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Infinite families of Artin–Schreier function
fields with any prescribed class group rank
Jinjoo Yoo and Yoonjin Lee
Abstract. We study the Galois module structure of the class groups of the Artin–Schreier extensions
K over k of extension degree p, where k ∶= Fq(T) is the rational function field and p is a prime
number. The structure of the p-part ClK(p) of the ideal class group of K as a finite G-module
is determined by the invariant λn , where G ∶= Gal(K/k) = ⟨σ⟩ is the Galois group of K over k,
and λn = dimFp(ClK(p)(σ−1)n−1

/ClK(p)(σ−1)n
). We find infinite families of the Artin–Schreier

extensions over k whose ideal class groups have guaranteed prescribed λn-rank for 1 ≤ n ≤ 3. We
find an algorithm for computing λ3-rank of ClK(p). Using this algorithm, for a given integer t ≥ 2,
we get infinite families of the Artin–Schreier extensions over k whose λ1-rank is t, λ2-rank is t − 1,
and λ3-rank is t − 2. In particular, in the case where p = 2, for a given positive integer t ≥ 2, we obtain
an infinite family of the Artin–Schreier quadratic extensions over k whose 2-class group rank (resp.
22-class group rank and 23-class group rank) is exactly t (resp. t − 1 and t − 2). Furthermore, we also
obtain a similar result on the 2n-ranks of the divisor class groups of the Artin–Schreier quadratic
extensions over k.

1 Introduction

There have been active studies on the structure of the class groups of number fields
and function fields; for instance, we refer to [1–5, 6, 8, 10, 11, 13–16, 19–25]. For studying
the structure of class groups, the following methods have been used: genus theory [1,
3, 6], Rédei matrix [2, 15, 23], and Conner and Hurrelbrink’s exact hexagon [5, 13].

The Galois module structure of the class groups of cyclic extensions over the
rational function field k ∶= Fq(T) has been studied in [2, 8, 14, 19], where Fq is a
finite field of order q. We need to introduce the following definitions for description
of the previous developments. Let K be a cyclic extension over k of extension degree
prime p. We denote the ideal class group of K by ClK and that of divisor class group
by JK . Let G ∶= Gal(K/k) be the Galois group of K over k. Then ClK and JK are
finite G-modules. Let σ be a generator of G and Zp the ring of p-adic integer. The
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2 J. Yoo and Y. Lee

structures of ClK(p) and JK(p) as finite modules over the discrete valuation ring
Zp[σ]/(1 + σ + ⋅ ⋅ ⋅ + σ p−1) ≃ Zp[ζp] are determined by the following ranks:

λn ∶= dimFp(ClK(p)(σ−1)n−1
/ClK(p)(σ−1)n

) and

μn ∶= dimFp(JK(p)(σ−1)n−1
/JK(p)(σ−1)n

),

where ClK(p) (resp. JK(p)) is the p-Sylow subgroup of ClK (resp. JK) and ζp is a
primitive pth root of unity.

We point out that in particular, when p = 2, the rank λn of ClK is exactly equal to
the 2n-rank of ClK and the rank μn of JK gives the 2n-rank of JK , where the 2n-rank
of ClK is defined as dimF2(Cl 2n−1

K /Cl 2n

K ) and similarly for JK . This is because σ acts
−1 on ClK , which implies that the rank λn of the finite module ClK over Z[ζ2] = Z is
exactly the 2n-rank of ClK , and similarly it also holds for JK .

There are exactly two kinds of cyclic extensions of prime extension degree over
the rational function field k: Kummer extension and Artin–Schreier extension. For
Kummer extensions L over k, Anglés and Jaulent [1] (resp. Wittmann [19]) studied
the λ1-rank (resp. λ2-rank) of the ideal class groups of L and the authors of this paper
[22] studied the λ3-rank of the ideal class groups of L. Furthermore, for Artin–Schreier
extensions over k, there also have been some studies on the computation of λ1 and λ2
for their ideal class groups [2, 8]. However, there has been no result yet on finding
infinite families of Artin–Schreier extensions over k whose ideal class groups have
guaranteed prescribed λn-rank of the ideal class group of Artin–Schreier extension
for 1 ≤ n ≤ 3. This is one of the motivations of our paper.

In this paper, we study the Galois module structure of the class groups of the Artin–
Schreier extensions K over k of extension degree p, where k ∶= Fq(T) is the rational
function field of characteristic p and p is a prime number. The structure of the p-part
ClK(p) of the ideal class group of K as a finite G-module is determined by the invariant
λn , where G ∶= Gal(K/k) = ⟨σ⟩. In detail, first of all, for a given positive integer t, we
obtain infinite families of K over k whose λ1-rank of ClK is t and λn-rank of ClK is
zero for n ≥ 2, depending on the ramification behavior of the infinite place ∞ of k
(Theorems 3.2–3.4). We then find infinite families of the Artin–Schreier extensions
over k whose ideal class groups have guaranteed prescribed λn-rank for n up to 3. We
find an algorithm for computing λ3-rank of ClK(p). Using this algorithm, for a given
integer t ≥ 2, we get infinite families of the Artin–Schreier extensions over k whose λ1-
rank is t, λ2-rank is t − 1, and λ3-rank is t − 2 (Theorem 5.1). In particular, in the case
where p = 2, for a given positive integer t ≥ 2, we obtain an infinite family of the Artin–
Schreier quadratic extensions over k which have 2-class group rank exactly t, 22-class
group rank t − 1, and 23-class group rank t − 2 (Corollary 5.3). Furthermore, we also
obtain a similar result on the 2n-ranks of the divisor class groups of the Artin–Schreier
quadratic extensions over k for n up to 3 (Corollary 5.4). Finally, in Tables 1 and 2, we
give some implementation results for explicit infinite families using Theorems 3.2–3.4
and 5.1. These implementation results are done by MAGMA.

We remark that as a main tool for computation of λ3, we use an analogue of Rédei
matrix. We emphasize that there is no number field analogue for the Artin–Schreier
extensions over k, while there is a number field analogue for Kummer extensions
over k.
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Infinite families of Artin-Schreier function fields 3

2 Preliminaries

Let q be a power of a prime number p, and let k ∶= Fq(T) be the rational function
field. The prime divisor of k corresponding to (1/T) is called the infinite place and
denoted by∞. Let K/k be a cyclic extension of degree p. Then K/k is an Artin–Schreier
extension: that is, K = k(α), where αp − α = D, D ∈ k, and that D cannot be written as
x p − x for any x ∈ k. Conversely, for any D ∈ k and D cannot be written as x p − x for
any x ∈ k, k(α)/k is a cyclic extension of degree p, where αp − α = D.

For D, D′ ∈ k, let K1 ∶= k(α) and K2 ∶= k(β) be two Artin–Schreier extensions over
k with αp − α = D and βp − β = D′, respectively. Two Artin–Schreier extensions K1
and K2 are equal if and only if they satisfy the following relations [8, p. 256]:

α → xα + B0 = β,

D → xD + (Bp
0 − B0) = D′ ,

x ∈ F×p , B0 ∈ k.

Thus, D can be normalized to satisfy the following conditions:

D =
m
∑
i=1

Q i

Pr i
i
+ f (T),(2.1)

(Pi , Q i) = 1, p ∤ r i for 1 ≤ i ≤ t,
p ∤ deg f (T) if deg f (T) ≥ 1, and
f (T) = 0 if f (T) ∈ Fq with TrFq/Fp( f ) = 0,

where Pi is a monic irreducible polynomial inFq[T], Q i , f (T) ∈ Fq[T], and deg Q i <
deg Pr i

i for 1 ≤ i ≤ t; the last condition follows from noting that if f (T) = c in F×q with
TrFq/Fp(c) = 0, then there exists b ∈ F×q such that bp − b = c.

