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Abstract
We study the Chow ring of the moduli stack 𝔐𝑔,𝑛 of prestable curves and define the notion of tautological classes
on this stack. We extend formulas for intersection products and functoriality of tautological classes under natural
morphisms from the case of the tautological ring of the moduli space M𝑔,𝑛 of stable curves. This paper provides
foundations for the paper [BS21].

In the appendix (jointly with J. Skowera), we develop the theory of a proper, but not necessary projective,
pushforward of algebraic cycles. The proper pushforward is necessary for the construction of the tautological rings
of 𝔐𝑔,𝑛 and is important in its own right. We also develop operational Chow groups for algebraic stacks.
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2 Younghan Bae et al.

1. Introduction

Let M𝑔,𝑛 be the moduli space of stable curves. It parameterises tuples (𝐶, 𝑝1, . . . , 𝑝𝑛) of a nodal
curve C of arithmetic genus g with n distinct smooth marked points such that C has only finitely
many automorphisms fixing the points 𝑝𝑖 . After Mumford’s seminal paper [Mum83], there has been a
substantial study of the structure of the tautological rings

R∗(M𝑔,𝑛) ⊆ CH∗(M𝑔,𝑛)Q.

The tautological rings form a system of subrings of CH∗(M𝑔,𝑛)Q with explicit generators defined using
the universal curve and the boundary gluing maps of the spaces M𝑔,𝑛; see [GP03].

A natural extension of M𝑔,𝑛 is the moduli stack 𝔐𝑔,𝑛 of marked prestable curves, in which we drop
the condition of having only finitely many automorphisms. It is a smooth algebraic stack, locally of
finite type over the base field k and containing M𝑔,𝑛 as an open substack. However, by allowing infinite
automorphism groups, the stacks of prestable curves are no longer Deligne-Mumford stacks and not of
finite type.1

A recent application of Chow groups of such non-finite type algebraic stacks appeared in the paper
[BHP+20], which studied cycle classes and tautological rings for the universal Picard stack 𝔓𝔦𝔠𝑔 over
the stack 𝔐𝑔. The stack 𝔓𝔦𝔠𝑔 parameterises pairs (𝐶,L) of a prestable curve C and a line bundle L
on C. In [BHP+20], results from [JPPZ20] are used to prove a formula for the fundamental class of the
closure of the zero section {(𝐶,O𝐶 )} ⊆ 𝔓𝔦𝔠𝑔. By pulling back this equality under natural morphisms
M𝑔,𝑛 → 𝔓𝔦𝔠𝑔, new results about the classical double ramification cycles on the moduli of stable curves
are established.

In the paper [BHP+20], the intersection theory of 𝔓𝔦𝔠𝑔 is studied using a definition of operational
Chow groups modelled on [Ful98, Chapter 17]. In our paper, we follow the approach [Kre99] by Kresch,
who developed a cycle theory for algebraic stacks of finite type over a field k. This theory has many
structural advantages over the operational theory of [BHP+20], such as projective pushforwards and an
excision sequence, and for a smooth stack always admits a natural map to this operational theory.2

We extend Kresch’s theory from the case of finite-type stacks to the case of algebraic stacks 𝔛 locally
of finite type over k (such as 𝔐𝑔,𝑛) by defining their Chow groups3 as the limit

CH∗(𝔛) = lim
←−−
𝑖∈𝐼

CH∗(U𝑖),

for (U𝑖)𝑖∈𝐼 a directed system of finite-type open substacks covering 𝔛. Using this definition, we define
the tautological ring R∗(𝔐𝑔,𝑛) ⊆ CH∗(𝔐𝑔,𝑛), extending the definition [GP03] for the moduli spaces
of stable curves.4

Proper pushforwards of Chow groups of algebraic stacks

When extending the definition of the tautological ring to the stacks of prestable curves, we immediately
encounter a problem: for the spaces M𝑔,𝑛 of stable curves, these rings can be defined as the smallest
system of subrings of CH∗(M𝑔,𝑛) closed under pushforwards by gluing morphisms and the morphisms
C𝑔,𝑛 = M𝑔,𝑛+1 → M𝑔,𝑛 giving the universal curve over M𝑔,𝑛. However, for the stacks 𝔐𝑔,𝑛 of
prestable curves, the analogous universal curve morphisms are in general proper, but not projective (see
[Ful10b, Example 2.3]). Thus Kresch’s Chow theory, which a priori only has projective pushforwards,
cannot be applied immediately. Historically, this has been a major obstruction in the study of the

1In fact, the stack 𝔐0,0 contains a finite type open substack that is not even a quotient stack; see [Kre13, Proposition 5.2].
2See Appendix C for more details on the comparison of the definitions.
3Unless stated otherwise, all Chow groups in the paper will be taken with Q-coefficients.
4There is a small caveat: the intersection theory of CH∗ (𝔐1,0) is not covered by [Kre99] because the stabilizer group at the

general point is not a linear algebraic group. In this paper, we exclude this case.
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Chow groups CH∗(𝔐𝑔,𝑛) and made it necessary to give many ad hoc constructions of classes that are
traditionally defined by proper pushforwards (see [Ful10c, Ful10a]).

To overcome this obstacle, jointly with Skowera, we define proper pushforwards for cycle groups of
algebraic stacks. The corresponding results are included as Appendix B to our paper. We state here the
main properties of this construction.

Theorem 1.1 (see Theorem B.17 and Proposition B.18). Let Y be a stack stratified by global quotient
stacks, and let 𝑓 : 𝑋 → 𝑌 be a proper, representable morphism. Then there is a proper pushforward
𝑓∗ : CH𝑑 (𝑋,Z) → CH𝑑 (𝑌,Z) for all d that is functorial (with respect to compositions) and compatible
with flat pullbacks and refined Gysin pullbacks.

If, instead, f is proper and of relative Deligne-Mumford type, then there is a proper pushforward
𝑓∗ : CH𝑑 (𝑋,Q) → CH𝑑 (𝑌,Q) for all d, with the properties above.

The universal curve over the stack of prestable curves

A second problem we encounter when generalizing the definition of the tautological ring of M𝑔,𝑛 to
𝔐𝑔,𝑛 is that the universal curve ℭ𝑔,𝑛 → 𝔐𝑔,𝑛 is not given by the forgetful map 𝔐𝑔,𝑛+1 → 𝔐𝑔,𝑛. In
particular, since the forgetful maps are in general not proper, we cannot define (R∗(𝔐𝑔,𝑛))𝑔,𝑛 as the
smallest system of subrings of (CH∗(𝔐𝑔,𝑛))𝑔,𝑛 closed under gluing and forgetful pushforwards.

To overcome this issue (and give a modular interpretation of ℭ𝑔,𝑛 as a stack of (𝑛 + 1)-pointed
curves), we use the notion of prestable curves with values in a semigroup A from [BM96, Cos06].
Given a suitable (commutative) semigroup5 A and an element 𝑎 ∈ A, these references define a stack
𝔐𝑔,𝑛,𝑎 parameterizing tuples (𝐶, 𝑝1, . . . , 𝑝𝑛, (𝑎𝐶𝑣 )𝑣 ) of a prestable curve (𝐶, 𝑝1, . . . , 𝑝𝑛) together
with a value 𝑎𝐶𝑣 ∈ A for each component 𝐶𝑣 of C such that all 𝑎𝐶𝑣 sum up to a in A. Moreover, in
contrast to the stack 𝔐𝑔,𝑛, the definition of 𝔐𝑔,𝑛,𝑎 includes a stability condition: any component 𝐶𝑣

such that 𝑎𝐶𝑣 = 0 ∈ A is the neutral element of A must actually be stable: that is, have a finite group
of automorphisms fixing all markings and nodes on 𝐶𝑣 . The advantage of this stability condition is
that the natural forgetful map 𝜋 : 𝔐𝑔,𝑛+1,𝑎 →𝔐𝑔,𝑛,𝑎, which forgets the last marking and contracts the
component containing it if it becomes unstable, does define the universal curve over 𝔐𝑔,𝑛,𝑎.

Applying this machinery to a particularly simple semigroup, we obtain the desired modular interpre-
tation of ℭ𝑔,𝑛. For this, consider the semigroup

A = {0, 1} with 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1.

Then we show the following.

Proposition 1.2 (see Proposition 2.7, Corollary 2.8). Let 𝑔, 𝑛 ≥ 0, and consider the semigroup
A = {0, 1} above. Then the stack 𝔐𝑔,𝑛 is naturally contained inside 𝔐𝑔,𝑛,1 as the open substack of
(𝐶, 𝑝1, . . . , 𝑝𝑛, (𝑎𝐶𝑣 )𝑣 ) such that 𝑎𝐶𝑣 = 1 for all v. Thus the universal curve ℭ𝑔,𝑛 is naturally contained
as an open substack of 𝔐𝑔,𝑛+1,1 sitting in the Cartesian diagram

ℭ𝑔,𝑛 ⊆ 𝔐𝑔,𝑛+1,1

𝔐𝑔,𝑛 ⊆ 𝔐𝑔,𝑛,1

𝜋

In particular, this proposition indeed gives an interpretation of ℭ𝑔,𝑛 as a stack of (𝑛 + 1)-pointed
prestable curves together with some additional structure (see the paragraph below Corollary 2.8 for
more details).

5See Section 2.2 for the precise definition and technical conditions we require for these semigroups.
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4 Younghan Bae et al.

Tautological rings of stacks of prestable curves

Having solved both the issues with proper pushforwards and the modular interpretation of the universal
curve, we are now ready to define the tautological rings. Since the discussion in the last section shows
that the spaces 𝔐𝑔,𝑛,𝑎 appear naturally, we will in fact define the tautological rings for these spaces and
obtain the rings for 𝔐𝑔,𝑛 by restriction. To write down the definition, we note that in addition to the
forgetful maps

𝜋 : 𝔐𝑔,𝑛+1,𝑎 →𝔐𝑔,𝑛,𝑎 (1)

mentioned above, there also exist gluing maps

𝜉Γ : 𝔐Γ =
∏

𝑣 ∈𝑉 (Γ)

𝔐𝑔 (𝑣) ,𝑛(𝑣) ,𝑎 (𝑣) →𝔐𝑔,𝑛,𝑎 (2)

for every prestable graph Γ together with an A-valuation 𝑎 : 𝑉 (Γ) → A satisfying
∑

𝑣 ∈𝑉 (Γ) 𝑎(𝑣) = 𝑎.
Here 𝑉 (Γ) is the set of vertices of the graph Γ.

Definition 1.3. The tautological rings (R∗(𝔐𝑔,𝑛,𝑎))𝑔,𝑛,𝑎 are defined as the smallest system of Q-
subalgebras with unit of the Chow rings (CH∗(𝔐𝑔,𝑛,𝑎))𝑔,𝑛,𝑎 closed under taking pushforwards by the
natural forgetful and gluing maps in equations (1) and (2).

