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Abstract. In this paper, we show that the semilinear elliptic systems of the form

{−�u + µ�v = g(x, v), −�v + λ�u = f (x, u) (x ∈ �),

u = v = 0, (x ∈ ∂�)
(0.1)

possess at least one positive solution pair (u, v) ∈ H1
0 (�) × H1

0 (�), where � is a smooth
bounded domain in �N , f (x, t) and g(x, t) are continuous functions on � × � and
asymptotically linear at infinity.

2000 Mathematics Subject Classification. 35J60, 35J65.

1. Introduction. In this paper, we consider the existence of positive solutions of
nonlinear elliptic systems

{−�u + µ�v = g(x, v), −�v + λ�u = f (x, u) x ∈ �,

u = v = 0 x ∈ ∂�,
(1.1)

where � ⊂ �N is a smooth bounded domain, λ and µ are nonnegative numbers, f (x, t)
and g(x, t) are functions continuous on � × � and asymptotically linear at infinity
for t.

In the case of λ = µ = 0, there is much research in the literature for the case in
which f and g are superlinear. See [1], [2], [3], [5], [13] and references therein. In [8]
G. Li and the second author considered the asymptotically linear elliptic systems

−�u + u = g(x, v), −�v + v = f (x, u) (x ∈ �N),

and obtained a positive solution by using the linking theorem under the Cerami
compactness condition.

If λ,µ �= 0, the problem has some new features. First, by the Pohozaev type
identity, the parameters λ and µ affect the subcritical range of the growth of nonlinear
terms at infinity. See [10]. Secondly, the decomposition of the space in the framework
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involves the parameters. In fact, let E = H1
0 (�) × H1

0 (�) be equipped with the norm

‖z‖E =
(∫

�

(|∇u|2 + |∇v|2) dx
) 1

2

,

where z = (u, v). We define a bilinear form B : E × E → � by

B[(u, v), (ϕ,ψ)] =
∫

�

(∇u∇ψ − λ∇u∇ϕ + ∇v∇ϕ − µ∇v∇ψ) dx. (1.2)

Then B [z, η] = B [η, z], ∀z, η ∈ E. Note that B induces a self-adjoint bounded linear
operator L : E → E such that

B[z, η] = 〈Lz, η〉E (∀ z, η ∈ E).

The eigenvalue problem

Lz = kz

has two eigenvalues

k± = −λ − µ ±
√

(λ − µ)2 + 4
2

.

The corresponding eigenvectors are (u, (k± + λ)u), where u ∈ H1
0 (�). Let

E± =
{(

u,
λ − µ ±

√
(λ − µ)2 + 4
2

u
)

, where u ∈ H1
0 (�)

}
.

Then E = E+ ⊕ E−. Also, both E+ and E− are infinite dimensional. We may write for
z = (u, v) ∈ E,

z+ = 1
k2 − k1

(k2u − v,−u − k1v), z− = 1
k2 − k1

(−k1u + v, u + k2v),

and we have

B[z+, z−] = 〈Lz+, z−〉E = 0, ∀z± ∈ E±.

We may verify that

〈z, η〉 = B[z+ − z−, η], ∀ z, η ∈ E (1.3)

is an inner product in E that induces a norm ‖z‖ = (〈z, z〉) 1
2 , z ∈ E. The subspaces E+

and E− are orthogonal with respect to the inner product 〈·, ·〉. Moreover, we have

‖z‖2 = ‖z+‖2 + ‖z−‖2 = B[z+ − z−, z+ + z−]. (1.4)

Let

k1 = λ − µ +
√

(λ − µ)2 + 4
2

, k2 = λ − µ −
√

(λ − µ)2 + 4
2

. (1.5)

Note that

−µk2
1 + 2k1 − λ > 0 if and only if λµ < 1 (1.6)
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and k1k2 = −1. We know that E+ and E− are also orthogonal with respect to the inner
product 〈·, ·〉E . The norms ‖ · ‖ and ‖ · ‖E are then equivalent if λµ < 1.

In [10], the authors considered problem (1.1) with superlinear nonlinearities. In
this paper, we consider the case in which f (x, t) and g(x, t) are asymptotically linear at
infinity for t.