Throughout this paper, let K ∶= k(αDm) be the Artin–Schreier extension over k of
extension degree p, where x p − x = Dm has no root in k, αDm is a root of x p − x = Dm ,
and the normalized Dm satisfies (2.1). We note that all the finite places of k which are
totally ramified in K are P1 , . . . , Pt . In the following lemma, we state the ramification
behavior of the infinite place ∞ of k in K.

Lemma 2.1 [8, p. 256] Let K = k(αDm) be the Artin–Schreier extension over k of
extension degree p, where αp

Dm
− αDm = Dm and Dm is defined in (2.1). Then we have

the followings.
(i) The infinite place ∞ of k is totally ramified in K if and only if deg f (T) ≥ 1.

(ii) The infinite place∞ of k is inert in K if and only if f (T) = c ∈ F×q , where x p − x − c
is irreducible over Fq .

(iii) The infinite place ∞ of k splits completely in K if and only if f (T) = 0.

For descriptions of λ1 and λ2, we use the notion of the Hasse symbol which is first
introduced in [7].

Definition 2.1 [8, p. 257] Let K = k(αDm) be the Artin–Schreier extension over k of
extension degree p, where αp

Dm
− αDm = Dm for some Dm ∈ k. Let P be a finite place of

k which is unramified in K, and let ( K/k
P ) be the Artin symbol of P. Then ( K/k

P ) αDm =

https://doi.org/10.4153/S0008414X23000652 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000652


4 J. Yoo and Y. Lee

αDm + { Dm
P }, where { Dm

P } is defined as follows:

{Dm

P
} = Tr(OK/P)/Fp(Dm mod P);

Tr(OK/P)/Fp denotes the trace function from OK/P to Fp and OK is the integral closure
of K. We call { ⋅

⋅
} the Hasse symbol.

Lemma 2.2 [8] Let K = k(αDm) be the Artin–Schreier extension over k of extension
degree p, where αp

Dm
− αDm = ∑m

i=1
Q i
Pri

i
+ f (T), which is defined in (2.1). Then we have

the followings.

(i) λ1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m if deg f (T) ≥ 1 or
f (T) = c ∈ F×q , where x p − x = c ∈ F×q is irreducible over Fq ,

m − 1 if f (T) = 0.
(ii) We have λ2 = λ1 − rank(R), where R = [r i j] is a matrix over Fp defined by

r i j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{Q j/P
r j
j

Pi
} , for 1 ≤ i ≠ j ≤ m,

−(∑m
j=1, i≠ j r i j + { f

Pi
}) , for 1 ≤ i = j ≤ m.

We call such matrix R as the Rédei matrix.

We recall that the Hilbert class field HK of K is the maximal unramified abelian
extension of K where the infinite places of k split completely in K. The genus field GK
of K is the maximal subextension K ⊆ GK ⊆ HK which is abelian over k. In Lemma 2.3,
we state a description of the genus field of the Artin–Schreier extension.

Lemma 2.3 [8, Theorem 4.1] Let K = k(αDm) be the Artin–Schreier extension over k
of extension degree p, where Dm is defined in (2.1) and αDm is a root of x p − x = Dm . Let
α i (resp. β) be a root of x p − x = Q i/Pr i

i for 1 ≤ i ≤ m (resp. x p − x = f (T)) in k. Then
the genus field GK of K is GK = k(α1 , . . . , αm , β).

We now introduce explicit criteria for determining whether a place of k is totally
ramified or not in the Artin–Schreier extension K.

Lemma 2.4 [18, Proposition 3.7.8] Let K = k(y) be the Artin–Schreier extension over
k of extension degree p, where yp − y = u for some u ∈ k. For a place P of k, we define
the integer mP by

mP ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m, if there is an element z ∈ k satisfying
υP(u − (zp − z)) = −m < 0 and m /≡ 0 (mod p),

−1, if υP(u − (zp − z)) ≥ 0 for some z ∈ k.

Then we have the followings.
(i) P is totally ramified in K/k if and only if mP > 0.

(ii) P is unramified in K/k if and only if mP = −1.

Lemma 2.5 [17, Proposition 14.1] Let K be a function field over the rational function
field k = Fq(T), and let ∞ be the infinite place of k. Denote the ideal class group (resp.
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the divisor class group) of K by ClK (resp. JK) and S be a set of places of K lying over ∞.
Then

0 →D0
K(S)/PK(S) → JK → ClK → Z/dZ→ 0

is an exact sequence, where D0
K(S) is the divisor group with support only in S whose

degree is zero, PK(S) is a principal divisor with support only in S, and d is the greatest
common divisor of the elements in {deg P ∶ P ∈ S}.

Using Lemma 2.5, we can easily obtain the following corollary, which gives relation
between the ideal class group of K and the divisor class group of K, where K is the
Artin–Schreier function field over k.

Lemma 2.6 Let K be the Artin–Schreier extension over k with extension degree p, and
let all the notations be the same as in Lemma 2.5. Then we have the following.

(i) If ∞ is totally ramified in K, then D0
K(S) is trivial and d = 1; thus,

0 → JK → ClK → 0

is exact.
(ii) If ∞ is inert in K, then D0

K(S) is trivial and d = p; therefore,

0 → JK → ClK → Z/pZ→ 0

is an exact sequence.
(iii) If ∞ splits completely in K, then d = 1; thus,

0 →D0
K(S)/PK(S) → JK → ClK → 0

is exact.

3 Infinite families of Artin–Schreier function fields with any
prescribed class group λ-rank

In this section, for any positive integer t, we find infinite families of Artin–Schreier
function fields K over k whose λ-rank of the ideal class group ClK of K is t and
λn-rank of ClK is zero for n ≥ 2, depending on the ramification behavior of the infinite
place ∞ of k. Theorem 3.2 deals with the case where the infinite place ∞ of k is totally
ramified in K and Theorem 3.3 (resp. Theorem 3.4) treats the case where the infinite
place ∞ of k splits completely (resp. ∞ is inert) in K.

We first give the following lemma, which shows the property of the trace over finite
fields. This lemma plays a key role in the proofs of Theorems 3.2–3.4.

Lemma 3.1 Let h be a monic irreducible polynomial in Fq[T] and h ∶= qdeg h . Let g be
a nonzero element in Fq[T], and let g̃ ∈ Fh be ϕ ○ π(g), where

g ∈ Fq[T]
π""→ π(g) ∈ Fq[T]/⟨h⟩

ϕ""→ Fh .
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6 J. Yoo and Y. Lee

Then we have TrFh/Fq g̃ = 0 if and only if the following holds:
(i) If deg g = 0, then q ∣ deg h.

(ii) If deg g ≥ 1, then g ≡ b(T)q − b(T) (mod h) for some b(T) ∈ Fq[T].