The tautological ring R∗(𝔐𝑔,𝑛) ⊆ CH∗(𝔐𝑔,𝑛) is defined as the image of the restriction of R∗(𝔐𝑔,𝑛,1)

to the open substack 𝔐𝑔,𝑛 ⊆ 𝔐𝑔,𝑛,1 from Proposition 1.2.

Just as for the moduli spaces of stable curves, we define 𝜓 and 𝜅-classes: given 1 ≤ 𝑖 ≤ 𝑛, we set

𝜓𝑖 = 𝑐1 (𝜎
∗
𝑖 𝜔𝜋) ∈ CH1 (𝔐𝑔,𝑛,𝑎),

where 𝜎𝑖 : 𝔐𝑔,𝑛,𝑎 → 𝔐𝑔,𝑛+1,𝑎 is the ith universal section and 𝜔𝜋 is the relative dualizing sheaf of 𝜋.
Similarly, given 𝑚 ≥ 0, we set

𝜅𝑚 = 𝜋∗

(
𝜓𝑚+1

𝑛+1

)
∈ CH𝑚(𝔐𝑔,𝑛,𝑎).

It is easy to see that both types of classes are in fact tautological. Given any A-valued prestable graph
Γ, consider the products

𝛼 =
∏
𝑣 ∈𝑉

���
∏

𝑖∈𝐻 (𝑣)

𝜓𝑎𝑖

𝑣,𝑖

𝑚𝑣∏
𝑎=1

𝜅
𝑏𝑣,𝑎
𝑣,𝑎

	
� ∈ CH∗(𝔐Γ) (3)

of 𝜓 and 𝜅-classes on the space 𝔐Γ above. Then we define the decorated stratum class [Γ, 𝛼] as the
pushforward

[Γ, 𝛼] = (𝜉Γ)∗𝛼 ∈ R∗(𝔐𝑔,𝑛,𝑎).

The following result (generalizing [GP03, Proposition 11]) shows that these classes additively generate
the tautological rings.

Theorem 1.4. The tautological ring R∗(𝔐𝑔,𝑛,𝑎) is generated as a Q-vector space by the decorated
strata classes [Γ, 𝛼]. In addition to being closed under pushforwards by gluing and forgetful maps, the
tautological rings are likewise closed under pullbacks by these maps, with explicit formulas describing
all these operations on the generators [Γ, 𝛼].6

6For the precise statement and formulas from the theorem, we refer the reader to Section 3.2.
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This result gives an effective method to perform computations in the Chow rings of the stacks 𝔐𝑔,𝑛,𝑎.
Moreover, it shows that while both the Chow and the tautological rings of these stacks are in general
infinite-dimensional, the individual graded pieces of R∗(𝔐𝑔,𝑛,𝑎) always have a finite set of generators.

Relations to other work

In this section, we explain how our results relate to previous results on the intersection theory of the
stacks 𝔐𝑔,𝑛.

As a first example, in [Gat03], Gathmann used the pullback formula of 𝜓-classes along the stabiliza-
tion morphism st : 𝔐𝑔,1 →M𝑔,1 to prove certain properties of the Gromov-Witten potential. In Section
3.2, we compute arbitrary pullbacks of tautological classes under the stabilization map, in particular
recovering Gathmann’s result.

In [Oes19], Oesinghaus computed the Chow rings of the open locus T ⊂ 𝔐0,3 of curves with dual
graph of the shape

12

3

This stack has a natural interpretation as the stack of expanded pairs appearing in [ACFW13]. Oesinghaus
showed that the Chow ring of T is given by the known algebra of quasi-symmetric functions QSym (see
[LMvW13] for an overview). The ring QSym has a natural basis 𝑀𝐽 (as a Q-vector space) indexed by
positive integer vectors 𝐽 = ( 𝑗1, . . . , 𝑗𝑘 ) ∈ Z𝑘

≥1 of some length 𝑘 ≥ 0, and the product 𝑀𝐽 · 𝑀𝐽 ′ can be
defined in terms of a certain shuffle rule on the vectors 𝐽, 𝐽 ′ (see [Oes19, Proposition 2]).

Oesinghaus’ proof worked by writing down an open exhaustion of T by quotient stacks, allowing to
write the Chow ring as a certain projective limit of polynomial rings that is known to produce the algebra
QSym. However, due to the nature of this proof, a geometric interpretation for the generators 𝑀𝐽 was
not immediately clear (see [Oes19, Remark 7]). Using the techniques of our paper, we can now answer
this question, showing that the generators 𝑀𝐽 have a concrete interpretation as tautological classes.

Proposition 1.5 (see Example 4.3). For 𝐽 = ( 𝑗1, . . . , 𝑗𝑘 ) ∈ Z𝑘
≥1, the generator 𝑀𝐽 ∈ QSym � CH∗(T)

is given by the restriction of the tautological class

(−𝜓 − 𝜓 ′) 𝑗1−1 (−𝜓 − 𝜓 ′) 𝑗ℓ−1 (−𝜓 − 𝜓 ′) 𝑗𝑘−1 12

3

(4)

on 𝔐0,3.

Furthermore, it is straightforward to see that the shuffle rule describing products 𝑀𝐽 · 𝑀𝐽 ′ is an
immediate consequence of the product formula for the tautological classes in equation (4). Oesinghaus
also computes the Chow rings of the loci 𝔐ss

0,2 and 𝔐ss
0,3 of semistable curves in 𝔐0,2 and 𝔐0,3, giving

a description in terms of tensor products involving the rings QSym. Again, we give a description in
terms of tautological classes in Example 4.3.

Tautological relations in genus zero

The present paper lays down the foundations of the theory of the Chow rings CH∗(𝔐𝑔,𝑛). In the second
part [BS21], we use results of this paper to fully determine the Chow rings of 𝔐0,𝑛 for all n: we prove
that all classes are tautological, and we compute all relations among generators of the tautological ring.
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Structure of the paper

In Section 2, we establish basic properties of the stacks 𝔐𝑔,𝑛. We discuss boundary gluing maps in
Section 2.1 and introduce the stacks of prestable curves with values in a semigroup in Section 2.2. In
Section 3, we establish basic properties of the Chow group of 𝔐𝑔,𝑛. In Section 3.1, we define Chow
groups and tautological rings of such stacks. In Section 3.2, we compute formulas for intersection
products and pullbacks and pushforwards of tautological classes under natural maps. In Section 4, we
compare our result with previous works by Gathmann [Gat03], Pixton [Pix18] and Oesinghaus [Oes19].

In Appendix A, we give some general treatment of Chow groups of locally finite type algebraic
stacks. We give a definition of such Chow groups based on [Kre99] and show various basic properties.
In Appendix B (jointly with J. Skowera), we construct proper pushforwards of cycles, show basic
compatibility properties of these pushforwards and explain how they extend to the setting of algebraic
stacks locally of finite type. Finally, in Appendix C, we give a definition and establish the basic
properties of operational Chow groups on locally finite type stacks, a technical tool needed for some of
the computations in Section 3.2.

2. The stack 𝔐𝑔,𝑛 of prestable curves

Throughout the paper, we work over an arbitrary base field k. Let 𝔐𝑔,𝑛 be the moduli stack of prestable
curves of genus g with n marked points. An object of 𝔐𝑔,𝑛 over a scheme S is a tuple

(𝜋 : 𝐶 → 𝑆, 𝑝1, . . . , 𝑝𝑛 : 𝑆 → 𝐶),

where C is an algebraic space and the map 𝜋 is a flat, proper morphism of finite presentation and relative
dimension 1. The geometric fibres of 𝜋 are connected, reduced curves of arithmetic genus g with at
worst nodal singularities. The morphisms 𝑝1, . . . , 𝑝𝑛 are disjoint sections of 𝜋 with image in the smooth
locus of 𝜋; see [Sta20, 0E6S].

This stack is quasi-separated, smooth and locally of finite type over k ([AK16]) and of dimension
3𝑔 − 3 + 𝑛 ([Beh97]). For 2𝑔 − 2 + 𝑛 > 0, there is a natural stabilization morphism

st : 𝔐𝑔,𝑛 →M𝑔,𝑛

that contracts unstable rational components. This morphism is flat by [Beh97, Proposition 3].

2.1. Boundary gluing maps

A prestable graph Γ of genus g with 𝑛 markings consists of the data

Γ = (𝑉, 𝐻, ℓ : 𝐿 → {1, . . . , 𝑛}, 𝑔 : 𝑉 → Z≥0 , 𝑣 : 𝐻 → 𝑉 , 𝜄 : 𝐻 → 𝐻)

satisfying the properties:

(i) V is a vertex set with a genus function 𝑔 : 𝑉 → Z≥0,
(ii) H is a half-edge set equipped with a vertex assignment 𝑣 : 𝐻 → 𝑉 and an involution 𝜄,

(iii) E, the edge set, is defined by the 2-cycles of 𝜄 in H (self-edges at vertices are permitted),
(iv) 𝐿 ⊆ 𝐻, the set of legs, is defined by the fixed points of 𝜄 and corresponds to n markings via the

bijection ℓ : 𝐿 → {1, . . . , 𝑛},
(v) the pair (𝑉, 𝐸) defines a connected graph satisfying the genus condition∑

𝑣 ∈𝑉

𝑔(𝑣) + ℎ1 (Γ) = 𝑔,

where ℎ1 (Γ) = |𝐸 | − |𝑉 | + 1 is the first Betti number of the graph Γ.
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A prestable graph Γ is called stable if the following additional condition is satisfied:
(vi) for each vertex 𝑤 ∈ 𝑉 , we have

2𝑔(𝑤) − 2 + 𝑛(𝑤) > 0,

where 𝑛(𝑤) = |𝑣−1 (𝑤) | is the valence of w in Γ: that is, the number of half-edges incident to w.
Given a second graph Γ′ = (𝑉 ′, 𝐻 ′, ℓ′, 𝑔′, 𝑣′, 𝜄′), an isomorphism 𝜑 : Γ→ Γ′ is the data of bijective

maps

𝜑𝑉 : 𝑉 → 𝑉 ′, 𝜑𝐻 : 𝐻 → 𝐻 ′

that are compatible with the remaining data of the prestable graphs, in the sense that

ℓ′ ◦ 𝜑𝐻 |𝐿 = ℓ, 𝑔′ ◦ 𝜑𝑉 = 𝑔, 𝑣′ ◦ 𝜑𝐻 = 𝜑𝑉 ◦ 𝑣, 𝜄
′ ◦ 𝜑𝐻 = 𝜑𝐻 ◦ 𝜄.