We assume that f and g satisfy the following conditions.
(H1) f , g ∈ C1(� × �, �).
(H2) limt→0( f (x, t)/t) = limt→0(g(x, t)/t) = 0 uniformly with respect to x ∈ � and

f (x, t) > 0, g(x, t) > 0 for t > 0, x ∈ �.
(H3) limt→∞( f (x, t)/t) = l > 0, limt→∞(g(x, t)/t) = m > 0 uniformly in x ∈ �.
(H4) f (x, t)/t and g(x, t)/t are non-decreasing in t ≥ 0 for x ∈ �.
(H5) 1

2 t f (x, t) − F(x, t) > 0 and 1
2 tg(x, t) − G(x, t) > 0 for any (x, t) ∈ � × �+.

Also there are δ ∈ (0, 1) and cδ > 0 such that f (x, t)/t ≥ δ and g(x, t)/t ≥ δ imply,
respectively, that

1
2

t f (x, t) − F(x, t) ≥ cδ,
1
2

tg(x, t) − G(x, t) ≥ cδ,

where F(x, t) = ∫ t
0 f (x, s) ds, G(x, t) = ∫ t

0 g(x, s) ds.
Let λ1 be the first eigenvalue of (−�, H1

0 (�)) and ϕ1 > 0 be a corresponding
eigenfunction.

The main result of this paper is the following theorem.

THEOREM 1.1. Suppose that (H1) − (H5). If 0 ≤ λµ < 1 and λ1 <
mλ+µl+

√
(mλ−µl)2+4ml

2(1−λµ) , then the problem (1.1) possesses at least one positive solution pair
z = (u, v) ∈ E. Suppose further 0 ≤ λ + µ < 2. Then the problem (1.1) possesses a least
energy positive solution pair z = (u, v) ∈ E.

Theorem 1.1 will be proved by looking for critical points of the associated
functional

I(u, v) =
∫

�

(
∇u∇v − λ

2
|∇u|2 − µ

2
|∇v|2

)
dx −

∫
�

F(x, u) dx −
∫

�

G(x, v) dx

(1.7)

defined on E = H1
0 (�) × H1

0 (�). In order to find critical points of I , we show first
that the functional I has a geometry of linking type. Then, we find a (PS)c sequence
{zn} ⊂ E of I by a linking type theorem in [6]. Theorem 1.1 follows by showing {zn}
has a strongly convergent subsequence. As a byproduct, we show that

I∞ = inf{I(z) : I ′(z) = 0, z = (u, v) ∈ E\{0}}

is achieved by some z0 = (u0, v0) with u0 > 0, v0 > 0.
In the same way, we consider the problem

{−�u − µ�v = g(x, v), −�v + λ�u = f (x, u) (x ∈ �),

u = v = 0 (x ∈ ∂�),
(1.8)
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and {−�u + µ�v = g(x, v), −�v − λ�u = f (x, u) (x ∈ �),

u = v = 0 (x ∈ ∂�).
(1.9)

We have the following results.

THEOREM 1.2. Suppose that (H1) − (H5) hold. If λ,µ ≥ 0 and λ1 <
mλ−µl+

√
(mλ+µl)2+4ml

2(1+λµ) , then the problem (1.8) possesses at least one nonnegative nontrivial
solution pair z = (u, v) ∈ E.

THEOREM 1.3. Suppose that (H1) − (H5) hold. If λ,µ ≥ 0 and λ1 <
µl−mλ+

√
(mλ+µl)2+4ml

2(1+λµ) , then the problem (1.9) possesses at least one nonnegative nontrivial
solution pair z = (u, v) ∈ E.

Theorem 1.1 will be proved in Section 2.

2. Existence results. Suppose in this section that λ, µ satisfies λµ < 1. This allows
us to define an equivalent norm on E. As we are only interested in positive solutions,
we assume in the following that f (x, t) = g(x, t) = 0 if t ≤ 0. It is known that the energy
functional I defined in (1.7) is C1 on E with the Fréchet derivative I ′ satisfying

〈I ′(u, v), (ϕ,ψ)〉 =
∫

�

[∇u∇ψ + ∇v∇ϕ − λ∇u∇ϕ − µ∇v∇ψ ] dx −
∫

�

f (x, u)ϕ dx

−
∫

�

g(x, v)ψ dx.

for (u, v), (ϕ,ψ) ∈ E.
A sequence {zn} ⊂ E is called a Palais-Smale sequence of a C1 functional I on E

at level c ((PS)c-sequence for short) if I(zn) → c and I ′(zn) → 0 as n → ∞. To get a
(PS)c-sequence, we use the linking theorem in [6].