Proof We note that Fh ≃ Fq[T]/⟨h⟩ since h is an irreducible polynomial over Fq .
First, assume that deg g = 0: that is, g is an element of F×q , and so g = g̃. Then we

have the following:

TrFh/Fq g̃ = 0 if and only if q ∣ deg h;

this is because TrFh/Fq g̃ = g̃ ⋅ deg h in Fq .
Now, we consider the case where deg g ≥ 1. Assume that g ≡ b(T)q − b(T)

(mod h). Then we have

g̃ = ϕ ○ π(g) = ϕ((b(T))q − (b(T))) = ϕ(b(T))q − ϕ(b(T)) = b̃q − b̃,

where b̃ ∶= ϕ(b(T)) ∈ Fh. Therefore, the result follows immediately by [12, Theorem
2.25]. Conversely, now assume that TrFh/Fq

(g̃) = 0: that is, there exists some b̃ ∈ Fh

such that g̃ = b̃q − b̃. Let b(T) ∶= ϕ−1(b̃); there exists such b(T) ∈ Fq[T] since ϕ is
isomorphism. Thus, we get

g = π−1 ○ ϕ−1(g̃) = π−1 ○ ϕ−1(b̃q − b̃) = π−1((b(T))q − (b(T)));

this implies that g ≡ b(T)q − b(T) (mod h). ∎

Theorem 3.2 Let t be a positive integer. Let K = k(αD t) be the Artin–Schreier extension
over the rational function field k = Fq(T) of extension degree p, where

αp
D t
− αD t =

t
∑
i=1

Q i

Pr i
i
+ f (T)

satisfies (2.1). Assume that the infinite place ∞ of k is totally ramified in K; equivalently,
deg f (T) ≥ 1 with p ∤ deg f (T). We further assume that the followings hold:

(i) p ∤ deg Pi for any i with 1 ≤ i ≤ t.
(ii) f (T) ≡ ci (mod Pi), where ci ∈ F×q such that TrFq/Fp(ci) ≠ 0 for any i with 1 ≤ i ≤

t.
(iii) Q j ≡ Pj

r j(b i(T)q − b i(T)) (mod Pi) for any i with 1 ≤ i ≠ j ≤ t, where b i(T) is
a polynomial in Fq[T].

Then the λ1-rank of the ideal class group ClK of K and μ1-rank of the divisor class
group JK of K are t. Moreover, for n ≥ 2, the λn-rank of ClK and the μn-rank of JK are
zero.

In particular, for the case when p = 2, the 2-class groups ClK(2) and JK(2) are
elementary abelian 2-groups: that is, isomorphic to (Z/2Z)t .

Proof We note that by Lemma 2.6, the ideal class group of K and the divisor class
group of K are isomorphic; thus, λn = μn for n ≥ 1. Since λn is a decreasing sequence
as n grows (λn−1 and λn may have the same value), it suffices to show the following:

λ1 = t and λ2 = 0.(3.1)
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Infinite families of Artin-Schreier function fields 7

By Lemma 2.2, we can easily get λ1 = t. Thus, we will show that the rank of R is t, where
R is the Rédei matrix over Fp which is defined in Lemma 2.2.

Let f (T) be a polynomial in Fq[T] which satisfies condition (ii). For convenience,
let δ i ∶= deg Pi for 1 ≤ i ≤ t. Then we have the following:

TrF
qδi /Fq( f (mod Pi)) = TrF

qδi /Fq ci = δ ici ;

the last equality follows from the fact that ci ∈ F×q . Thus, by the definition of the Hasse
symbol, we obtain

{ f (T)
Pi

} = TrFq/Fp(TrF
qδi /Fq( f (mod Pi))) = TrFq/Fp(δ ici) = δ i TrFq/Fp ci ≠ 0;

(3.2)

for the last equality, we use conditions (i) and (ii).
Now, let Q j (1 ≤ j ≤ t) be a polynomial in Fq[T] which satisfies condition (iii).

Then, for 1 ≤ i ≠ j ≤ t, we have

Q jPj
r j ≡ b i(T)q − b i(T) (mod Pi),

where PjPj ≡ 1 (mod Pi). We note that Pj always exist since Pi and Pj are relative
prime inFq[T]. Then, by Lemma 3.1, we obtain TrFδi /Fq(Q jPj

r j (mod Pi)) = 0, where
δ i ∶= deg Pi . Thus, we obtain

{
Q j/Pj

r j

Pi
} = TrFq/Fp(TrF

qδi /Fq(Q jPj
r j (mod Pi)) = TrFq/Fp 0 = 0.(3.3)

Therefore, we get a t × t Rédei matrix R = [r i j] over Fp as follows:

R =
⎡⎢⎢⎢⎢⎢⎣

r11 0 ⋅ ⋅ ⋅ 0
0 r22 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋅ ⋅ ⋅ rt t

⎤⎥⎥⎥⎥⎥⎦
,(3.4)

where r i i = { f (T)
Pi

} ≠ 0 in Fp for every 1 ≤ i ≤ t. We can easily check that the rank of
R is t; therefore, we get λ2 = λ1 − rank(R) = 0.

For the case where p = 2, the 2n-rank of ClK and that of JK are exactly λn and μn ,
respectively; therefore, ClK(2) ≃ JK(2) ≃ (Z/2Z)t . ∎

Theorem 3.3 Let t be a positive integer. Let K = k(αD t+1) be the Artin–Schreier
extension over the rational function field k = Fq(T) of extension degree p, where

αp
D t+1

− αD t+1 =
t+1
∑
i=1

Q i

Pr i
i
+ f (T)

satisfies (2.1). Assume that the infinite place ∞ splits completely in K; equivalently,
f (T) = 0. We further assume that the followings hold:
(i) p ∤ deg Pi for any i with 1 ≤ i ≤ t + 1.

(ii) Qt ≡ ci Pr t
t (mod Pi), where ci ∈ F×q such that TrFq/Fp(ci) ≠ 0 for any i with

1 ≤ i ≤ t.
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(iii) Q j ≡ Pr j
j (b i(T)q − b i(T)) (mod Pi) for any 1 ≤ i ≤ t + 1, 1 ≤ j ≤ t, i ≠ j, where

b i(T) ∈ Fq[T].
Then the λ1-rank of the ideal class group ClK of K is t. Moreover, for n ≥ 2, the λn-rank

of ClK is zero.
In particular, for the case when p = 2, the 2-class group ClK(2) is an elementary

abelian 2-group: that is, isomorphic to (Z/2Z)t .

Proof As in Theorem 3.2, we will show (3.1). The fact that λ1 = t comes immediately
from Lemma 2.2. Thus, it is sufficient to show that λ2 = 0: that is, rank(R) = λ1 = t,
where R is the Rédei matrix of K defined in Lemma 2.2.

Let D i ∶= Q i
Pri

i
for 1 ≤ i ≤ t + 1. Using the same reasoning as in Theorem 3.2, we get

{Dt/Pi} ≠ 0 for every 1 ≤ i ≤ t; we note that we use conditions (i) and (ii). Thus, the
i(t + 1)th entry of R is nonzero for 1 ≤ i ≤ t. By condition (iii), we obtain {D j/Pi} = 0
from Lemma 3.1; this implies that the i jth entries of R are all zero for 1 ≤ i ≤ t + 1 and
1 ≤ j ≤ t with i ≠ j.

Therefore, we obtain a (t + 1) × (t + 1) matrix R = [r i j] over Fp as follows:

R =

⎡⎢⎢⎢⎢⎢⎢⎣

−r1,t+1 0 ⋅ ⋅ ⋅ 0 r1,t+1
0 −r2,t+1 ⋅ ⋅ ⋅ 0 r2,t+1
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋅ ⋅ ⋅ −rt ,t+1 rt ,t+1
0 0 ⋅ ⋅ ⋅ 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

,

where r i ,t+1 ≠ 0 in Fp for every 1 ≤ i ≤ t. Thus, the result follows immediately.
For the case where p = 2, since λn gives the full 2n-rank of ClK , we obtain that

ClK(2) ≃ (Z/2Z)t . ∎
Theorem 3.4 Let t be a positive integer. Let K = k(αD t) be the Artin–Schreier extension
over the rational function field k = Fq(T) of extension degree p, where

αp
D t
− αD t =

t
∑
i=1

Q i

Pr i
i
+ f (T)

satisfies (2.1). Assume that∞ is inert in K; equivalently, f (T) = c ∈ F×q , where x p − x − c
is irreducible over Fq . We further assume that the followings hold: for some c ∈ Fq ,
(i) p ∤ deg Pi for every 1 ≤ i ≤ t.

