337896822881
—40.926196222869058989174011616314
—43.28102858421294787781225809291
—45.633210475623427729647938869856
—47.983000423353389741328990557576
—50.330620660008332271820694306839
—52.676263643082855194671803053742
—55.020097168291592849066888176454
—57.362268427077060922578379063246
—59.702907260160132201351723856461
—62.042128791447074538616865826092
—64.380035579030470553978577616248
—66.716719386002755126963619613768
—69.052262649137714881922574449762
—71.386739705385277326962820249044
—73.7202178226698188293210417966
—76.052758071376257724956806229201
—78.384416065240707497606345034329
—80.715242594490126828808238297291
—83.045284169538297201269228695051
—85.374583490011093204926910773042
—8&87.703179851099500408441885242821
—90.031109497045012553979249690171
—92.358405929815521230622254914238
—94.685100179630439886817678169988

1.7634042477581860636342812520981
1.8580906928560505140960875180438
1.8965708210067454817129699066334
1.9180710389285259082138396366755
1.9319494203818796717151866525306
1.941701042038176132682488585943
1.9489507180131363431129601417792
1.9545628133690736391913141129777
1.9590417833080193886068703580662
1.9627027620469153955488959845337
1.9657531814729595378854181456218
1.9683353707111573738492465130807
1.970550350496947761285545176838
1.9724718685216929582206115029034
1.9741550583546827046855344007126
1.97564198636943790477268372057
1.9769653208730088904749619599928
1.9781508271703613365389080750692
1.9792191056459012534062976747755
1.9801868284846851379610473178804
1.9810676363715292020369862557429
1.9818727996772032079642260800619
1.9826117134133018944596936081392
1.9832922728467949817312209115653
1.9839211621102961084222105523408
1.9845040784885601043186175801529
1.9850459085371711281404342988732
1.9855508677057357884921072471682
1.9860226120088820356292880321385
1.9864643280735340181774784668139
1.9868788063025456510398996161088
1.9872685007417625212636588061233
1.9876355783911370649894789906831
1.9879819600725889180558042388717
1.9883093544968926933418986392956
1.9886192868162322855194994642595
1.9889131226778662869710690898493
1.9891920885858755212588911444123
1.9894572892164831961499157326311
1.9897097222064583485549741614556
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