PROPOSITION 2.1. (Theorem 3.4 of [6])
Let E be a real Hilbert space and suppose that 	 ∈ C1(E, �) satisfies the following

hypotheses:
(i) 	(u) = 1

2 〈Lu, u〉 − 
(u), where L is a bounded self-adjoint linear operator, 


is bounded below, weakly sequentially lower semicontinuous and ∇
 is weakly
sequentially continuous;

(ii) there exists a closed separable L-invariant subspace Y such that the quadratic
form u �→ 〈Lu, u〉 is negative definite on Y and positive semi-definite on Y⊥;

(iii) there are constants b, ρ > 0 such that 	|Sρ∩Y⊥ ≥ b;
(iv) there is z0 ∈ S1 ∩ Y⊥ and R > ρ such that 	|∂M ≤ 0, where M := {u = y +

λz0 : y ∈ Y, ‖u‖ < R, λ > 0}.
Then there exists a sequence {un} ⊂ E such that ∇	(un) → 0 and 	(un) → c for some
c ∈ [b, supM	].

For z0 ∈ E+\{0} and R > r > 0, let

MR = {z = z− + ρz0 : z− ∈ E−, ρ ≥ 0, ‖z‖ ≤ R}, Nr = {z ∈ E+ : ‖z‖ = r}.
Let 
(u, v) = ∫

�
F(x, u) dx + ∫

�
G(x, v) dx.
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LEMMA 2.1. The following properties hold.
(i) There exist r, α > 0 and R > r (R depending on z0) such that I(z) ≥ α for all

z ∈ Nr and I(z) ≤ 0 for all z ∈ ∂MR.
(ii) 
 ≥ 0, 
 is weakly sequentially lower semicontinuous and 
 ′ is weakly

sequentially continuous.

Proof. We first prove (i). For z ∈ E+, there is a u ∈ H1
0 (�) such that z = (u, k1u).

By (H1) − (H3), we have for ε > 0 that

I(z) ≥ 1
2
‖z‖2 −

∫
�

(cεu2 + cεup)dx ≥ 1
4
‖z‖2 − C‖z‖p,

where p ∈ (2, 2∗), 2∗ = 2N
N−2 . Hence for ‖z‖ = r sufficiently small, there is α > 0 such

that

b := inf
Nr

I ≥ α.

Let z0 = (u0, k1u0) ∈ E+\{0} with ‖z0‖ = 1. Note that u0 will be specified later,
such that

1 − min(l, m)
∫

�

u2
0dx < 0. (2.1)

We prove now that there exists a R > r such that max∂MR I = 0. Set

u0 = (( − µk2
1 + 2k1 − λ

)
βD(N)(d(N))2)− 1

2 β
N
4 e−β|x|2,

where

(d(N))2 =
∫

�

e−2|x|2 dx, D(N) = 4(d(N))−2
∫

�

|x|2e−2|x|2 dx

and β will be determined later. Then we have as [9] that

∫
�

u2
0 dx = 1(−µk2

1 + 2k1 − λ
)
βD(N)

and
∫

�

|∇u0|2 dx = 1(−µk2
1 + 2k1 − λ

) ,

which yields ‖z0‖ = 1. Choosing β ∈ (0, min(l, m)/(µk2
1 + 2k1 − λ)D(N)), we obtain

1 − min(l, m)
∫

�

u2
0 dx < 0.

If z ∈ ∂MR, then z = z− + sz0 with either ‖z‖ = R, for s ≥ 0, or ‖z‖ < R, when
s = 0. If s = 0, we have z ∈ E−, z = (u, k2u) and

I(u, k2u) = −1
2
‖z−‖2 −

∫
�

F(x, u) dx −
∫

�

G(x, k2u) dx ≤ 0,

because F(x, t), G(x, t) ≥ 0 for any (x, t) ∈ �N × �.
Suppose now that s > 0. If the conclusion were not true, we would have a

sequence {zn} ⊂ ∂Mn, zn = snz0 + z−
n , sn > 0, ‖zn‖ = n such that I(zn) > 0. That is,
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if zn = (un, vn) := (snu0 + ϕn, snk1u0 + k2ϕn), then

I(zn) = 1
2

(
s2

n‖z0‖2 − ‖z−
n ‖2) −

∫
�

F(x, un) dx −
∫

�

G(x, vn) dx > 0.