(ii) Q j ≡ Pr j
j (b i(T)q − b i(T)) for any i with 1 ≤ i ≠ j ≤ t, where b i(T) ∈ Fq[T].

Then the λ1-rank of the ideal class group ClK of K is t. Moreover, for n ≥ 2, the λn-rank
of ClK is zero.

In particular, for the case when p = 2, then ClK(2) is isomorphic to (Z/2Z)t and
JK(2) is isomorphic to (Z/2Z)t−1.

Proof We can simply get λ1 = t by Lemma 2.2; we now show that λ2 = 0, which
implies that the rank of the Rédei matrix R is t. As usual, set D i ∶= Q i

Pri
i

. Using Lemma

3.1, we obtain{D j/Pi} = 0 for every 1 ≤ i ≠ j ≤ t. Now, we compute {c/Pi} for 1 ≤ i ≤ t,
where c ∈ F×q . Let δ i be the degree of Pi . By the definition of Hasse norm, we have

{ c
Pi
} = TrFq/Fp Tr

F
δi
q /Fq

(c (mod Pi)) = TrFq/Fp(δ i c) = δ i TrFq/Fp(c).(3.5)
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We note that TrFq/Fp(c) ≠ 0 since x p − x − c is irreducible over Fq . Therefore, (3.5) is
nonzero; we use condition (i). Using the definition of the Rédei matrix R in Lemma
2.2, we get a t × t matrix R = [r i j] over Fp which is given in (3.4). Hence, the desired
result follows.

For the case where p = 2, the 2-class group of ClK is isomorphic to (Z/2Z)t by
the fact that λn gives the full 2n-rank of ClK . By Lemma 2.6, the remaining result
follows. ∎

4 Computing the λ3-rank of class groups of Artin–Schreier
function fields

In this section, Algorithm 1 presents an explicit method for computing the λ3-rank
of the ideal class groups of Artin–Schreier extensions K over k. In Theorem 4.3,
we provide a proof for Algorithm 1. In particular, we obtain an explicit method for
determining the exact 23-rank of the ideal class groups of Artin–Schreier quadratic
extensions over k (Corollary 4.4).

The following lemma plays a crucial role for the proof of Theorem 4.3.

Lemma 4.1 Let K = k(αDm) be the Artin–Schreier extension over k of extension degree
p, where Dm(T) = ∑m

i=1
Q i
Pri

i
+ f (T) is defined as (2.1) and αDm is a root of x p − x = Dm .

For 1 ≤ i ≤ m, let α i be a root of x p − x = D i ∶= Q i/Pr i
i and let γ i be a root of the

following equation in k:

Xp − X =Di ∶=
α i

2Pr i
i

Q i
.

Then k(α i , γ i)/k(α i) is unramified, where all the infinite places of k(α i) split completely
in k(α i , γ i).

Proof We first show that k(α i , γ i)/k(α i) is an unramified extension. Let pi ∈ k(α i)
be a place which lies above a finite place P of k. We note that it suffices to show the
following by Lemma 2.4:

vpi (Di) = 2vpi (α i) + vpi (Pr i
i ) − vpi (Q i) ≥ 0.(4.1)

We consider the following three possible cases: P = Pi for 1 ≤ i ≤ m, P divides Q i ∈
Fq[T], and (P, Pi) = (P, Q i) = 1. Using a valuation property, we can easily show the
following, where n is a positive integer.

If vpi (αn
i − α i) < 0, then vpi (αn

i − α i) = nvpi (α i) < 0.(4.2)

If vpi (αn
i − α i) > 0, then vpi (α i) ≥ 0.(4.3)

If vpi (αn
i − α i) = 0, then vpi (αn

i − α i) = vpi (α i) = 0.(4.4)

We denote the ramification index of pi over P in k(α i)/k by e(pi ∣P) and the residue
class field degree of pi over P by f (pi ∣P).

(i) Suppose that P = Pi . Then we have e(pi ∣P) = e(pi ∣Pi) = p since Pi is the
only totally ramified finite place for k(α i)/k. Therefore, we have vpi (αp

i − α i) =
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vpi (Q i/Pr i
i ) = −pr i < 0; this implies that vpi (α i) = −r i by (4.2). Therefore, (4.1) holds

true.
(ii) Suppose that P divides Q i in Fq[T]. Under the given assumption, we have

e(pi ∣P) = 1; this is because (P, Pi) = 1 as (Pi , Q i) = 1 and Pi is the only totally ramified
finite place for k(α i)/k. Consequently, we have

vpi (αp
i − α i) = vpi (Q i/Pr i

i ) = vP(Q i/Pr i
i ) = vP(Q i) > 0;

thus, vpi (α i) ≥ 0 by (4.3). Assuming that vpi (α i) = 0, we obtain

vP(Nk(α i)/k(α i)) = f (pi ∣P)vpi (α i) = 0.(4.5)

However, since vpi (Nk(α i)/k(α i)) = vpi (Q i/Pr i
i ) > 0 (4.5) cannot happen. Therefore,

we have vpi (Di) = 2vP(Q i) − vP(Q i) > 0 and (4.1) follows; we use the fact that
vpi (α i) = vP(Q i) > 0. As a result, pi is unramified in k(α i , γ i).

(iii) Suppose that (P, Pi) = (P, Q i) = 1. In this case, we get vpi (α i) = 0 by (4.4)
since vpi (αp

i − α i) = 0. Therefore, (4.1) follows immediately.
Now, it remains to show that all the infinite places of k(α i) split completely in

k(α i , γ i). Let p∞ (resp. P∞) be a place of k(α i) (resp. k(α i , γ i)) lying above the
infinite place ∞ of k (resp. p∞). We first note that vp∞(αp

i − α i) = vp∞(Q i/Pr i
i ) > 0;

thus, vp∞(α i) ≥ 0 by (4.3). By a similar computation method as in (4.5), we obtain
vp∞(α i) > 0, and therefore vp∞(α i) = vp∞(αp

i − α i) = deg Pr i
i − deg Q i . Hence, we

get

vp∞(Di) = 2vp∞(α i) + vp∞(P
r i
i ) − vp∞(Q i) = 2(deg Pr i

i − deg Q i) − deg Pr i
i + deg Q i > 0;

from this fact and by Lemma 2.4, we can conclude that p∞ is unramified in
k(α i , γ i)/k(α i).

Now, it is enough to show that f (P∞∣p∞) is 1. For the proof, we assume that
f (P∞∣p∞) = p. We first note that

Nk(α i ,γ i)/k(α i)(γ i) = γp
i − γ i = α2

i Pr i
i /Q i .(4.6)

On the other hand, we have

vp∞(Nk(α i ,γ i)/k(α i)(γ i)) = f (P∞∣p∞)vP∞(γ i) = pvP∞(γ i).(4.7)

Also, we can obtain

pvP∞(γ i) = vp∞(γp
i − γ i) = vP∞(γp

i − γ i),(4.8)

by combining (4.6) with (4.7). Furthermore, since vp∞(γp
i − γ i) = pvP∞(γ i) > 0, we

have

pvP∞(γ i) = min{pvP∞(γ i), vP∞(γ i)} = vP∞(γ i),(4.9)

which is a contradiction. Therefore, the infinite place of k(α i) splits completely in
k(α i , γ i). ∎

Lemma 4.2 Let K be the Artin–Schreier extension over k of extension degree p. Let
HK be the Hilbert class field of K, and let GK be the genus field of K. Let H be
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Algorithm 1 (Computation of λ3 for the Artin–Schreier function field K)

Input:
• q : a power of a prime p
• Dm(T) ∶= ∑m

i=1
Q i
Pri

i
+ f (T) defined by (2.1)

• K = k(αDm) with αDm defined in (2.1)
Output: the λ3-rank of the ideal class group of K
(1) Find λ1 of K, and compute a Rédei matrix R over Fp using Lemma 2.2.
(2) Compute λ2 = λ1 − rank(R).
(3) If λ2 = 0, then Stop.
(4) Else

(4.1) If λ2 < λ1, then let
I ∶= {1 ≤ i ≤ m ∣ the ith row vector of R is zero} = {s1 , . . . , sλ2} with s i < s j
for 1 ≤ i < j ≤ λ2.