For every vertex 𝑣 ∈ 𝑉 (Γ), let 𝐻 (𝑣) be the set of half-edges at v, with cardinality 𝑛(𝑣). Then there
exists a natural gluing morphism

𝜉Γ : 𝔐Γ =
∏

𝑣 ∈𝑉 (Γ)

𝔐𝑔 (𝑣) ,𝑛(𝑣) →𝔐𝑔,𝑛,

which assigns to a collection ((𝐶𝑣 , (𝑝ℎ)ℎ∈𝐻 (𝑣) ) the curve (𝐶, 𝑝1, . . . , 𝑝𝑛) obtained by identifying the
markings 𝑝ℎ , 𝑝ℎ′ for each pair (ℎ, ℎ′) forming an edge of Γ.7 Restricting to the preimage of the open
substack M𝑔,𝑛 ⊂ 𝔐𝑔,𝑛, we get the usual gluing maps

𝜉Γ : MΓ =
∏

𝑣 ∈𝑉 (Γ)

M𝑔 (𝑣) ,𝑛(𝑣) →M𝑔,𝑛.

Note that unless Γ is stable, the left-hand side is empty.
On the other hand, given 𝑚 ≥ 0, we have the forgetful morphism

𝐹𝑚 : 𝔐𝑔,𝑛+𝑚 →𝔐𝑔,𝑛, (𝐶, 𝑝1, . . . , 𝑝𝑛, 𝑞1, . . . , 𝑞𝑚) ↦→ (𝐶, 𝑝1, . . . , 𝑝𝑛).

Since the curve C remains prestable after forgetting a subset of the markings, there is no stabilization
procedure in the morphism 𝐹𝑚, and the underlying curve remains unchanged.
Lemma 2.1. The morphism 𝐹𝑚 is smooth and representable of relative dimension m, and the collection(

𝐹𝑚 |M𝑔,𝑛+𝑚
: M𝑔,𝑛+𝑚 →𝔐𝑔,𝑛

)
𝑚∈Z≥0

forms a smooth and representable cover of 𝔐𝑔,𝑛. The complement of the image of M𝑔,𝑛+𝑚 under 𝐹𝑚

in 𝔐𝑔,𝑛 has codimension 
𝑚2 � + 1, except for finitely many m in the unstable setting 2𝑔 − 2 + 𝑛 ≤ 0.8
Proof. Except for the statement about the codimension of the complement of the image, this is [Beh97,
Proposition 2]. To show the formula for the codimension, observe on the one hand that in a prestable
graph Γ, every unstable vertex can be stabilized by adding at most two legs. Conversely, consider the
prestable graph Γ0 formed by a central vertex of genus g with all n legs, connected via single edges
to c outlying vertices of genus 0 with no legs. Then Γ0 belongs to a codimension c stratum, and we

7Note that while it is customary in the field to write the factors of the domain of 𝜉Γ as 𝔐𝑔 (𝑣 ) ,𝑛(𝑣 ) , it would perhaps be more
appropriate to define prestable curves with markings indexed by the set 𝐻 (𝑣) and write 𝔐𝑔 (𝑣 ) ,𝐻 (𝑣 ) , since otherwise we need
to implicitly choose an ordering on the half-edges at v to define the map 𝜉Γ . This does not affect the arguments presented below,
and the reader may assume that an arbitrary such ordering is chosen.

8The exceptions occur for (𝑔, 𝑛, 𝑚) = (1, 0, 0) and 𝑔 = 0, 𝑛 ≤ 2, 𝑚 ≤ 4. We leave it as an exercise to the reader to work out
the codimension in these cases.
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need precisely 2𝑐 additional legs to stabilize it. Thus the stratum of 𝔐𝑔,𝑛 associated to Γ0 lies in the
complement of 𝐹 (M𝑔,𝑛+𝑚) if and only if 𝑐 ≥ 
𝑚2 � + 1. The finitely many exceptions in the unstable
range arise from the fact that the central vertex of Γ0 is not stable if 2𝑔 − 2 + 𝑛 + 𝑐 < 0. �

Let st𝑚(Γ) be the set of stable graphs Γ′ in genus g with 𝑛 + 𝑚 markings obtained from a prestable
graph Γ of genus g with n legs by adding m additional legs, labeled 𝑛 + 1, . . . , 𝑛 +𝑚, at vertices of Γ. As
explained above, for a fixed prestable graph Γ, the set st𝑚(Γ) starts being nonempty for m sufficiently
large.

Given Γ′ ∈ st𝑚(Γ), there is a natural map

𝐹Γ′→Γ : MΓ′ →𝔐Γ

that is just the product of forgetful maps 𝐹𝑚𝑣 : M𝑔 (𝑣) ,𝑛(𝑣)+𝑚𝑣 →𝔐𝑔 (𝑣) ,𝑛(𝑣) for each 𝑣 ∈ 𝑉 (Γ) = 𝑉 (Γ′).

Lemma 2.2. For every prestable graph Γ in genus g with n markings and every 𝑚 ≥ 0, there is a fibre
diagram ∐

Γ′ ∈st𝑚 (Γ)MΓ′ M𝑔,𝑛+𝑚

𝔐Γ 𝔐𝑔,𝑛.

∐
𝜉Γ′

∐
𝐹Γ′→Γ 𝐹𝑚

𝜉Γ

(5)

In particular, the map 𝜉Γ : 𝔐Γ →𝔐𝑔,𝑛 is representable, proper and a local complete intersection.

Proof. An object of the fibre product of 𝔐Γ with M𝑔,𝑛+𝑚 over a (connected) scheme S is given by

◦ a collection of families (𝐶𝑣 , (𝑝ℎ)ℎ∈𝐻 (𝑣) ) of prestable curves over S for each 𝑣 ∈ 𝑉 (Γ),
◦ a family (𝐶 ′, 𝑝′1, . . . , 𝑝

′
𝑛, 𝑞
′
1, . . . , 𝑞

′
𝑚) of stable curves over S,

◦ an isomorphism (of families of prestable curves)

𝜑 : 𝐶 =
∐

𝑣

𝐶𝑣/(𝑝ℎ ∼ 𝑝ℎ′ , (ℎ, ℎ
′) ∈ 𝐸 (Γ)) → 𝐶 ′

satisfying 𝜑(𝑝𝑖) = 𝑝′𝑖 .

By the assumption that S is connected, for each 𝑗 = 1, . . . , 𝑚, there exists a unique 𝑣 = 𝑣( 𝑗) ∈ 𝑉 (Γ) such
that 𝑞′𝑗 ∈ 𝜑(𝐶𝑣 ) at each point of S. This uses that via 𝜑, the smooth unmarked points of 𝐶𝑣 (𝑣 ∈ 𝑉 (Γ))
form a disjoint open cover of the smooth unmarked points of (𝐶 ′, 𝑝1, . . . , 𝑝𝑛) in which 𝑞′𝑗 is always
contained.

But for 𝑗 , 𝑣 as above, we obtain a section 𝑞 𝑗 = 𝜑−1 ◦ 𝑞′𝑗 : 𝑆 → 𝐶𝑣 landing in the smooth unmarked
locus of 𝐶𝑣 . Thus for every 𝑣 ∈ 𝑉 (Γ), this allows us to define a family

𝐶𝑣 = (𝐶𝑣 , (𝑝ℎ)ℎ∈𝐻 (𝑣) , (𝑞 𝑗 )𝑣 ( 𝑗)=𝑣 ) → 𝑆 (6)

of prestable curves over S. From the fact that (𝐶 ′, 𝑝′1, . . . , 𝑝
′
𝑛, 𝑞
′
1, . . . , 𝑞

′
𝑚) is a family of stable curves,

it follows that the family in equation (6) is actually a family of stable curves. Then one sees that the
collection (𝐶𝑣 )𝑣 ∈𝑉 (Γ′) is exactly an S-point of one of the spaces MΓ′ for the suitable Γ′ ∈ st𝑚(Γ) for
which the marking 𝑞 𝑗 is added at the vertex 𝑣( 𝑗) ∈ 𝑉 (Γ′) = 𝑉 (Γ).

The above operations define a map from 𝔐Γ ×𝔐𝑔,𝑛 M𝑔,𝑛+𝑚 to the disjoint union of the MΓ′ and
clearly this disjoint union also maps to the fibre product using the maps 𝐹Γ′→Γ and 𝜉Γ′ . One verifies that
these are inverse isomorphisms.

Since being proper and being a local complete intersection is local on the target, and since the maps
𝐹𝑚 form a smooth cover of 𝔐𝑔,𝑛, these properties of 𝜉Γ follow from the corresponding properties of
the maps 𝜉Γ′ |MΓ′

. �
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Later we will need some stronger statements about the locus of curves whose prestable graph is
exactly a given graph Γ. This locus is a locally closed substack 𝔐Γ of 𝔐𝑔,𝑛 whose geometric points
are precisely the curves (𝐶, 𝑝1, . . . , 𝑝𝑛) with prestable graph isomorphic to Γ. However, since a family
of prestable curves over an arbitrary base does not in general have a well-defined prestable graph, this
definition is slightly tricky to write down in a functorial way. Thus we approach the definition from a
different angle and then show that it defines the desired locus.

Definition 2.3. Let Γ be a prestable graph in genus g with n markings, and let e be the number of edges
of Γ. Then we define

𝔐Γ = im(𝜉Γ) \
⋃

Γ′: |𝐸 (Γ′) |=𝑒+1
im(𝜉Γ′ ),

where im denotes the stack theoretic image and the union goes over prestable graphs Γ′ with precisely
𝑒 + 1 edges.

By definition, we have that 𝔐Γ is a locally closed substack of 𝔐𝑔,𝑛. In the following lemma, we
check that its geometric points are as desired.

Lemma 2.4. The geometric points of 𝔐Γ are precisely the (𝐶, 𝑝1, . . . , 𝑝𝑛) with prestable graph iso-
morphic to Γ.

Proof. First we note that since 𝜉Γ is proper, it is surjective onto its image. Then, on the one hand, each
(𝐶, 𝑝1, . . . , 𝑝𝑛) with prestable graph isomorphic to Γ is in 𝔐Γ, since it is in the image of 𝜉Γ but cannot
be in the image of a gluing map for a graph Γ′ with more than e edges (since its number of nodes is
precisely e). Conversely, let (𝐶𝑣 )𝑣 = (𝐶𝑣 , (𝑝ℎ)ℎ∈𝐻 (𝑣) )𝑣 ∈𝑉 (Γ) ∈ 𝔐Γ be a geometric point. Then if all
𝐶𝑣 are smooth, its image 𝜉Γ ((𝐶𝑣 )𝑣 ) has prestable graph Γ. On the other hand, if any of the 𝐶𝑣 are not
smooth, then the prestable graph of 𝜉Γ ((𝐶𝑣 )𝑣 ) has at least 𝑒 + 1 edges. By contracting all but 𝑒 + 1
of them, we obtain one of the prestable graphs Γ′ in the definition of 𝔐Γ, and it is easy to see that
𝜉Γ ((𝐶𝑣 )𝑣 ) is then in the image of 𝜉Γ′ . �

We have the following neat description of 𝔐Γ, which is a generalization of [Ful10b, Lemma 5.1].
For the statement, let

𝔐sm
𝑔,𝑛 ⊂ 𝔐𝑔,𝑛

be the open substack where the curve C is smooth. For 𝑔, 𝑛 in the stable range, this is the usual stack
M𝑔,𝑛 of smooth curves, but since the latter might be defined to be empty for 2𝑔 − 2 + 𝑛 < 0, we use the
notation 𝔐sm

𝑔,𝑛 for clarity.