Hence

I(zn)
‖zn‖2

= 1
2

(
s2

n

‖zn‖2
‖z0‖2 − ‖z−

n ‖2

‖zn‖2

)
−

∫
�

F(x, un) + G(x, vn)
‖zn‖2

dx > 0. (2.2)

As a result, sn ≥ ‖z−
n ‖. On the other hand,

s2
n‖z0‖2 + ‖z−

n ‖2

‖zn‖2
= 1

implies that

s2
n

‖zn‖2
→ ρ2 ≥ 0

for some ρ ≥ 0, and

ζ−
n := z−

n

‖zn‖ ⇀ ζ− = (ϕ, k2ϕ) ∈ E

as n → ∞.
If ρ = 0, we get from (2.2) that

‖z−
n ‖2

‖zn‖2
→ 0,

∫
�

F(x, un)
‖zn‖2

dx → 0,

∫
�

G(x, vn)
‖zn‖2

dx → 0

as n → ∞. Therefore,

1 = s2
n

‖zn‖2
‖z0‖2 + ‖z−

n ‖2

‖zn‖2
→ 0

as n → ∞, which is impossible.
If ρ > 0, since s2

n/‖zn‖2 → ρ2 > 0 and ‖zn‖ → +∞ as n → ∞, it follows that
sn → +∞ as n → ∞. If x ∈ � is such that ρu0(x) + ϕ(x) �= 0, we have

lim
n→∞

snu0(x) + ϕn(x)
‖zn‖ = ρu0(x) + ϕ(x) �= 0;

thus, un = snu0(x) + ϕn(x) → ∞ as n → ∞. Similarly, if ρk1u0(x) + k2ϕ(x) �=
0, we have vn = snk1u0(x) + k2ϕn(x) → ∞ as n → ∞. As I(zn)/‖zn‖2 > 0 and
F(x, t), G(x, t) ≥ 0, we deduce that

0 <
s2

n

2‖zn‖2
‖z0‖2 − ‖z−

n ‖2

2‖zn‖2
−

∫
�

[
F(x, un)

u2
n

(
un

‖zn‖
)2

+ G(x, vn)
v2

n

(
vn

‖zn‖
)2

]
dx

≤ s2
n

2‖zn‖2
‖z0‖2 − ‖z−

n ‖2

2‖zn‖2
−

∫
{ρu0+ϕ �=0}

F(x, un)
u2

n

(
un

‖zn‖
)2

dx

−
∫

{ρk1u0+k2ϕ �=0}

G(x, vn)
v2

n

(
vn

‖zn‖
)2

dx. (2.3)
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Notice that

un

‖zn‖ = snu0 + ϕn

‖zn‖ ⇀ ρu0 + ϕ and
vn

‖zn‖ = snk1u0 + k2ϕn

‖zn‖ ⇀ ρk1u0 + k2ϕ

in H1
0 (�) as n → ∞. By Sobolev’s is embedding theorems, we may assume that

un

‖zn‖ = snu0 + ϕn

‖zn‖ → ρu0 + ϕ,
vn

‖zn‖ = snk1u0 + k2ϕn

‖zn‖ → ρk1u0 + k2ϕ a.e. in �

as n → ∞. Let z = ρz0 + ζ− and z0 = (u0, k1u0), ζ− = (ϕ, k2ϕ). Taking the limit in
(2.3), using Fatou’s Lemma and the fact that lim infn→∞(‖z−

n ‖/‖zn‖) ≥ ‖ζ−‖, we obtain
by (2.1) that

0 ≤ 1
2

(ρ2‖z0‖2 − ‖ζ−‖2) − l
2

∫
{ρu0+ϕ �=0}

(ρu0 + ϕ)2 dx − m
2

∫
{ρk1u0+k2ϕ �=0}

(ρk1u0 + k2ϕ)2 dx

= 1
2

(ρ2‖z0‖2 − ‖ζ−‖2) − 1
2

∫
�

[l(ρu0 + ϕ)2 + m(ρk1u0 + k2ϕ)2] dx

≤ 1
2

(ρ2‖z0‖2 − ‖ζ−‖2) − 1
2

min(l, m)
∫

�

[(ρu0 + ϕ)2 + (ρk1u0 + k2ϕ)2] dx

= 1
2

(ρ2‖z0‖2 − ‖ζ−‖2) − 1
2

min(l, m)
∫

�

[
ρ2u2

0

(
1 + k2

1

) + ϕ2 (
1 + k2

2

)]
dx

≤ 1
2

(ρ2 − ‖ζ−‖2) − 1
2

min(l, m)
∫

�

[
ρ2u2

0 + ϕ2] dx

= 1
2
ρ2

[
1 − min(l, m)