(4.2) Else let I ∶= {1, . . . , λ2} = {s1 , . . . , sλ2} with i = s i for 1 ≤ i ≤ λ2.
(5) For 1 ≤ i ≤ λ2,

(5.1) set Pi ∶= Ps i and Fi ∶= Qs i /Prs i
s i .

(5.2) let ai be a root of x p − x = Fi in k, and set Di = a2
i /Fi .

(6) For 1 ≤ i , j ≤ λ2,
find a λ2 × λ2-matrix R = [ri j] over Fp , where ri j is defined as ri j = {D j

Pi
} .

(7) Compute λ3 = λ2 − rank(R).

a fixed field of a subgroup of Gal(HK/GK) which is isomorphic to Cl(σ−1)2

K . Then
ClK(p)(σ−1)/ClK(p)(σ−1)2

is isomorphic to Gal(H/GK); thus, we can define the fol-
lowing composite map:

Ψ ∶ ClK(p)G ∩ ClK(p)(σ−1) → ClK(p)(σ−1)/ClK(p)(σ−1)2 ≃"→ Gal(H/GK),(4.10)

where the first map is induced by the inclusion map.
Then λ3 is equal to λ2 − rank(R), where R is a matrix representing Ψ over Fp and

λ2 is obtained by Lemma 2.2.

Proof We note that Gal(HK/K) ≃ ClK and Gal(GK/K) ≃ ClK(p)/ClK(p)(σ−1) ≃
ClK/Cl(σ−1)

K [19, pp. 328–329]; therefore, Gal(HK/GK) ≃ Cl(σ−1)
K . By the Galois

correspondence, we have isomorphisms Gal(H/GK) ≃ Cl(σ−1)
K /Cl(σ−1)2

K and
Cl(σ−1)

K /Cl(σ−1)2

K ≃ ClK(p)(σ−1)/ClK(p)(σ−1)2
; thus, we have the isomorphism

ClK(p)(σ−1)/ClK(p)(σ−1)2 ≃"→ Gal(H/GK).
Let Ψ be the map defined as in (4.10). Then we have

∣Ker(Ψ)∣ = ∣ClK(p)G ∩ ClK(p)(σ−1)2
∣.

We claim that for any positive integer n,

∣ClK(p)G ∩ ClK(p)(σ−1)n−1
∣ = ∣ClK(p)(σ−1)n−1

/ClK(p)(σ−1)n
∣.(4.11)
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We consider a short exact sequence

0 → ClK(p)G ∩ ClK(p)(σ−1)n−1 ı"→ ClK(p)(σ−1)n−1 σ−1""→ ClK(p)(σ−1)n
→ 0,

where ı denotes an inclusion map. Then ClK(p)(σ−1)n
is isomorphic to

ClK(p)(σ−1)n−1
/Im(ı) = ClK(p)(σ−1)n−1

/ClK(p)G ∩ ClK(p)(σ−1)n−1
.

Therefore, we have the following:

∣ClK(p)(σ−1)n
∣ = ∣ClK(p)(σ−1)n−1 ∣

∣ClK(p)G ∩ ClK(p)(σ−1)n−1 ∣ .

We can rewrite this as

∣ClK(p)G ∩ ClK(p)(σ−1)n−1
∣ = ∣ClK(p)(σ−1)n−1 ∣

∣ClK(p)(σ−1)n ∣ = ∣ClK(p)(σ−1)n−1
/ClK(p)(σ−1)n

∣;

hence, (4.11) follows.
Therefore, we compute as follows:

λ3 = dimFp(ClK(p)(σ−1)2
/ClK(p)(σ−1)3

) = dimFp(ClK(p)G/ClK(p)(σ−1)2
)

= dimFp(Ker(Ψ)) = dimFp(ClK(p)G ∩ ClK(p)(σ−1)) − dimFp(Im(Ψ))

= dimFp(ClK(p)(σ−1)/ClK(p)(σ−1)2
) − dimFp(Im(Ψ)) = λ2 − dimFp(Im(Ψ))

= λ2 − rank(R),

where R is a matrix representing Ψ over Fp and λ2 is obtained by Lemma 2.2.
We note that the second equality and the fifth one hold by (4.11) with n = 3 and 2,
respectively. ∎

Theorem 4.3 Let K be the Artin–Schreier extension over the rational function field k
of extension degree p. Then the λ3-rank of the ideal class group of K can be computed by
Algorithm 1.

Proof By Lemma 4.2, we have λ3 = λ2 − rank(R), where R is a matrix representing
Ψ which is defined as in (4.10). Therefore, it is sufficient to compute the matrix R in
an explicit way for computation of λ3. We describe how to compute the matrix R as
follows.

Let I ∶= {1 ≤ i ≤ m ∣ the ith row vector of R is zero} = {s1 , . . . , sλ2}, where s i < s j

for 1 ≤ i < j ≤ λ2. For simplicity, we set Pi ∶= Ps i and Fi = Qs i /Prs i
s i for 1 ≤ i ≤ λ2. Let

Di ∶= ai
2/Fi , and let γ i be a root of Xp − X =Di in k, where k is the algebraic closure

of k and ai is the root of x p − x = Fi in k.
Let L ∶= k(α1 , . . . , αm) be a subfield of the genus field GK defined as the following,

where GK is given in Lemma 2.3.
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GK(γ i)
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� L(γ i)

L

������������ k(α i , γ i)

K

��
��

��
��

�� k(α i)

����������

k = Fq(T)

We now show that GK(γ i) is a subfield of HK for 1 ≤ i ≤ λ2. We point out that
GK(γ i)/GK is an abelian extension by the fact that it is the Artin–Schreier function
field. It suffices to show that GK(γ i)/GK is an unramified extension and all the infinite
places of GK split completely in GK(γ i). By Lemma 4.1, k(α i , γ i)/k(α i) is an unram-
ified extension and all the infinite places of k(α i) split completely in k(α i , γ i). Thus,
L(γ i)/L is an unramified extension; hence, GK(γ i)/GK is an unramified extension.

Now, we show that all the infinite places of GK split completely in GK(γ i). Every
infinite place of k(α i) splits completely in k(α i , γ i) as shown above and all the infinite
places of L split completely in L(γ i). Also, all the infinite places split completely in
L/k(α i) by Lemma 2.1. Consequently, all the infinite places of L split completely in
the compositum L(γ i) of L and k(α i , γ i).

Let P∞ be a place of L which lies above the infinite place ∞ of k and P′ a place
of GK which lies above P∞. We consider the following two possible cases: P∞ splits
completely in GK or P∞ is totally ramified or inert in GK . We note that the result
follows immediately in the former case; thus, it is sufficient to consider the latter case
where there is exactly one place lying above P∞ in GK , the number of places in GK(γ i)
which lie above P′ is exactly p; this is because the infinite places split completely in
L(γ i)/L. Therefore, P′ splits completely in GK(γ i), and the result holds.

We have H = GK(γ1 , . . . , γλ2) since GK(γ i) ⊆ HK and [H ∶ GK] = pλ2 . We get

(H/GK

pi
)(γ j) = γ j + {

D j

Pi
} ,

where pi is a place of GK lying above Pi for 1 ≤ i ≤ λ2 by the action of the Artin map
in the Artin–Schreier function field. Therefore, we determine R = [ri j] = {D j

Pi
}.