Proposition 2.5. For a prestable graph Γ, consider the open substack

𝔐sm
Γ =

∏
𝑣 ∈𝑉 (Γ)

𝔐sm
𝑔 (𝑣) ,𝑛(𝑣) ⊂ 𝔐Γ .

Then the restriction of the gluing map 𝜉Γ to 𝔐sm
Γ factors through 𝔐Γ, and it is invariant under the

natural action of Aut(Γ). The induced map

𝔐sm
Γ /Aut(Γ)

𝜉Γ
−−→𝔐Γ (7)

from the quotient stack9 of 𝔐Γ by Aut(Γ) is an isomorphism.

9Since 𝔐sm
Γ is not an algebraic space, one can either use the notion of group actions and quotients for algebraic stacks defined

by Romagny [Rom05] to make sense of the quotient 𝔐sm
Γ /Aut(Γ) or observe that 𝔐sm

Γ is itself a quotient stack and that the action
of Aut(Γ) can be lifted compatibly to write 𝔐sm

Γ /Aut(Γ) again as a quotient stack. See [Ful10b, Section 5] for more details.
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Proof. For each point (𝐶𝑣 )𝑣 = (𝐶𝑣 , (𝑝ℎ)ℎ∈𝐻 (𝑣) )𝑣 ∈𝑉 (Γ) ∈ 𝔐sm
Γ , the stabilizer Aut(Γ)(𝐶𝑣 )𝑣 under the

action of Aut(Γ) is the set of automorphisms of Γ such that there exist compatible isomorphisms of the
curves (𝐶𝑣 , (𝑝ℎ)ℎ∈𝐻 (𝑣) ). The stabilizer group of [(𝐶𝑣 )𝑣 ] ∈ 𝔐sm

Γ /Aut(Γ) is then an extension of the
product of the automorphism groups of the (𝐶𝑣 , (𝑝ℎ)ℎ∈𝐻 (𝑣) ) by the group Aut(Γ)(𝐶𝑣 )𝑣 .

On the other hand, for the curve (𝐶, 𝑝1, . . . , 𝑝𝑛) obtained from (𝐶𝑣 )𝑣 by gluing and an element
𝜎 ∈ Aut(Γ)(𝐶𝑣 )𝑣 , the isomorphisms between the curves 𝐶𝑣 that are compatible with 𝜎 can be glued to
an automorphism of (𝐶, 𝑝1, . . . , 𝑝𝑛). From this it follows that there exists an exact sequence

1→
∏

𝑣 ∈𝑉 (Γ)

Aut(𝐶𝑣 , (𝑝ℎ)ℎ∈𝐻 (𝑣) ) → Aut(𝐶, 𝑝1, . . . , 𝑝𝑛) → Aut(Γ)(𝐶𝑣 )𝑣 → 1.

From this sequence we see that Aut(𝐶, 𝑝1, . . . , 𝑝𝑛) is precisely the group extension defining the stabilizer
of [(𝐶𝑣 )𝑣 ] ∈ 𝔐sm

Γ /Aut(Γ), and hence 𝜉Γ induces an isomorphism of each stabilizer. Thus the morphism
𝜉Γ in equation (7) is representable. It is easy to check that it is bijective on geometric points and it is
separated by similar argument as in Lemma 2.2. So by [Sta20, 0DUD] it is enough to show that 𝜉Γ is an
étale morphism to conclude that it is an isomorphism.

Consider the atlas 𝐹𝑚 restricted to 𝔐Γ. Since being étale is local on the target, it is enough to show
that 𝜉Γ is étale on each atlas. On each atlas, the dimension of the fibre is constantly zero. The domain
of 𝜉Γ is smooth because it can be written as a quotient of a smooth algebraic space by a group scheme
([Sta20, 0DLS]). Following a slight variation of the proof of [ACG11, Proposition 10.11], the stack 𝔐Γ

is also smooth. Since the domain and the target of 𝜉Γ are smooth, the ‘miracle flatness’ ([Sta20, 00R3])
implies that 𝜉Γ is flat. Furthermore, the morphism is smooth because it is flat, and each geometric fibre
is smooth. Smooth and quasi-finite morphisms are étale, and hence 𝜉Γ is an isomorphism. �

2.2. A-valued prestable curves

For each 𝑔, 𝑛, there exists the universal curve ℭ𝑔,𝑛 →𝔐𝑔,𝑛. For later applications, it will be necessary
to compute with tautological classes on ℭ𝑔,𝑛 (and tautological classes on the universal curve over ℭ𝑔,𝑛,
etc.). For the moduli spaces of stable curves, a separate theory is not necessary because the universal
curve over M𝑔,𝑛 is given by the forgetful map M𝑔,𝑛+1 →M𝑔,𝑛. The same is not true for 𝔐𝑔,𝑛. Indeed,
in Lemma 2.1, we saw that the forgetful morphism 𝔐𝑔,𝑛+1 → 𝔐𝑔,𝑛 is smooth, so it cannot be the
universal curve over 𝔐𝑔,𝑛. In this section, we put an additional structure on prestable curves, called the
A-value, which allows us to give a modular interpretation of the universal curve as a stack of (𝑛 + 1)-
pointed curves with additional structure. This realization will be convenient to compute tautological
classes on ℭ𝑔,𝑛.

So let us start by recalling the notion of prestable curves with values in a semigroup A from [Cos06].
In what follows, let A be a commutative semigroup with unit 0 ∈ A such that

◦ A has indecomposable zero: that is, for 𝑥, 𝑦 ∈ A, we have 𝑥 + 𝑦 = 0 implies 𝑥 = 0, 𝑦 = 0,
◦ A has finite decomposition: that is, for 𝑎 ∈ A the set

{(𝑎1, 𝑎2) ∈ A ×A : 𝑎1 + 𝑎2 = 𝑎}

is finite.

Classical examples include A = {0} or A = N, but later we are going to work with

A = {0, 1} with 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1.

Fixing A and an element 𝑎 ∈ A, Behrend-Manin [BM96] and Costello [Cos06] define an algebraic
stack 𝔐𝑔,𝑛,𝑎. A geometric point corresponds to a prestable curve (𝐶, 𝑝1, . . . , 𝑝𝑛) together with a map
𝐶𝑣 ↦→ 𝑎𝐶𝑣 from the set of irreducible components 𝐶𝑣 of the normalization of C to A such that the sum
of all 𝑎𝐶𝑣 equals a. The curve must satisfy the stability condition that for each 𝐶𝑣 either 𝑎𝐶𝑣 ≠ 0 or that
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𝐶𝑣 is stable, in the sense that for 𝑔(𝐶𝑣 ) = 0 it carries three special points and for 𝑔(𝐶𝑣 ) = 1 it carries
at least one special point. Over an arbitrary base scheme, the definition of A-valued stable curves needs
extra care; see [Cos06, p.569] for details. As an example, for any A as above and 𝑎 = 0, we obtain
𝔐𝑔,𝑛,0 = M𝑔,𝑛.

Our main motivation for considering the moduli spaces 𝔐𝑔,𝑛,𝑎 is the fact that we have a forgetful
morphism 𝜋 : 𝔐𝑔,𝑛+1,𝑎 → 𝔐𝑔,𝑛,𝑎 making 𝔐𝑔,𝑛+1,𝑎 the universal curve over 𝔐𝑔,𝑛,𝑎. The image of a
point

(𝐶, 𝑝1, . . . , 𝑝𝑛, 𝑝𝑛+1, (𝑎𝐶𝑣 )𝑣 ) ∈ 𝔐𝑔,𝑛+1,𝑎

under 𝜋 is formed by first forgetting the marked point 𝑝𝑛+1. Then if the component 𝐶𝑣 of C containing
𝑝𝑛+1 becomes unstable,10 the component𝐶𝑣 of C is contracted. With this notation in place, we summarize
the relevant properties of 𝔐𝑔,𝑛,𝑎 from [Cos06].

Proposition 2.6. The stack 𝔐𝑔,𝑛,𝑎 is a smooth, algebraic stack, locally of finite type and the morphism
𝔐𝑔,𝑛,𝑎 → 𝔐𝑔,𝑛 forgetting the value in A is étale and relatively a scheme of finite type. The universal
curve over 𝔐𝑔,𝑛,𝑎 is given by the forgetful morphism 𝜋 : 𝔐𝑔,𝑛+1,𝑎 →𝔐𝑔,𝑛,𝑎.

Proof. See Proposition 2.0.2 and 2.1.1 from [Cos06]. �

The fact that the universal curve is given by a moduli space of curves with an extra marked point turns
out to be very convenient. Indeed, as discussed above, this is not the case for the forgetful morphism
𝔐𝑔,𝑛+1 → 𝔐𝑔,𝑛. It is easy to identify 𝔐𝑔,𝑛+1 as the open substack 𝔐𝑔,𝑛+1 ⊂ ℭ𝑔,𝑛 given as the
complement of the set of markings and nodes.

Many other constructions we saw for prestable curves work in the A-valued setting. For instance, for
𝑔1 + 𝑔2 = 𝑔, 𝑛1 + 𝑛2 = 𝑛 and 𝑎1, 𝑎2 ∈ A with 𝑎1 + 𝑎2 = 𝑎, we have a gluing morphism

𝜉 : 𝔐𝑔1 ,𝑛1+1,𝑎1 ×𝔐𝑔2 ,𝑛2+1,𝑎2 →𝔐𝑔,𝑛,𝑎 .

These gluing maps are again representable, proper and local complete intersections. Indeed, we have a
fibre diagram ∐

𝑎1+𝑎2=𝑎 𝔐𝑔1 ,𝑛1+1,𝑎1 ×𝔐𝑔2 ,𝑛2+1,𝑎2 𝔐𝑔,𝑛,𝑎

𝔐𝑔1 ,𝑛1+1 ×𝔐𝑔2 ,𝑛2+1 𝔐𝑔,𝑛

and the map at the bottom has all these properties by Lemma 2.2. More generally, one defines the notion
of an A-valued stable graph, and the corresponding gluing map has all the desired properties.

The following result allows us to apply the machinery of Costello to the moduli spaces of prestable
curves.

Proposition 2.7. Let A = {0, 1} with 1 + 1 = 1; then given 𝑔, 𝑛, the subset ℨ𝑔,𝑛 ⊂ 𝔐𝑔,𝑛,1 of
A-valued curves (𝐶, 𝑝1, . . . , 𝑝𝑛; (𝑎𝐶𝑣 )𝑣 ) such that one of the values 𝑎𝐶𝑣 equals 0 is closed. Let
𝔘𝑔,𝑛 = 𝔐𝑔,𝑛,1 \ ℨ𝑔,𝑛 be its complement. Then the composition

𝔘𝑔,𝑛 ↩→𝔐𝑔,𝑛,1 →𝔐𝑔,𝑛

of the inclusion of 𝔘𝑔,𝑛 with the morphism 𝔐𝑔,𝑛,1 →𝔐𝑔,𝑛 forgetting the A-values defines an isomor-
phism 𝔘𝑔,𝑛 � 𝔐𝑔,𝑛.