∫
�

u2
0 dx

]
− 1

2
‖ζ−‖2 − 1

2
min(l, m)

∫
�

ϕ2 dx

< 0,

which is a contradiction. Hence, part (i) of the Lemma is proved.
Now we prove (ii). It is obvious that 
 ≥ 0. Let zn = (un, vn) ⇀ z = (u, v) in E

as n → ∞. Then un → u, vn → v in Lp(�), p ∈ (2, 2∗), and un → u, vn → v a.e. in �

possibly after passing to a subsequence as n → ∞ . It follows from Fatou’s Lemma
that 
 is weakly sequentially lower semicontinuous. Moreover, by (H1) − (H3), there
is a 2 < p < 2∗ if N ≥ 3 and 2 < p < +∞ if N ≤ 2, such that for ε > 0 we can find
cε > 0 such that

| f (x, t)| ≤ ε|t| + cε |t|p−1, |g(x, t)| ≤ ε|t| + cε |t|p−1, (2.4)

for (x, t) ∈ � × �. Therefore,∫
�

[ f (x, un) − f (x, u)] ϕ dx = o(1),
∫

�

[ g(x, vn) − g(x, v)] ψ dx = o(1)

as n → ∞. We deduce from

〈
 ′(zn) − 
 ′(z), (ϕ,ψ)〉 =
∫

�

[ f (x, un) − f (x, u)] ϕ dx +
∫

�

[ g(x, vn) − g(x, v)] ψ dx,
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where (ϕ,ψ) ∈ E, that 
 ′ is weakly sequentially continuous. The Lemma is
proved. �

PROPOSITION 2.2. If (u, v) ∈ H1
0 (�) × H1

0 (�) is a positive solution of (1.1), then

λ1 ≤ mλ+µl+
√

(mλ−µl)2+4ml
2(1−λµ) .

Proof. Let k = mλ−µl+
√

(mλ−µl)2+4ml
2m . It is apparent that (u, v) = (u, kṽ) is a positive

solution pair of the problem{−�u + µk�ṽ = g(x, kṽ), −�ṽ + λ
k�u = 1

k f (x, u) (x ∈ �),

u = ṽ = 0 (x ∈ ∂�);

that is

−
(

1 − λ

k

)
�

(
u + 1 − µk

1 − λ
k

ṽ

)
= g (x, kṽ) + 1

k
f (x, u).

By (H3) and (H4), we have(
1 − λ

k

) ∫
�

∣∣∣∣∇
(

u + 1 − µk
1 − λ

k

ṽ

)∣∣∣∣
2

dx =
∫

�

[
g(x, kṽ) + 1

k
f (x, u)

](
u + 1 − µk

1 − λ
k

ṽ

)
dx

≤
∫

�

[
mkṽ + l

k
u
](

u + 1 − µk
1 − λ

k

ṽ

)
dx

= l
k

∫
�

(
u + mk2

l
ṽ

)(
u + 1 − µk

1 − λ
k

ṽ

)
dx.

By the definition of k we know that 1−µk
1− λ

k
= mk2

l , and then

λ1 ≤
l
k

1 − λ
k

= l
k − λ

= mλ + µl +
√

(mλ − µl)2 + 4ml
2(1 − λµ)

.

The proof is complete. �

LEMMA 2.2. Let {zn} be a (PS)c-sequence of I. If λ1 <
mλ+µl+

√
(mλ−µl)2+4ml

2(1−λµ) , then
{zn} is relatively compact in E.

Proof. It is sufficient to show that {zn} is bounded in E. Suppose, to the contrary,
that ‖zn‖ → ∞ as n → ∞. Let

wn = zn

‖zn‖ =
(

un

‖zn‖ ,
vn

‖zn‖
)

�= (
w1

n, w
2
n

)
, ρn(x) = |wn(x)|2 = 1

‖zn‖2

(
u2

n + v2
n

)
.