This process is implemented in Algorithm 1. Steps (1) and (2) of Algorithm 1 give
the process of computing λ1, λ2, and the Rédei matrix R. Step (3) explains the case
where λ2 = 0 and then the algorithm stops. If 0 < λ2 < λ1, then we go to Step (4.1), and
if λ2 = λ1, then we proceed with Step (4.2). Steps (5.1) and (5.2) explain the process of
finding Di for 1 ≤ i ≤ λ2. In Step (6), we determine a matrix R over Fp , and finally we
obtain λ3 = λ2 − rank(R) in Step (7). ∎
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Corollary 4.4 Let K be the Artin–Schreier quadratic extension over k, and let the λ3-
rank of ClK be computed by Algorithm 1. Then the 23-rank of ClK is exactly λ3: that is,
ClK(2) has a subgroup isomorphic to (Z/23Z)λ3 .

Proof This follows immediately from the fact that λn is exactly equal to the full 2n-
rank of ClK and Theorem 4.3. ∎

Remark 4.5 For readers, focusing on the case: p = 2, we first briefly explain the
analogy between Rédei symbols (the 4-rank of the class groups) and the 8-rank of the
class groups in the quadratic field case (for more details, see [9]). Then we describe the
analogy between Artin–Schreier quadratic extensions over k and quadratic extensions
over Q for computation of λ3.

Let F be a quadratic extension overQ, and let ClF be the ideal class group of F. Let r4
(resp. r8) be the 22-rank (resp. 23-rank) of ClF . Let H be the Hilbert class field of F, and
let Hn be the unramified abelian subextension of H such that Gal(Hn/F) ≃ ClF/Cl n

F
for n = 2, 4.

Basically, a strategy for computing the 22-rank (resp. 23-rank) is explicitly finding
a subextension H2 (resp. H4) of the Hilbert class field of F whose Galois group is
isomorphic to Gal(ClF/Cl 2

F) (resp. Gal(Cl 2
F/Cl 4

F)).
Define two maps as follows:

R4 ∶ Ft
2 → ClF[2]

φ�→ ClF/Cl 2
F
≃�→ Gal(H2/F) → Gal(H2/Q) =

t
∏
i=1

Gal(Q(
√

d i)/Q),

R8 ∶ Ker R4 → ClF[2] ∩ Cl 2
F

ψ�→ Cl 2
F/Cl 4

F
≃�→ Gal(H4/H2) =

r4

∏
i=1

Gal(H2(
√

α i)/H2) → F
r4
2 ,

where t is the number of finite primes of Q which are ramified in F, ClF[2] is the
2-torsion part of ClF , and the maps φ and ψ are induced by the inclusion maps. For
computation of r4 and r8, we find appropriate d i (1 ≤ i ≤ t) and α i (1 ≤ i ≤ r4). Then
we have

r4 = t − dimF2 R4 and r8 = r4 − dimF2 R8 .

To show the analogy between Artin–Schreier quadratic extensions over k and
quadratic extensions over Q for computation of λ3 (23-rank), let K be the Artin–
Schreier quadratic extension over k. Then the map R8 corresponds to the map Ψ
defined in (4.10):

Ψ ∶ ClK(2)G ∩ Cl 2
K → Cl 2

K/Cl 4
K
≃"→ Gal(H/GK).

Then we have λ3 = λ2 − rankR, where R is a matrix over F2 representing the map Ψ.
We recall that λ3 is the 23-rank of ClK .

5 An infinite family of Artin–Schreier function fields with higher
λn-rank

In this section, we find an infinite family of Artin–Schreier function fields which
have prescribed λn-rank of the ideal class group for 1 ≤ n ≤ 3. In Theorem 5.1, for any
positive integer t ≥ 2, we obtain an infinite family of Artin–Schreier extensions over k
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whose λ1-rank is t, λ2-rank is t − 1, and λ3-rank is t − 2. Then Corollary 5.3 shows the
case where p = 2, for a given positive integer t ≥ 2, we obtain an infinite family of the
Artin–Schreier quadratic extensions over k whose 2-class group rank (resp. 22-class
group rank and 23-class group rank) is exactly t (resp. t − 1 and t − 2). Furthermore,
we also obtain a similar result on the 2n-ranks of the divisor class groups of the Artin–
Schreier quadratic extensions over k in Corollary 5.4.

Throughout this section, we define Dm as follows.

Notation 1 Let Dm ∶= ∑m
i=1 D i + f (T) be defined in (2.1) with D i = Q i/Pr i

i , where
m, Pi , Q i , and f (T) satisfy one of the followings:

(i) m =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t, if deg f (T) ≥ 1
or f (T) = c ∈ F×q such that x p − x = c is irreducible over Fq ,

t + 1, if f (T) = 0.
(ii) Q j ≡ Pr j

j (b i(T)q − b i(T)) (mod Pi) for any 1 ≤ i ≠ j ≤ m except (i , j) = (1, 2),
where bi(T) ∈ Fq[T].

(iii) If deg f (T) ≥ 1, then f (T) ≡ Pr j
j (b i(T)q − b i(T)) (mod Pi), where b i(T) ∈

Fq[T] for any 1 ≤ i ≤ m.
(iv) If f (T) ∈ F×q , then q ∣ deg Pi for any i with 1 ≤ i ≤ m.
(v) Q−1

j ≡ Pr j
j (b i(T)q − b i(T)) (mod Pi), where b i(T) ∈ Fq[T] and Q−1

j denotes the
inverse of Q j modulo Pi for any 1 ≤ i ≠ j ≤ m except (i , j) ≠ (1, 2).

Theorem 5.1 For a given positive integer t ≥ 2, there is an infinite family of Artin–
Schreier extensions over k whose λ1-rank is t, λ2-rank is t − 1, and λ3-rank is t − 2.

Let K = k(αDm) be the Artin–Schreier function field over k of extension degree p,
where Dm is defined in Notation 1 and αDm is a root of x p − x = Dm . Then the ideal
class group ClK of K has λ1 = t, λ2 = t − 1, and λ3 = t − 2.

Remark 5.2 Let Fq be a finite field of order q, t be a given integer, and f (T) ∈
Fq . By condition (i), m = t + 1. By condition (ii), we can choose monic irreducible
polynomials Pi ∈ Fq[T] whose degrees are divisible by p. We note that conditions (iii)
and (iv) can be interpreted as

{
D j

Pi
} =

⎧⎪⎪⎨⎪⎪⎩

Q−1
j

Pi

⎫⎪⎪⎬⎪⎪⎭
= 0;(5.1)

by the surjectivity of the trace map, there always exist D j and Q−1
j which satisfy

(5.1). Since our choice of Pi ’s are infinite, we have an infinite family of Artin–Schreier
extensions which satisfy the conditions in Theorem 5.1.

Proof of Theorem 5.1 Recall that λ2 = λ1 − rank(R) and λ3 = λ2 − rank(R), where
R (resp. R) is a matrix over Fp defined in Lemma 2.2 (resp. Algorithm 1). We need to
show that

λ1 = t, λ2 = t − 1, λ3 = t − 2;(5.2)

this is equivalent to rank(R) = rank(R) = 1.
We divide into the following three cases: deg f (T) ≥ 1, deg f (T) = 0, and f (T) = c,

where x p − x − c is irreducible over Fq .
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Case I. deg f (T) ≥ 1: that is, the infinite place of k is totally ramified in K.
Since deg f (T) ≥ 1, we have m = t by condition (i); this implies that λ1 = m = t by

Lemma 2.2. For computing λ2, we compute every entry of the Rédei matrix R: that
is, the Hasse norm {D j/Pi} and { f (T)/Pi} for 1 ≤ i ≠ j ≤ m. Using Lemma 3.1 and
condition (ii), we can easily obtain that { D2

P1
} ≠ 0 and { D j

Pi
} = 0 for any 1 ≤ i ≠ j ≤ m

except (i , j) ≠ (1, 2). Furthermore, we get { f
Pi
} = 0 for any 1 ≤ i ≤ m by condition (iii).