Proof. The underlying reason why ℨ𝑔,𝑛 is closed is that 0 is indecomposable in A: given a curve
(𝐶, 𝑝1, . . . , 𝑝𝑛; (𝑎𝐶𝑣 )𝑣 ) such that some 𝑎𝐶𝑣 = 0, any degeneration of this curve still has some component

10This happens precisely for 𝑎𝐶𝑣 = 0 and 𝐶𝑣 being of genus 0 with at most two special points apart from 𝑝𝑛+1.
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with value 0 since in a degeneration of 𝐶𝑣 , 𝑎𝐶𝑣 must distribute to the components to which 𝐶𝑣

degenerates.
More concretely, we can write ℨ𝑔,𝑛 as the union of images of gluing maps 𝜉Γ for suitable A-valued

prestable graphs Γ. Indeed, we exactly have to remove the images of 𝜉Γ for Γ of the form

Γ =

(𝑔0,0)

(𝑔1,1) (𝑔𝑠 ,1)· · ·

𝑒1 𝑒𝑠

𝐼0

𝐼1 𝐼𝑠

(8)

where 𝑠 ≥ 1, 𝑒1, . . . , 𝑒𝑠 ∈ Z>0,

𝑔0 + 𝑔1 + . . . + 𝑔𝑠 = 𝑔 +
𝑠∑

𝑖=1
𝑒𝑖 − 1

and 𝐼0
∐

𝐼1
∐

. . .
∐

𝐼𝑠 = {1, . . . , 𝑛}. Note that for this locus to be nonempty, we must require 𝑔0 > 0 or
|𝐼0 | +

∑
𝑖 𝑒𝑖 > 2.

While the image of each 𝜉Γ is closed, we use infinitely many of them. But in the open exhaustion of
𝔐𝑔,𝑛,1 by the substacks of curves with at most ℓ nodes, each of these open substacks only intersects
finitely many of the images of 𝜉Γ nontrivially, so the union of their images is still closed.

The fact that 𝔘𝑔,𝑛 → 𝔐𝑔,𝑛 is an isomorphism can be seen in different ways: its inverse is just
given by the functor sending each prestable curve (𝐶, 𝑝1, . . . , 𝑝𝑛) to itself with value 𝑎𝐶𝑣 = 1 on each
component: that is,

𝔐𝑔,𝑛 → 𝔘𝑔,𝑛, (𝐶, 𝑝1, . . . , 𝑝𝑛) ↦→ (𝐶, 𝑝1, . . . , 𝑝𝑛; (1)𝑣 ).

Alternatively, one observes that 𝔘𝑔,𝑛 → 𝔐𝑔,𝑛 is étale, representable and a bijection on geometric
points. �

Corollary 2.8. The universal curve ℭ𝑔,𝑛 →𝔐𝑔,𝑛 is given by the morphism

𝜋 : 𝔐𝑔,𝑛+1,1 \ 𝜋
−1 (ℨ𝑔,𝑛) →𝔐𝑔,𝑛,1 \ ℨ𝑔,𝑛

forgetting the marking 𝑛 + 1 and contracting the component containing it if this component becomes
unstable. The A-valued prestable graphs Γ appearing in ℨ𝑔,𝑛+1 but not contained in 𝜋−1 (ℨ𝑔,𝑛) are
exactly of one of the three following forms:

◦ for 𝑖 = 1, . . . , 𝑛, the graphs

Γ =

(0,0) (𝑔,1)

𝑖

𝑛 + 1
{1, . . . , 𝑛} \ {𝑖} (9)

corresponding to the n sections of the universal curve 𝜋 : ℭ𝑔,𝑛 →𝔐𝑔,𝑛,
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◦ boundary divisors with edge subdivided, inserting a genus zero, value 0 vertex carrying 𝑛 + 1

(𝑔1,1) (0,0) (𝑔2,1)

𝑛 + 1

where 𝑔1 + 𝑔2 = 𝑔 and

(𝑔 − 1,1) (0,0)

𝑛 + 1

,

corresponding to the locus of nodes inside the universal curve 𝜋 : ℭ𝑔,𝑛 →𝔐𝑔,𝑛.

Corollary 2.8 shows that in order to develop the intersection theory of 𝔐𝑔,𝑛 and ℭ𝑔,𝑛, it suffices to
consider the general case of the intersection theory of 𝔐𝑔,𝑛,1 (or even more generally, 𝔐𝑔,𝑛,𝑎 for any
semigroup A and 𝑎 ∈ A).

3. Chow groups and the tautological ring of 𝔐𝑔,𝑛

3.1. Definitions

In this paper, we want to study the Chow groups (with Q-coefficients) of the stacks 𝔐𝑔,𝑛 (and, more
generally, the stacks 𝔐𝑔,𝑛,𝑎 for some element 𝑎 ∈ A in a semigroup A).

To define these Chow groups, recall that in [Kre99], Kresch constructed Chow groups CH∗(X) for
algebraic stacks X of finite type over a field k. Moreover, there is an intersection product on CH∗(X)
when X is smooth and stratified by global quotient stacks11; see [Kre99, Theorem 2.1.12]. This last
condition can be checked point-wise: a reduced stack X is stratified by global quotient stacks if and only
if the stabilizers of geometric points of X are affine ([Kre99, Proposition 3.5.9]).

Now the spaces 𝔐𝑔,𝑛,𝑎 are in general not of finite type (only locally of finite type) and so we need to
extend the definition of Chow groups above. Assume that 𝔐 is an algebraic stack, locally of finite type
over a field k. Choose a directed system12 (U𝑖)𝑖∈𝐼 of finite type open substacks of 𝔐 whose union is all
of 𝔐. Then we set

CH∗(𝔐) = lim
←−−
𝑖∈𝐼

CH∗(U𝑖),

where for U𝑖 ⊆ U 𝑗 the transition map CH∗(U 𝑗 ) → CH∗(U𝑖) is given by the restriction to U𝑖 . In other
words, we have

CH∗(𝔐) = {(𝛼𝑖)𝑖∈𝐼 : 𝛼𝑖 ∈ CH∗(U𝑖), 𝛼 𝑗 |U𝑖 = 𝛼𝑖 for U𝑖 ⊆ U 𝑗 }.

We give the details of this definition in Appendix A and show that the Chow groups of locally finite
type stacks inherit all the usual properties (e.g., flat pullback, projective pushforward, Chern classes
of vector bundles and Gysin pullbacks) of the Chow groups from [Kre99]. Moreover, if 𝔐 is smooth
and has affine stabilizer groups at geometric points, the intersection products on the groups CH∗(U𝑖)

11This means there exists a stratification by locally closed substacks that are each isomorphic to a global quotient of an algebraic
space by a linear algebraic group.

12Recall that this means for all U𝑖 , U 𝑗 , there exists a U𝑘 containing both of them.

https://doi.org/10.1017/fms.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.21


14 Younghan Bae et al.

give rise to an intersection product on CH∗(𝔐). In this case, for 𝔐 equidimensional, we often use the
cohomological degree convention

CH∗(𝔐) = CHdim𝔐−∗(𝔐).

Proposition 3.1. Let 𝑔, 𝑛 ≥ 0, and let A be a semigroup with indecomposable zero and finite decom-
position as in Section 2.2 and 𝑎 ∈ A. Then the stacks 𝔐𝑔,𝑛 and 𝔐𝑔,𝑛,𝑎 have well-defined Chow groups
CH∗(𝔐𝑔,𝑛) and CH∗(𝔐𝑔,𝑛,𝑎). For (𝑔, 𝑛) ≠ (1, 0) the stabilizer groups of all geometric points of 𝔐𝑔,𝑛

and 𝔐𝑔,𝑛,𝑎 are affine and so the Chow groups have an intersection product.

Proof. The stacks 𝔐𝑔,𝑛 and 𝔐𝑔,𝑛,𝑎 are locally of finite type (and smooth) by Proposition 2.6 and thus
satisfy the conditions of Definition A.1 from the appendix. For the existence of intersection products, we
need to check that geometric points have affine stabilizers. The stabilizer group of such a prestable curve
is a finite extension of the automorphism groups of its components. The only non-finite automorphism
groups that can occur here are in genus 0 (where they are subgroups of PGL2 and thus affine) and in
genus 1 with no special points. Since the prestable curves are assumed to be connected, the last case
can only occur for (𝑔, 𝑛) = (1, 0). �

Now recall from Definition 1.3 that the tautological rings (R∗(𝔐𝑔,𝑛,𝑎))𝑔,𝑛,𝑎 are defined as the
smallest system of Q-subalgebras with unit of the Chow rings (CH∗(𝔐𝑔,𝑛,𝑎))𝑔,𝑛,𝑎 closed under taking
pushforwards by the natural forgetful and gluing maps.

We recall the following particular examples of tautological classes:

Definition 3.2. Let 𝜋 : 𝔐𝑔,𝑛+1,𝑎 →𝔐𝑔,𝑛,𝑎 be the universal curve over 𝔐𝑔,𝑛,𝑎, and for 𝑖 = 1, . . . , 𝑛, let
𝜎𝑖 : 𝔐𝑔,𝑛,𝑎 →𝔐𝑔,𝑛+1,𝑎 be the section corresponding to the i-th marked points. Let 𝜔𝜋 be the relative
canonical line bundle on 𝔐𝑔,𝑛+1,𝑎. Then we define

𝜓𝑖 = 𝜎∗𝑖 𝑐1 (𝜔𝜋) ∈ CH1 (𝔐𝑔,𝑛,𝑎) for 𝑖 = 1, . . . , 𝑛 (10)

and

𝜅𝑚 = 𝜋∗
(
𝜓𝑚+1

𝑛+1
)
∈ CH𝑚(𝔐𝑔,𝑛,𝑎). (11)

Definition 3.3. Let Γ be an A-valued prestable graph in genus g with n markings with total value 𝑎 ∈ A.
For 𝔐Γ =

∏
𝑣 ∈𝑉 (Γ)𝔐𝑔 (𝑣) ,𝑛(𝑣) ,𝑎 (𝑣) , a decoration 𝛼 on Γ is an element of CH∗(𝔐Γ) given by a product

of 𝜅 and 𝜓-classes on the factors 𝔐𝑔 (𝑣) ,𝑛(𝑣) ,𝑎 (𝑣) of 𝔐Γ. Thus it has the form

𝛼 =
∏
𝑣 ∈𝑉

���
∏

𝑖∈𝐻 (𝑣)

𝜓𝑎𝑖

𝑣,𝑖

𝑚𝑣∏
𝑎=1

𝜅
𝑏𝑣,𝑎
𝑣,𝑎

	
� ∈ CH∗(𝔐Γ), (12)

where 𝑎𝑖 , 𝑏𝑣,𝑎 ≥ 0 and 𝑚𝑣 ≥ 0 are some integers. We define the decorated stratum class [Γ, 𝛼] as the
pushforward

[Γ, 𝛼] = (𝜉Γ)∗𝛼 ∈ CH∗(𝔐𝑔,𝑛,𝑎).