Then we may assume for some w = (w1, w2) ∈ E that

wn = (
w1

n, w
2
n

)
⇀ w = (w1, w2) ∈ E,

and

wn = (
w1

n, w
2
n

) → w = (w1, w2) a.e. in �

https://doi.org/10.1017/S0017089507003588 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003588


ASYMPTOTICALLY LINEAR ELLIPTIC SYSTEMS 385

as n → ∞. If w = (w1, w2) = 0, then by the Sobolev embedding theorem, we would
have

w1
n → 0, w2

n → 0 in Lq(�)

as n → ∞ for 2 ≤ q < 2N/(N − 2). Since

z+
n = 1

k2 − k1
((k2un − vn) , (−un − k1vn)) , z−

n = 1
k2 − k1

((−k1un + vn) , (un + k2vn)),

we have

u+
n = k2un − vn

k2 − k1
, u−

n = −un − k1vn

k2 − k1

and

v+
n = −k1un + vn

k2 − k1
, v−

n = un + k2vn

k2 − k1
.

Thus,

〈I ′(zn), z+
n 〉 = ‖z+

n ‖2 −
∫

�

f (x, un)u+
n dx −

∫
�

g(x, vn)v+
n dx = o(1)‖z+

n ‖

and

〈I ′(zn), z−
n 〉 = −‖z−

n ‖2 −
∫

�

f (x, un)u−
n dx −

∫
�

g(x, vn)v−
n dx = o(1)‖z−

n ‖,

where z±
n = (u±

n , v±
n ). This yields

‖zn‖2 −
∫

�

f (x, un)(u+
n − u−

n ) dx −
∫

�

g(x, vn)(v+
n − v−

n ) dx = o(1)(‖z+
n ‖ − ‖z−

n ‖),

and so ∫
�

f (x, un)(u+
n − u−

n ) + g(x, vn)(v+
n − v−

n )
‖zn‖2

dx = o(1) + 1.

For δ and cδ given in (H5), let

An = {x ∈ � : | f (x, un(x))| ≤ δ|un(x)|}, Bn = {x ∈ � : |g(x, un(x))| ≤ δ|un(x)|},
and �n = An ∩ Bn. We deduce that∣∣∣∣

∫
�n

f (x, un)(u+
n − u−

n ) + g(x, vn)(v+
n − v−

n )
‖zn‖2

dx
∣∣∣∣

≤
∫

�n

| f (x, un)(u+
n − u−

n ) + g(x, vn)(v+
n − v−

n )|
‖zn‖2

dx

≤ cδ
∫

�n

|un|2 + |vn|2
‖zn‖2

dx ≤ cδ
∫

�n

|wn|2 dx

≤ δ < 1
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for n large enough. Thus, we have for all n sufficiently large∫
�\�n

f (x, un)(u+
n − u−

n ) + g(x, vn)(v+
n − v−

n )
‖zn‖2

dx ≥ 1 − δ + o(1). (2.5)

On the other hand, (H2) and (H3) imply that there exists c > 0 such that

| f (x, t)|, |g(x, t)| ≤ c + c|t| (2.6)

for (x, t) ∈ � × �. By (2.5) and (2.6), we have

0 < 1 − δ + o(1) ≤
∫

�\�n

f (x, un)(u+
n − u−

n ) + g(x, vn)(v+
n − v−

n )
‖zn‖2

dx

≤ c
∫

�\�n

|un|2 + |vn|2
‖zn‖2

dx ≤ c
∫

�\�n

|wn|2 dx

≤ mes{�\�n}
p−2

p ‖wn‖2
Lp(�) → 0

as n → ∞ because ‖wn‖Lq(�) → 0 for 2 ≤ q < 2N/(N − 2) as n → ∞. This
contradiction shows that w = (w1, w2) �= 0.

On the other hand,

o(1) =
∫

�

[∇un∇ψ + ∇vn∇ϕ − λ∇un∇ϕ − µ∇vn∇ψ ] dx

−
∫

�

f (x, un)ϕ dx −
∫

�

g(x, vn)ψ dx (2.7)

as n → ∞ for (ϕ,ψ) ∈ E. Let

pn(x) =
⎧⎨
⎩

f (x,un)
un

if un(x) > 0;

0 if un(x) ≤ 0,
qn(x) =

⎧⎨
⎩

g(x,vn)
vn

if vn(x) > 0;

0 if vn(x) ≤ 0.