Therefore, the Rédei matrix R can be written as R =
⎡⎢⎢⎢⎢⎢⎣

p − 1 1 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎥⎥⎦
; thus, λ2 =

λ1 − rank(R) = t − 1. Lastly, we compute λ3 of K using Algorithm 1 and Theorem 4.3.
Using the definition of a matrix R which is given in Algorithm 1, it suffices to compute
{ 1/Q j

Pi
} for 1 ≤ i ≠ j ≤ m. By the same reasoning as in the computation of R, we get

λ3 = λ2 − rank(R) = t − 2. Therefore, (5.2) follows.
Case II. deg f (T) = 0: that is, the infinite place of k splits completely in K, which is

a real extension.
We can easily obtain λ1 = t by using Lemma 2.2 and the condition m = t + 1. For

computing λ2, we compute every entry of the Rédei matrix R: that is, the value of Hasse
norm {D j/Pi} for 1 ≤ i ≠ j ≤ m. By the definition of Hasse norm which is defined in
Definition 2.1, we get {D2/P1} ≠ 0 and {D j/Pi} = 0, where 1 ≤ i ≠ j ≤ m except (i , j) =
(1, 2). As in Case 1, the rank of Rédei matrix is one: that is, λ2 = λ1 − rank(R) = t − 1.
Lastly, we compute λ3 of K; by the same computation method as in Case I, we have
λ3 = λ2 − rank(R) = t − 2. Therefore, (5.2) follows.

Case III. f (T) = c ∈ F×q , where x p − x − c is irreducible over Fq : that is, the infinite
place of k is inert in K.

Under this assumption, K is an imaginary extension; so, m = t. We claim that
(5.2) holds for this case. We can simply get λ1 = t by Lemma 2.2 and we also
obtain {D j/Pi} = 0 for every 1 ≤ i ≠ j ≤ t = m except (i , j) = (1, 2) by using the same
reasoning as in Case I. Now, we compute the value of {c/Pi} for 1 ≤ i ≤ t = m, where
c ∈ F×q . We have

{ c
Pi
} = TrFq/Fp(TrFd/Fq c) = TrFq/Fp(c deg Pi) = deg Pi(TrFq/Fp c);

the second equation holds since c is a nonzero element of Fq and the last equation
holds by the property of a trace map over a finite field. We get deg Pi(TrFq/Fp c) = 0 in
Fp by Lemma 3.1 by the assumption that q ∣ deg Pi for every 1 ≤ i ≤ m; therefore, (3.5)
is zero in Fp . Hence, λ2 = t − 1. By the same reasoning as in Case I, λ3 = t − 2 and we
have (5.2). ∎

Corollary 5.3 Let K = k(αDm) be the Artin–Schreier quadratic function field over k of
extension degree 2, where Dm is defined in Notation 1 and αDm is a root of x2 − x = Dm .

For any positive integer t ≥ 2, there is an infinite family of Artin–Schreier quadratic
extensions over k whose 2-class group rank is exactly t, 22-class group rank is t − 1, and
23-class group rank is t − 2.

In particular, ClK(2) contains a subgroup isomorphic to (Z/2nZ)t−n+1 for 1 ≤ n ≤ 3.
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Proof We note that λn is exactly equal to the full 2n-rank (1 ≤ n ≤ 3) of the ideal class
group ClK of K; therefore, the result follows immediately from Theorem 5.1. ∎

Corollary 5.4 For a given positive integer t, let K = k(αDm) be the Artin–Schreier
quadratic function field over k, where Dm = ∑m

i=1 Q i/Pr i
i + f (T) such that Pi , Q i , f (T),

and m satisfy the conditions (i)–(v) in Notation 1. Let JK be the divisor class group of K.
Then we have the following infinite family of Artin–Schreier quadratic extensions.

(i) For t ≥ 2, if deg f (T) ≥ 1 (equivalently,∞ is totally ramified in K), then the 2n-class
group rank of JK is exactly equal to t + 1 − n for 1 ≤ n ≤ 3.

(ii) For t ≥ 2, if f (T) = 0 (equivalently, ∞ splits completely in K), then the 2n-class
group rank of JK is exactly either t + 1 − n or t + 2 − n for 1 ≤ n ≤ 3.

(iii) For t ≥ 3, if f (T) ∈ F×q (equivalently, ∞ is inert in K), then the 2n-class group rank
of JK is exactly either t + 1 − n or t − n for 1 ≤ n ≤ 3.

Proof Since Dm satisfies the conditions (i)–(v) in Notation 1, the ideal class group
ClK of K has λ1-rank t, λ2-rank t − 1, and λ3-rank t − 2.

We first assume that deg f (T) ≥ 1: that is, the infinite place∞ of k is totally ramified
in K. Then the ideal class group ClK of K is isomorphic to the divisor class group JK
of K by Lemma 2.6. Thus, by Lemma 5.3, the 2n-rank of the divisor class group JK of
K is t + 1 − n for n up to 3; thus, (i) follows.

Next, suppose that f (T) = 0. This is the case where the infinite place ∞ of k splits
completely in K. Then, by Lemma 2.6, we note that JK/R is isomorphic to ClK , where R
denotes the groupD0

K(S)/PK(S). By the fact the group R is a cyclic group, the 2n-rank
of the divisor class group JK is either t + 1 − n or t + 2 − n for n up to 3.

Finally, we assume that f (T) ∈ F×q : the case where ∞ is inert in K. Then, by the
exact sequence given in Lemma 2.6(ii), we get ∣ClK ∣ = 2∣JK ∣. Since ClK(2) contains
a subgroup isomorphic to (Z/2nZ)t−n+1 for 1 ≤ n ≤ 3, JK(2) contains a subgroup
isomorphic to (Z/2nZ)t−n+1 or (Z/2nZ)t−n for 1 ≤ n ≤ 3; therefore, (iii) holds. ∎

Remark 5.5 We briefly mention that the λ2-rank is connected to the embedding
problem. For instance, in the quadratic number field F = Q(

√
d), the solvability

of the conics X2 = aY 2 + d
a Z2 yields unramified cyclic quartic extensions of F. The

solvability of this conic is related to the λ2-rank of ClF , which is computed by the
Rédei matrix in terms of Legendre symbols. Then the embedding problem for F is
not solvable. On the other hand, in our context, the embedding problem for Artin–
Schreier extensions K over k is solvable and every finite place of k is wildly ramified
in K.