One of the main goals of this section is to show that the set of tautological classes R∗(𝔐𝑔,𝑛,𝑎) ⊆

CH∗(𝔐𝑔,𝑛,𝑎) is the Q-linear span of all classes [Γ, 𝛼].

Remark 3.4. We define tautological classes on the spaces 𝔐𝑔,𝑛 and ℭ𝑔,𝑛 by seeing these stacks as open
subsets of 𝔐𝑔,𝑛,1 and 𝔐𝑔,𝑛+1,1 for A = {0, 1} as in Corollary 2.8. Then tautological classes on 𝔐𝑔,𝑛

and ℭ𝑔,𝑛 are given by the restrictions of tautological classes on 𝔐𝑔,𝑛,1 and 𝔐𝑔,𝑛+1,1.
From the point of view of decorated strata classes, note that for 𝔐𝑔,𝑛, only A-valued prestable graphs

where all values are 1 can contribute (and these are in natural bijections with prestable graphs without
valuation). On the other hand, for ℭ𝑔,𝑛, we can have vertices v with value 0 contributing nontrivial
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classes. This happens exactly for the graphs shown in Corollary 2.8, corresponding to the universal
sections of ℭ𝑔,𝑛 →𝔐𝑔,𝑛 and the loci of nodes inside ℭ𝑔,𝑛 over boundary strata of 𝔐𝑔,𝑛.

3.2. Intersections and functoriality of tautological classes

In this section, we describe how the classes [Γ, 𝛼] behave under taking intersections as well as pullbacks
and pushforwards under natural gluing, forgetful and stabilization maps.

Pushforwards by gluing maps
Pushing forward by gluing maps is by far the easiest operation: given an A-valued graph Γ0 and classes
[Γ𝑣 , 𝛼𝑣 ] ∈ R∗(𝔐𝑔 (𝑣) ,𝑛(𝑣) ,𝑎 (𝑣) ) for 𝑣 ∈ 𝑉 (Γ0), the pushforward of the class∏

𝑣 ∈𝑉 (Γ)

[Γ𝑣 , 𝛼𝑣 ] ∈ CH∗(𝔐Γ)

is given by [Γ, 𝛼], where Γ is obtained by gluing the Γ𝑖 into the vertices of the outer graph Γ0 and 𝛼 is
obtained by combining the decorations 𝛼𝑣 using that 𝑉 (Γ) =

∐
𝑣 ∈𝑉 (Γ0) 𝑉 (Γ𝑣 ).

Pullbacks by gluing maps and intersection products
The next natural question is how a class [𝐵, 𝛽] pulls back along a gluing morphism 𝜉𝐴 for an A-valued
graph A. This operation allows a purely combinatorial description, generalizing the description in M𝑔,𝑛

from [GP03] (and already discussed for graphs A with exactly one edge in [Cos06, Section 4]). As
combinatorial preparation, we recall the notion of morphisms of A-valued stable graphs.

Definition 3.5. An A-structure on anA-valued prestable graph Γ (write Γ→ 𝐴) is a choice of subgraphs
Γ𝑣 of Γ such that Γ can be constructed by replacing each vertex v of A by the corresponding A-valued
graph Γ𝑣 . More precisely, the data of Γ→ 𝐴 is given by maps

𝑉 (Γ) → 𝑉 (𝐴) and 𝐻 (𝐴) → 𝐻 (Γ).

They must satisfy that 𝑉 (Γ) → 𝑉 (𝐴) is surjective, such that the preimage of 𝑣 ∈ 𝑉 (𝐴) are the vertices
of a subgraph Γ𝑣 of Γ with total A-value 𝑎𝑣 . The map 𝐻 (𝐴) → 𝐻 (Γ) of half-edges in the opposite
direction is required to be injective and allows one to see half-edges ℎ ∈ 𝐻 (𝑣) of A with legs of the
graph Γ𝑣 . These maps must respect the incidence relation of half-edges and vertices and the pairs of
half-edges forming edges. In particular, the injection of half-edges allows us to see the set of edges 𝐸 (𝐴)
of A as a subset of the set of edges 𝐸 (Γ) of Γ (see, e.g., [SvZ20, Definition 2.5] for more details in the
case of stable graphs).

Given an A-structure Γ→ 𝐴, there exists a gluing morphism

𝜉Γ→𝐴 : 𝔐Γ →𝔐𝐴.

For a decoration 𝛼 on 𝔐𝐴 as in equation (12), it is easy to describe 𝜉∗Γ→𝐴𝛼 using that

◦ 𝜉∗Γ→𝐴𝜓𝑣,𝑖 = 𝜓𝑤, 𝑗 if Γ→ 𝐴 maps half-edge i in A to half-edge j in Γ,
◦ 𝜉∗Γ→𝐴𝜅𝑣,ℓ =

∑
𝑤 ↦→𝑣 𝜅𝑤,ℓ , where the sum goes over vertices w of Γ mapping to the vertex v of A on

which 𝜅𝑣,ℓ lives.

Both these properties follow immediately from the definitions13 of 𝜅 and 𝜓-classes.
Let 𝑓𝐴 : Γ→ 𝐴, 𝑓𝐵 : Γ→ 𝐵 be A and B-structures on the prestable graph Γ. The pair 𝑓 = ( 𝑓𝐴, 𝑓𝐵)

is called a generic (𝐴, 𝐵)-structure 𝑓 = ( 𝑓𝐴, 𝑓𝐵) on Γ if every half-edge of Γ corresponds to a half-
edge of A or a half-edge of B. Given a second (𝐴, 𝐵)-structure 𝑓 ′ = ( 𝑓 ′𝐴 : Γ′ → 𝐴, 𝑓 ′𝐵 : Γ′ → 𝐵), an

13For the pullback of 𝜅-classes the proof also uses Proposition 3.8 below.
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isomorphism from f to 𝑓 ′ is an isomorphism Γ → Γ′ commuting with the maps to 𝐴, 𝐵. Let G𝐴,𝐵 be
the set of isomorphism classes of prestable graphs Γ together with a generic (𝐴, 𝐵)-structures on Γ.

Proposition 3.6. Let 𝐴, 𝐵 be A-valued prestable graphs for 𝔐𝑔,𝑛,𝑎; then the fibre product of the gluing
maps 𝜉𝐴 : 𝔐𝐴→𝔐𝑔,𝑛,𝑎 and 𝜉𝐵 : 𝔐𝐵 →𝔐𝑔,𝑛,𝑎 is given by a disjoint union∐

Γ∈G𝐴,𝐵
𝔐Γ 𝔐𝐵

𝔐𝐴 𝔐𝑔,𝑛,𝑎

𝜉Γ→𝐵

𝜉Γ→𝐴 𝜉𝐵

𝜉𝐴

(13)

of spaces 𝔐Γ for the set of isomorphism classes of generic (𝐴, 𝐵)-structures on prestable graphs Γ.
The top Chern class of the excess bundle

𝐸Γ = 𝜉∗Γ→𝐴N𝜉𝐴/N𝜉Γ→𝐵 (14)

is given by

𝑐top (𝐸Γ) =
∏

𝑒=(ℎ,ℎ′) ∈𝐸 (𝐴)∩𝐸 (𝐵) ⊂𝐸 (Γ)

−𝜓ℎ − 𝜓ℎ′ , (15)

where the product is over the edges of Γ coming both from edges of A and edges of B in the generic
(𝐴, 𝐵)-structure.

Proof. The proof from [GP03, Proposition 9] of the analogous result for the moduli spaces of stable
curves goes through verbatim (see also [SvZ20, Section 2] for a more detailed version of the argument).

�

Using the projection formula, we can then also intersect tautological classes.

Corollary 3.7. Given decorated stratum classes [𝐴, 𝛼], [𝐵, 𝛽] on 𝔐𝑔,𝑛,𝑎, their product is given by

[𝐴, 𝛼] · [𝐵, 𝛽] =
∑

Γ∈G𝐴,𝐵

(𝜉Γ)∗
(
𝜉∗Γ→𝐴𝛼 · 𝜉

∗
Γ→𝐵𝛽 · 𝑐top (𝐸Γ)

)
. (16)

Pushforwards and pullbacks by forgetful maps of points
In this section, we look at the behaviour of tautological classes under the forgetful map 𝜋 : 𝔐𝑔,𝑛+1,𝑎 →

𝔐𝑔,𝑛,𝑎, which is the universal curve over 𝔐𝑔,𝑛,𝑎. As such, it is both flat and proper, so we can compute
pullbacks as well as pushforwards. We will start with pullbacks.

Proposition 3.8. Given an A-valued prestable graph Γ for 𝔐𝑔,𝑛,𝑎, we have a commutative diagram∐
𝑣 ∈𝑉 (Γ)𝔐Γ̂𝑣

𝔐𝑔,𝑛+1,𝑎

𝔐Γ 𝔐𝑔,𝑛,𝑎

𝜉Γ̂𝑣

𝜋𝑣 𝜋

𝜉Γ

(17)

where the graph Γ̂𝑣 is obtained from Γ by adding the marking 𝑛 + 1 at vertex v and the map 𝜋𝑣 is the
identity on the factors of 𝔐Γ̂𝑣

for vertices 𝑤 ≠ 𝑣 and the forgetful map of marking 𝑛 + 1 at the vertex v.
The induced map ∐

𝑣 ∈𝑉 (Γ)

𝔐Γ̂𝑣
→𝔐Γ ×𝔐𝑔,𝑛,𝑎 𝔐𝑔,𝑛+1,𝑎 (18)

satisfies that the fundamental class on the left pushes forward to the fundamental class on the right.
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Proof. This follows from the definition of the gluing map 𝜉Γ: giving the map 𝜉Γ is the same as giving
the universal curve over 𝔐Γ, and this curve is obtained by gluing the universal curves 𝔐Γ̂𝑣

over the
various factors along the half-edges connected in Γ. The map in equation (18) is obtained by taking,
for each edge {ℎ1, ℎ2} ∈ 𝐸 (Γ) the loci inside 𝔐Γ̂𝑣𝑖

, where marking 𝑝𝑛+1 and marking 𝑞ℎ𝑖 are on a
contracted component and identifying them. Thus, if 𝑝𝑛+1 is not on a contracted component, the map
is an isomorphism in a neighborhood. Therefore the map in equation (18) is an isomorphism at the
general point of each component of the right-hand side, and the fundamental class pushes forward to
the fundamental class. �

Corollary 3.9. Given a tautological class [Γ, 𝛼], write 𝛼 =
∏

𝑣 ∈𝑉 (Γ) 𝛼𝑣 with 𝛼𝑣 the factors of 𝛼 located
at vertex v of Γ. Then we have

𝜋∗ [Γ, 𝛼] =
∑

𝑣 ∈𝑉 (Γ)

[Γ̂𝑣 , (𝜋
∗
𝑣𝛼𝑣 ) ·

∏
𝑤≠𝑣

𝛼𝑤 ] .