By (H2) − (H4), we see that

0 ≤ pn(x) ≤ l, 0 ≤ qn(x) ≤ m, ∀x ∈ �,

and there exist two functions p(x), q(x) ∈ L∞(�) such that

pn ⇀ p, qn ⇀ q in L2(�)

as n → ∞. Hence

pn(x)w1
n ⇀ p(x)max{w1(x), 0}, qn(x)w2

n ⇀ q(x)max{w2(x), 0} in L2(�)

as n → ∞. From (2.7), we have, for (ϕ,ψ) ∈ E, that

o(1) =
∫

�

[∇w1
n∇ψ + ∇w2

n∇ϕ − λ∇w1
n∇ϕ − µ∇w2

n∇ψ
]

dx

−
∫

�

pn(x)w1
nϕ dx −

∫
�

qn(x)w2
nψ dx
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as n → ∞. Letting n → ∞, we obtain∫
�

[∇w1∇ψ + ∇w2∇ϕ − λ∇w1∇ϕ − µ∇w2∇ψ ] dx −
∫

�

p(x)max{w1, 0}ϕdx

−
∫

�

q(x)max{w2, 0}ψ dx = 0. (2.8)

Therefore, w1, w2 satisfy{−�w1 + µ�w2 = q(x)max{w2, 0} ≥ 0 (x ∈ �),

−�w2 + λ�w1 = p(x)max{w1, 0} ≥ 0 (x ∈ �).
(2.9)

Standard elliptic regularity theory in [4] shows that w1, w2 ∈ C2(�) ∩ C(�). By the
strong maximum principle, we have w1 − µw2 > 0 or w1 − µw2

2 = 0 throught � and
w2

2 − w1 > 0 or w2 − w1 = 0 throught �. Since w = (w1, w2) �= 0 and 0 ≤ λµ < 1,
we conclude that w1 > 0, w2 > 0 in �. Hence p(x) = l, and q(x) = m. It follows that
w = (w1, w2) satisfies∫

�

[∇w1∇ψ + ∇w2∇ϕ − λ∇w1∇ϕ − µ∇w2∇ψ ] dx −
∫

�

lw1ϕ dx −
∫

�

mw2ψ dx = 0.

Let k = mλ−µl+
√

(mλ−µl)2+4ml
2m . Observe that w = (w1, w2) = (w1, kw̃2) satisfies

∫
�

[∇w1∇ψ − µk∇w̃2∇ψ − mkw̃2ψ ] dx + k
∫

�

[
∇w̃2∇ϕ − λ

k
∇w1∇ϕ − l

k
w1ϕ

]
dx = 0.

Choosing (ϕ,ψ) = ( 1
kϕ1, ϕ1

)
, we see that

∫
�

[∇w1∇ϕ1 − µk∇w̃2∇ϕ1 −mkw̃2ϕ1] dx +
∫

�

[
∇w̃2∇ϕ1 − λ

k
∇w1∇ϕ1 − l

k
w1ϕ1

]
dx = 0,

that is,

(
1 − λ

k

) ∫
�

∇
(

w1 + 1 − µk
1 − λ

k

w̃2
)

∇ϕ1 dx = l
k

∫
�

(
w1 + mk2

l
w̃2

)
ϕ1 dx.

This contradicts the fact that λ1 <
l
k

1− λ
k

= mλ+µl+
√

(mλ−µl)2+4ml
2(1−λµ) . The assertion then

follows. �

PROPOSITION 2.3. Suppose that (H1) − (H5) hold and λ1 <
mλ+µl+

√
(mλ−µl)2+4ml

2(1−λµ) ,
then problem (1.1) possesses at least one positive solution pair (u, v) ∈ E.

Proof. By Lemma 2.1, we know that the functional I has an infinite dimensional
linking geometry as described in Proposition 2.1. Proposition 2.1 implies that there
exists a (PS)c-sequence {zn} for I , where c > 0. By Lemma 2.2, there exists a z = (u, v)
∈ E such that zn → z = (u, v) in E as n → ∞. Now z is a nontrivial solution of
(1.1). The Strong Maximum Principle yields u > 0 and v > 0 in �. The conclusion
follows. �
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By Proposition 2.3, we know that the set

{(u, v) ∈ E : (u, v) �≡ 0 is a positive solution pair of (1.1)}

is not empty. Let

I∞ = inf {I(u, v)|(u, v) �≡ 0 is a positive solution pair of (1.1)} .