6 Implementation results

In this section, as implementation results, we explicitly present concrete infinite
families of Artin–Schreier extensions over k whose ideal class groups have guaranteed
prescribed λn-rank of the ideal class group for 1 ≤ n ≤ 3. In Table 1, for a given positive
integer t, we obtain explicit families of Artin–Schreier extensions K over k whose λ1-
rank of the ideal class group ClK is t and λn-rank is zero for n ≥ 2, depending on the
ramification behavior of the infinite place∞ of k (Theorems 3.2–3.4). Furthermore, in
Table 2, for a given integer t ≥ 2, we get explicit families of Artin–Schreier extensions
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t p q D = ∑Q i/(Pr i
i ) + f Ideal class group Divisor class group ∞

1 2 2 1
T + T + ζ Z2

1
T3 + T + ζ Z2 ×Z13

1
T3+ζT2+1 + T3 + ζT2 + ζ2 Z2 × (Z3)2 ×Z5

3 32 1
T2 + T + ζ (Z2)4 ×Z3 ×Z13

1
(T+ζ)2 + T2 + T + 1 Z3 ×Z13 ×Z103

T+ζ5

T2+ζ3 T+1 + T4 + ζ3T3 + T2 + ζ (Z2)2 ×Z3 ×Z7 ×Z79 ×Z139 Totally

2 2 22 T+1
T3 + T

T3+T+1 + T3 + T + ζ (Z2)2 ×Z5 ×Z101 ramified
T+1
T3 + T

T3+T+1 + T5 + T3 + T2 + ζ (Z2)2 × (Z3)2 ×Z5 ×Z52

3 32 ζT+ζ3

T2 + ζT
T2+ζT+ζ3 + T2 + ζT + ζ5 (Z2)2 × (Z3)2 ×Z19 ×Z9643

T+ζ6

T2 + T
T2+T+ζ7 + T2 + T + ζ (Z3)3 ×Z223 ×Z10789

1 2 22 T+1
T3 + ζ(T+1)

T3+T+1 Z2 ×Z3 Z2 × (Z3)2 ×Z5 ×Z7

ζT2+T
(T+1)3 + 1

T3+ζ2 T2+1 Z2 Z2 ×Z5 ×Z83

ζT2+T
(T+1)3 + ζ

T3+ζ2 T2+1 Z2 Z2 ×Z71

3 32 1
T2 + ζT+ζ6

T2+2T+ζ Z3 Z3 ×Z3 ×Z7 ×Z1069

T3+ζ5 T
(T+ζ)4 + ζ5

T+ζ2 Z3 Z3 × (Z23)2 ×Z37 Splits
T+ζ5

T2+ζ3 T+1 +
ζ3 T+ζ3

(T+ζ3)2 (Z22)2 ×Z3 ×Z7 (Z22)2 × (Z3)2 ×Z37 completely

Table 1: Infinite families of Artin–Schreier extensions K = k(αD) over k whose λ1-rank of the ideal class groups is t and λn-rank is zero for
n ≥ 2, where αp

D − αD = D.
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t p q D = ∑Q i/(Pr i
i ) + f Ideal class group Divisor class group ∞

2 2 22 T+1
T3 + T

T3+T+1 +
T2+ζT+ζ2

(T+ζ)5 (Z2)2 (Z2)2 × (Z32) ×Z17 ×Z37

T+1
T3 + ζ

T3+T+1 +
T2+ζT+ζ2

(T+ζ)5 (Z2)2 Z2 ×Z22 ×Z7 ×Z13 ×Z17

3 32 ζT+ζ3

T2 + ζT
T2+ζT+ζ3 + ζ5 T+ζ2

(T+ζ)2 (Z3)2 (Z3)2 ×Z3434467

ζT+ζ3

T2 + ζT
T2+ζT+ζ3 + ζ2

(T+ζ)2 (Z3)2 (Z3)2 ×Z31 ×Z139 ×Z1279

1 2 22 1
T + ζ Z2 Identity
T2+ζT+1

T3 + ζ2 Z2 ×Z5 Z5

1
T3+ζT2+1 + ζ Z2 ×Z17 Z17

3 32 1
T2 + 1 Z3 ×Z7 Z7

T3+ζ5 T
(T+ζ)4 + 2 (Z22)2 ×Z3 × (Z5)2 (Z22)2 × (Z5)2

T+ζ5

T2+ζ3 T+1 + ζ7 Z3 ×Z97 Z97 Inert

2 2 22 T+1
T3 + T

T3+T+1 + ζ (Z2)2 ×Z113 Z2 ×Z113

T+1
T5 + T

T3+T+1 + ζ2 (Z2)2 ×Z227 Z2 ×Z277

3 32 ζT+ζ3

T2 + ζT
T2+ζT+ζ3 + ζ5 (Z3)3 × (Z22)2 ×Z463 (Z22)2 × (Z3)2 ×Z463

T+ζ6

T2 + T
T2+T+ζ7 + ζ3 (Z3)2 × (Z5)2 ×Z151 Z3 × (Z5)2 ×Z151

Table 1: Continued.
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t p = q D = ∑Q i/(Pr i
i ) + f Ideal class group Divisor class group ∞

2 2 T+1
T3 + T

T3+T+1 + T + 1 Z2 ×Z22 ×Z5

T+1
T3 + T

T3+T+1 + T5 + T2 + T Z2 ×Z22 ×Z72 Totally
T2

(T+1)3 + T+1
T2+T+1 + T5 + T2 + T + 1 Z2 ×Z22 ×Z17 ramified

3 1
T2+T+2 +

1
(T2+1)2 + T2 + 2T + 1 Z3 ×Z3 ×Z32 ×Z72 ×Z157

1
T2+T+2 +

1
(T2+1)2 + 2T2 + T + 2 Z2 ×Z3 ×Z3 ×Z32 ×Z751

1
T2+T+2 +

1
(T2+1)2 + T2 + T + 2 Z22 ×Z3 ×Z3 ×Z32 ×Z127

2 T+1
T3 + T+1

T2+T+1 +
T

T3+T+1 Z2 ×Z22 Z2 ×Z23 ×Z5

T+1
T3 + T5+T3+1

(T2+T+1)5 + T
T3+T+1 Z2 ×Z22 ×Z5 ×Z29 Splits

T4

(T2+T+1)3 + T2+T+1
(T4+T+1)3 + T5+1

(T3+T2+1)3 Z2 ×Z22 ×Z17 ×Z8839 completely

Table 2: Infinite families of Artin–Schreier extensions K = k(αD) over k whose λ1-rank of the ideal class groups is t, λ2-rank is t − 1, and
λ3-rank is t − 2, where αp

D − αD = D.
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t p = q D = ∑Q i/(Pr i
i ) + f Ideal class group Divisor class group ∞

3 T3+T+1
(T2+T+2)2 + T4+T2+1

(T3+2T2+1)2 + T4+2T+2
(T3+2T+1)2 (Z2)2 × (Z3)2 ×Z32 (Z2)2 × (Z3)2 ×Z32

×Z13 ×Z787 ×Z1693

T3+T+1
(T2+T+2)2 + T4+T3+T2+1

(T3+2T2+1)2 + T4+2T+2
(T3+2T+1)2 (Z2)2 ×Z3 ×Z32 ×Z7

×Z13 ×Z103 ×Z84211

T3+T+1
(T2+T+2)2 + T4+T2+1

(T3+2T2+1)2 + T4+2T+2
(T3+T2+2)2 (Z22)2 × (Z3)2 × (Z3)2

×Z61 ×Z327667

2 T+1
T2+T+1 +

T3

T4+T3+T2+T+1 + 1 Z2 ×Z22 ×Z52 (Z2)2 ×Z52

1
T2+T+1 +

T3

T4+T3+T2+T+1 + 1 Z2 ×Z22 ×Z7 (Z2)2 ×Z7

T+1
T2+T+1 +

T3

T4+T+1 + 1 Z2 ×Z22 ×Z3 ×Z7 (Z2)2 ×Z3 ×Z7

3 T+2
T3+2T+1 +

T2+1
(T3+2T2+1)2 + 1 (Z3)2 × (Z32)2 ×Z13 ×Z379 Z3 × (Z32)2 ×Z13 ×Z379 Inert

2T2+2T+2
T3+2T+1 + T2+1

(T3+2T2+1)2 + 1 (Z3)3 ×Z32 ×Z19 ×Z433 (Z3)4 ×Z19 ×Z433

2T2+2
T3+2T+1 +

T2+1
(T3+2T2+1)2 + 1 (Z3)2 ×Z32 ×Z7 ×Z1303 (Z3)3 ×Z7 ×Z1303

Table 2: Continued.
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over k whose λ1-rank of the ideal class groups is t, λ2-rank is t − 1, and λ3-rank is t − 2
(Theorem 5.1). In the tables, we denote Z/mZ by Zm for a positive integer m.
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