Proof. The class [Γ, 𝛼] is represented by 𝜉Γ∗(𝛼 ∩ [𝔐Γ]), where 𝛼 is an operational Chow class in
CH∗OP (𝔐Γ). We refer the reader to Appendix C for definitions and properties of these operational
classes. By Proposition 3.8, the diagram in equation (17) together with the map in equation (18) satisfies
assumptions in Lemma C.8. Therefore the equality follows from Lemma C.8. �

The above corollary shows that to finish our understanding of pullbacks of tautological classes, it
suffices to understand how 𝜅 and 𝜓-classes pull back.

Proposition 3.10. For the universal curve morphism 𝜋 : 𝔐𝑔,𝑛+1,𝑎 →𝔐𝑔,𝑛,𝑎, we have

𝜋∗𝜓𝑖 = 𝜓𝑖 − 𝐷𝑖,𝑛+1, (19)

𝜋∗𝜅𝑎 = 𝜅𝑎 − 𝜓
𝑎
𝑛+1, (20)

where 𝐷𝑖,𝑛+1 ⊂ 𝔐𝑔,𝑛+1,𝑎 is the image of the section 𝜎𝑖 of 𝜋 corresponding to the ith marked point. It
can be seen as the tautological class corresponding to the (undecorated) graph in equation (9) above.

Proof. The statement is a generalization of the classical pullback formulas for M𝑔,𝑛 (which are the
case A = {0}). A convenient way to prove it is to use that

𝜓𝑖 = −𝜋∗(𝐷
2
𝑖,𝑛+1). (21)

To show this, we note that 𝜎𝑖 can be identified with the gluing map

𝜎𝑖 : 𝔐𝑔,𝑛,𝑎 ×M0, {•,𝑖,𝑛+1},0 →𝔐𝑔,𝑛+1,𝑎,

where we glue the ith marking on 𝔐𝑔,𝑛,𝑎 with the marking • on M0, {•,𝑖,𝑛+1},0. Then indeed the locus
𝐷𝑖,𝑛+1 is the image of the above gluing map (similar to the usual case of stable maps), and equation
(21) follows from Corollary 3.7. On the other hand, it can also be seen directly from the fact that 𝜎𝑖 is a
closed embedding with normal bundle 𝜎∗𝑖 (𝜔

∨
𝜋).

Now we have a commutative diagram

𝔐𝑔,𝑛+2,𝑎 𝔐𝑔,𝑛+1,𝑎

𝔐𝑔,𝑛+1,𝑎 𝔐𝑔,𝑛,𝑎

𝜋𝑛+1

𝜋𝑛+2 𝜋

𝜋

(22)
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and the space in the upper left maps birationally to the fibre product of the two forgetful maps. Then

𝜋∗𝜓𝑖 = −𝜋
∗𝜋∗𝐷

2
𝑖,𝑛+1 = −(𝜋𝑛+1)∗(𝜋

∗
𝑛+2𝐷

2
𝑖,𝑛+1)

= −(𝜋𝑛+1)∗

������ (𝑔,𝑎) (0,0)

𝑛 + 2 𝑖

𝑛 + 1
+

(𝑔,𝑎) (0,0)

𝑖
𝑛 + 1
𝑛 + 2

	



�
2

= 𝜓𝑖 − 2𝐷𝑖,𝑛+1 + 𝐷𝑖,𝑛+1 = 𝜓𝑖 − 𝐷𝑖,𝑛+1.

Similarly, using the same diagram, the definition of 𝜅𝑎 and the pullback formula for 𝜓, one concludes
the pullback formula for 𝜅𝑎. �

We now turn to the question how to push forward tautological classes [Γ, 𝛼] ∈ R∗(𝔐𝑔,𝑛+1,𝑎) under
the map 𝜋.

Proposition 3.11. Let [Γ, 𝛼] ∈ R∗(𝔐𝑔,𝑛+1,𝑎) with 𝛼 =
∏

𝑣 ∈𝑉 (Γ) 𝛼𝑣 . Let 𝑣 ∈ 𝑉 (Γ) be the vertex incident
to 𝑛 + 1, and let Γ′ be the graph obtained from Γ by forgetting the marking 𝑛 + 1 and stabilizing if the
vertex v becomes unstable. There are two cases:

◦ If the vertex v remains stable, then

𝜋∗ [Γ, 𝛼] = (𝜉Γ′ )∗

(
(𝜋𝑣 )∗𝛼𝑣 ·

∏
𝑤≠𝑣

𝛼𝑤

)
,

where 𝜋𝑣 is the forgetful map of marking 𝑛 + 1 of vertex v.
◦ If the vertex v becomes unstable, then 𝑔(𝑣) = 0, 𝑛(𝑣) = 3 and 𝑎(𝑣) = 0. If 𝛼𝑣 ≠ 1, then [Γ, 𝛼] = 0.

Otherwise, we have

𝜋∗ [Γ, 𝛼] = [Γ
′,

∏
𝑤≠𝑣

𝛼𝑤 ] .

Proof. The result follows from the fact that the composition of the gluing map 𝜉Γ and the forgetful map 𝜋
factors through the gluing map 𝜉Γ′ downstairs. In the second part, we use that 𝔐0,3,0 = M0,3 = Spec 𝑘 ,
so any nontrivial decoration by 𝜅 and 𝜓-classes on this space vanishes. �

The proposition allows us to reduce to computing forgetful pushforwards of products of 𝜅 and 𝜓-
classes. As in the case of M𝑔,𝑛, these can be computed using the projection formula. Indeed, given a
product

𝛼 =
∏

𝑎

𝜅𝑒𝑎
𝑎 ·

𝑛∏
𝑖=1

𝜓ℓ𝑖
𝑖 · 𝜓

ℓ𝑛+1
𝑛+1 ∈ R∗(𝔐𝑔,𝑛+1,𝑎),

we can use Proposition 3.10 and the known intersection formulas on 𝔐𝑔,𝑛+1,𝑎 to write it as

𝛼 = 𝜋∗

(∏
𝑎

𝜅𝑒𝑎
𝑎 ·

𝑛∏
𝑖=1

𝜓ℓ𝑖
𝑖

)
· 𝜓ℓ𝑛+1

𝑛+1 + boundary terms.

Using the projection formula, we conclude

𝜋∗(𝛼) =

(∏
𝑎

𝜅𝑒𝑎
𝑎 ·

𝑛∏
𝑖=1

𝜓ℓ𝑖
𝑖

)
· 𝜅ℓ𝑛+1−1 + 𝜋∗(boundary terms),
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where 𝜅0 = 2𝑔−2+ 𝑛 and 𝜅−1 = 0. The boundary terms are handled by induction on the degree together
with Proposition 3.11.

Together with the previous results of this section, this shows that the Q-linear span of the decorated
strata classes [Γ, 𝛼] in CH∗(𝔐𝑔,𝑛,𝑎) is closed under intersections as well as pushforwards under gluing
and forgetful maps. Thus, by definition, it equals the tautological ring of 𝔐𝑔,𝑛,𝑎 so that we have finished
the proof of Theorem 1.4.

Pullbacks by forgetful maps of A-values
Proposition 3.12. For the map 𝐹A : 𝔐𝑔,𝑛,𝑎 →𝔐𝑔,𝑛 forgetting the A-values on all components of the
curve, without stabilizing, we have

𝐹∗A [Γ, 𝛼] =
∑

(𝑎𝑣 )𝑣∈𝑉 (Γ)∑
𝑣 𝑎𝑣=𝑎

[Γ(𝑎𝑣 )𝑣 , 𝛼],

where the sum is over tuples (𝑎𝑣 )𝑣 of elements of A summing to a, such that the A-valuation 𝑣 ↦→ 𝑎𝑣

on the vertices v of Γ gives a well-defined A-valued graph Γ(𝑎𝑣 )𝑣 .

Proof. The fibre product of 𝐹A and a gluing map 𝜉Γ is the disjoint union of the gluing maps 𝜉Γ(𝑎𝑣 )𝑣 . A
short computation shows that 𝐹∗A𝜓𝑖 = 𝜓𝑖 and 𝐹∗A𝜅𝑎 = 𝜅𝑎. �

Pullback by stabilization map
We saw before that the stabilization morphism st : 𝔐𝑔,𝑛 →M𝑔,𝑛 is flat, so we can ask how to pull back
tautological classes along this morphism. We start by computing the pullback of gluing maps under st.

Proposition 3.13. Given a stable graph Γ in genus g with n marked points (for 2𝑔 − 2 + 𝑛 > 0), we have
a commutative diagram

𝔐Γ MΓ

𝔐𝑔,𝑛 M𝑔,𝑛

∏
𝑣 st𝑣

𝜉Γ 𝜉Γ

st

(23)

where st𝑣 : 𝔐𝑔 (𝑣) ,𝑛(𝑣) →M𝑔 (𝑣) ,𝑛(𝑣) is the stabilization morphism at vertex v. Moreover, the induced
map

𝔐Γ →𝔐𝑔,𝑛 ×M𝑔,𝑛
MΓ (24)

is proper and birational. In particular

st∗
[
Γ,

∏
𝑣

𝛼𝑣

]
= (𝜉Γ)∗

(∏
𝑣

st∗𝑣𝛼𝑣

)
. (25)

Proof. The commutativity of the diagram in equation (23) follows from the definition of the stabilization.
The map in equation (24) is easily seen to be birational, and its properness follows from the diagram

𝔐Γ 𝔐𝑔,𝑛 ×M𝑔,𝑛
MΓ

𝔐𝑔,𝑛

𝜉Γ pr1

and the cancellation property of proper morphisms (in the diagram, the map 𝜉Γ and pr1 are proper).
Equation (25) again follows by an application of Lemma C.8. �
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The proposition above reduces the pullback of tautological classes under st to computing the pullback
of 𝜅 and 𝜓-classes.

Proposition 3.14. Let 𝑔, 𝑛 with 2𝑔 − 2 + 𝑛 > 0, and let A = {0, 1}. Then for 1 ≤ 𝑖 ≤ 𝑛 and the
stabilization map stA : 𝔐𝑔,𝑛,1 →M𝑔,𝑛, we have

st∗A𝜓𝑖 = 𝜓𝑖 −

(0,1) (𝑔,1)

𝑖
+

(0,1) (𝑔,0)

𝑖
. (26)

Proof. Consider the commutative diagram

𝔐𝑔,𝑛+1,1 𝔐𝑔,𝑛,1 ×M𝑔,𝑛
M𝑔,𝑛+1 M𝑔,𝑛+1

𝔐𝑔,𝑛,1 M𝑔,𝑛

𝑐

𝜋A

ŝtA

𝜋

stA

(27)

where the right square is Cartesian and the map c is the map contracting the unstable components of
the universal curve 𝔐𝑔,𝑛+1,1 → 𝔐𝑔,𝑛,1. By the cancellation property of proper morphisms, the map c
is proper and easily seen to be birational.