PROPOSITION 2.4. Suppose that λ + µ < 2. Then I∞ is attained and I∞ > 0.

Proof. By Proposition 2.3, we know that I∞ is finite. Indeed, by (2.4), Hölder
inequality and the Sobolev embedding theorem, we get∫

�

|∇u|2 dx ≤
∫

�

|g(x, v)||u| dx + µ

∫
�

|∇u||∇v| dx

≤ εc‖u‖H1
0
‖v‖H1

0
+ cε‖u‖H1

0
‖v‖p−1

Lp + µ‖u‖H1
0
‖v‖H1

0
,

Similarly, ∫
�

|∇v|2 dx ≤ εc‖u‖H1
0
‖v‖H1

0
+ c̃ε‖v‖H1

0
‖u‖p−1

Lp + λ‖u‖H1
0
‖v‖H1

0
.

Adding the two inequalities above we obtain∫
�

(|∇u|2 + |∇v|2) dx ≤ (εc + λ + µ) ‖u‖H1
0
‖v‖H1

0
+ cε‖u‖H1

0
‖v‖p−1

Lp + c̃ε‖v‖H1
0
‖u‖p−1

Lp

≤ 1
2

(εc + λ + µ)
∫

�

(|∇u|2 + |∇v|2) dx

+c′
ε(

∫
�

(|∇u|2 + |∇v|2) dx)
p
2 .

Since λ + µ < 2, it follows, by choosing ε > 0 suitably, that∫
�

(|∇u|2 + |∇v|2) dx ≥ c > 0;

that is,

‖z‖ ≥ c > 0. (2.10)

Suppose now that zn = (un, vn) �≡ 0 is a minimizing sequence of I∞. By Lemma
2.2, we see that {zn} is uniformly bounded and relatively compact in E. Hence we may
assume that zn → z = (u, v) in E and I ′(z) = 0. (2.10) implies this z �= (0, 0). It follows
that I∞ = limn→∞ I(zn) = I(z) > 0. Consequently, I∞ is attained by z ∈ E \ {0}. The
proof is complete. �
Proof of Theorem 1.1. This is a direct consequence of Proposition 2.3 and 2.4. �

The proof of Theorem 1.2 and 1.3 are similar to that of Theorem 1.1. The main
difference is to show that the (PS)c sequence is bounded. For instance, for Theorem 1.2,
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we may derive as (2.9) that{−�w1 − µ�w2 = q(x)max{w2, 0} ≥ 0 (x ∈ �),

−�w2 + λ�w1 = p(x)max{w1, 0} ≥ 0 (x ∈ �).
(2.11)

Multiplying (2.11) by w1
− and integrating by parts, we obtain

(1 + λµ)
∫

�

|w1
−|2 dx ≤ 0,

implying that w1 ≥ 0. Whence the strong maximum principle yields either (i) w2 ≡ 0
in � or (ii) w2 > 0 in �.

In the case (i), we have

�w1 = 0;

this yields w1 ≡ 0 in �, so that (w1, w2) = 0, a contradiction.
In case (ii), q(x) = m and w1, w2 satisfy

−(1 + λµ)�w1 + µp(x)w1 = mw2 ≥ 0,

by the strong maximum principle. Also, w1 > 0 or ≡ 0 in �. If w1 ≡ 0 in �, it follows
that (w1, w2) = 0, a contradiction to (w1, w2) �= 0. If w1 > 0 in �, we have p(x) = l
and from (2.6) we see that w = (w1, w2) satisfies∫

�

[∇w1∇ψ + ∇w2∇ϕ − λ∇w1∇ϕ + µ∇w2∇ψ ] dx −
∫

�

lw1ϕ dx −
∫

�

mw2ψ dx = 0.

The rest of the proof that the (PS)c sequence {zn} is bounded is similar to Lemma 2.2.
Finally, using Proposition 2.1, we see that problem (1.8) has a nontrivial

nonnegative solution (u, v) which satisfies

−�u − µ�v ≥ 0, −�v + λ�u ≥ 0, x ∈ �.

This implies that

−(1 + λµ)�v ≥ 0.

and so, by the maximum principle, either v > 0 or v = 0. The second case cannot
happen since v = 0 implies u = 0. We remark that we could not show u > 0 although
we know u ≥ 0. We only obtain (u, v) is a nontrivial nonnegative solution.
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