For computing the pullback of 𝜓𝑖 under stA, we use that 𝜓𝑖 = −𝜋∗(𝐷2
𝑖,𝑛+1) on M𝑔,𝑛, where

𝐷𝑖,𝑛+1 ⊂M𝑔,𝑛+1 is the image of the ith section. By Lemma C.8, we have

st∗A𝜓𝑖 = −st∗A𝜋∗(𝐷
2
𝑖,𝑛+1) = (𝜋A)∗

(
(𝑐 ◦ ŝtA)∗𝐷𝑖,𝑛+1

)2
.

The composition 𝑐 ◦ ŝtA is just the usual stabilization map, and the pullback of 𝐷𝑖,𝑛+1 under this map
is the sum of three boundary divisors of 𝔐𝑔,𝑛+1,1: their underlying graph is the same as for 𝐷𝑖,𝑛+1 and
the A-values correspond to the three different ways 0 + 1 = 1 + 0 = 1 + 1 to distribute the value 1 to
the two vertices. A short computation using the rules for intersection and pushforward presented earlier
gives the formula in equation (26). �

The formula for the pullback of 𝜅-classes is more involved, and we need to introduce a bit of notation
to state it. Fix 𝑔, 𝑛 with 2𝑔− 2+ 𝑛 > 0; then for 𝑘 ≥ 0, let 𝐺𝑘 , 𝐺𝑘 be the following (𝑛+ 1) and n-pointed
prestable graphs in genus g with k edges

𝐺𝑘 =

0

𝑣0

0 𝑔

ℎ0
· · ·𝑛 + 1 {1, . . . , 𝑛} ,

𝐺𝑘 =

0

𝑣0

0 𝑔

ℎ0
· · · {1, . . . , 𝑛} .

Here 𝑣0 is the leftmost vertex and, for 𝑘 ≥ 1, ℎ0 is the unique half-edge incident to this vertex. For
𝑘 = 0, the graphs 𝐺𝑘 , 𝐺𝑘 are the trivial graphs, respectively.

Also, in the proposition below, we consider the power series

Φ(𝑡) =
exp(𝑡) − 1

𝑡
= 1 +

𝑡

2
+
𝑡2

6
+ . . . .
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We use the notation [Φ(𝑡)]𝑡𝑎 ↦→𝜅𝑎 to indicate that in the power series Φ, the term 𝑡𝑎 is substituted with
the class 𝜅𝑎, getting the mixed-degree Chow class

[Φ(𝑡)]𝑡𝑎 ↦→𝜅𝑎 = 1 +
𝜅1
2
+
𝜅2
6
+ . . . .

Proposition 3.15. For 𝑔, 𝑛 with 2𝑔 − 2 + 𝑛 > 0, the stabilization morphism st : 𝔐𝑔,𝑛 →M𝑔,𝑛 satisfies
the following equality of mixed-degree Chow classes on 𝔐𝑔,𝑛:

st∗ [Φ(𝑡)]𝑡𝑎 ↦→𝜅𝑎

=[Φ(𝑡)]𝑡𝑎 ↦→𝜅𝑎 +
∑
𝑘≥1
(𝜉𝐺𝑘 )∗

((
[Φ(𝑡)]𝑡𝑎 ↦→𝜅𝑣0 ,𝑎

+ 𝜓−1
ℎ0

)
· Cont𝐸 (𝐺𝑘 )

)
. (28)

Here Cont𝐸 (𝐺𝑘 ) is the mixed-degree class

Cont𝐸 (𝐺𝑘 ) =
∏

(ℎ,ℎ′) ∈𝐸 (𝐺𝑘 )

−Φ(𝜓ℎ + 𝜓ℎ′ )

on 𝔐𝐺𝑘 . In the formula above, the term 𝜓−1
ℎ0

is understood to vanish unless it pairs with a term of
Cont𝐸 (𝐺𝑘 ) containing a positive power of 𝜓ℎ0 , and we have 𝜅𝑣0 ,0 = 2 · 0 − 2 + 1 = −1.

To obtain the pullback of an individual class 𝜅𝑎 under st, we take the degree a part of equation (28)
and obtain a formula of the form

st∗𝜅𝑎 = 𝜅𝑎 + boundary corrections.

As an example, for 𝑎 = 1, 2, we obtain

st∗𝜅1 = 𝜅1 + [𝐺1]

and

st∗𝜅2 = 𝜅2 − 3[𝐺1, 𝜅𝑣0 ,1] + 2[𝐺1, 𝜓ℎ0] + [𝐺1, 𝜓ℎ1] − 3[𝐺2]

where 𝑒 = (ℎ0, ℎ1) is the unique edge of the graph 𝐺1.

Proof of Proposition 3.15. Consider the following commutative diagram:

𝔐𝑔,𝑛+1,1 ℭ𝑔,𝑛 M𝑔,𝑛+1

𝔐𝑔,𝑛,1 𝔐𝑔,𝑛 M𝑔,𝑛.

⊃

𝜋′

ŝt

𝜋

⊃
st

(29)

Then as ℭ𝑔,𝑛 maps proper and birationally to the fibre product in the right diagram, we have

st∗𝜅𝑎 = st∗𝜋∗𝜓𝑎+1
𝑛+1 = 𝜋′∗ŝt

∗
𝜓𝑎+1

𝑛+1 = 𝜋′∗

(
𝜓𝑛+1 − [𝐺1]

)𝑎+1
. (30)

Here we use that computations in ℭ𝑔,𝑛 can be performed in 𝔐𝑔,𝑛+1,1 together with the pullback formula
from Proposition 3.14 (noting that the third term in in equation (26) vanishes since it lies in the
complement of the open substack ℭ𝑔,𝑛 ⊂ 𝔐𝑔,𝑛+1,1).
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From now on, it will be more convenient working with mixed-degree classes and exponentials. In
this language, equation (30) translates to

st∗ [Φ(𝑡)]𝑡𝑎 ↦→𝜅𝑎 = 𝜋′∗ exp(𝜓𝑛+1 − [𝐺1]) = 𝜋′∗

(
exp(𝜓𝑛+1) · exp(−[𝐺1])

)
. (31)

The occurrence of the power series Φ is due to the discrepancy between the degree a of 𝜅𝑎 on the
left of equation (30) and the degree 𝑎 + 1 of the term on the right. Using the rules for intersections of
tautological classes, one shows

exp(−[𝐺1]) =
∑
𝑘≥1
(𝜉𝐺𝑘
)∗

���
∏

(ℎ,ℎ′) ∈𝐸 (𝐺𝑘 )

−Φ(𝜓ℎ + 𝜓ℎ′ )
	
�. (32)

Now, in the pushforward in equation (31), the only terms supported on the trivial graph are those from

𝜋′∗ (exp(𝜓𝑛+1)) = [Φ(𝑡)]𝑡𝑎 ↦→𝜅𝑎 ,

explaining the first term of the answer. All other terms of the product of the exponentials are supported
on some 𝐺𝑘 for 𝑘 ≥ 1, where marking 𝑛+ 1 is on a rational component with just one other half-edge ℎ0.
Using the formulas for the pushforward by the forgetful map 𝜋′ from Proposition 3.11, the only nontrivial
pushforward we have to compute is the one by the universal curve 𝜋0,1 : ℭ0,1 → 𝔐0,1, corresponding
to forgetting 𝑛 + 1 on the 2-marked genus 0 component 𝑣0 of 𝐺𝑘 . Here, a short computation shows

(𝜋0,1)∗𝜓
𝑎
1 𝜓

𝑏
2 = 𝜓𝑎

1 𝜅𝑏−1 + 𝛿𝑎,0𝜓
𝑎−1
1 , (33)

where 𝛿𝑎,0 is the Kronecker delta, and we have the convention 𝜅−1 = 𝜓−1
1 = 0. Applying this formula

for the pushforward, the first term in equation (33) gives rise to the term of the result involving
[Φ(𝑡)]𝑡𝑎 ↦→𝜅𝑣0 ,𝑎

, where again Φ appears due to the shift of degree from b to 𝑏 − 1 in equation (33). The
second term of equation (33) gives rise to the term involving 𝜓−1

ℎ0
, where due to the Kronecker delta 𝛿𝑎,0

only the constant term of exp(𝜓𝑛+1) survives in the pushforward. �

Remark 3.16. The following is a nontrivial check and application of the computations from the last
sections: for 𝑔, 𝑛, 𝑚 with 2𝑔 − 2 + 𝑛 > 0, consider the diagram

M𝑔,𝑛+𝑚

𝔐𝑔,𝑛 M𝑔,𝑛

𝐹𝑚
𝜋

st

(34)

where 𝐹𝑚 is the map forgetting the last m markings (without stabilizing the curve), the map st is the
stabilization map and their composition 𝜋 is the ‘usual’ forgetful map between moduli spaces of stable
curves. The pullback of tautological classes under 𝜋 is known classically, and the pullback by the two
other maps has been computed in the previous sections. Since the pullbacks must be compatible, this
gives rise to tautological relations, which we can verify in examples.

For instance, for the class 𝜅1 ∈ CH1(M𝑔,𝑛), we have

𝜋∗𝜅1 = 𝜅1 −

𝑛+𝑚∑
𝑖=𝑛+1

𝜓𝑖 +
∑

𝐼 ⊂{𝑛+1,...,𝑛+𝑚}
|𝐼 | ≥2

𝐷0,𝐼 ,
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where 𝐷0,𝐼 ⊂M𝑔,𝑛+𝑚 is the boundary divisor of curves with a rational component carrying markings
I. On the other hand we have

st∗𝜅1 = 𝜅1 + [𝐺1] = 𝜅1 + 𝐷0,∅

𝜋∗st∗𝜅1 = 𝜅1 −

𝑛+𝑚∑
𝑖=𝑛+1

𝜓𝑖 +
∑

𝐼 ⊂{𝑛+1,...,𝑛+𝑚}
|𝐼 | ≥2

𝐷0,𝐼 .

So indeed we get the same answer.

4. Relation to previous works

In this section, we review several results in the literature relating to our study of the intersection theory
of the stacks 𝔐𝑔,𝑛.
Example 4.1. In [Gat03, Lemma 1], Gathmann used the pullback formula of 𝜓-classes along the
stabilization morphism st : 𝔐𝑔,1 →M𝑔,1 to prove certain properties of the Gromov–Witten potential.
It coincides with our calculation in Proposition 3.14.
Example 4.2. In [Pix18], Pixton introduces classes [Γ] ∈ R∗(M𝑔,𝑛) indexed by prestable graphs of
genus g with n legs. In his construction, chains of unstable vertices encode insertions of 𝜅 and 𝜓-classes
in such a way that the formula for products [Γ] · [Γ′] takes a particularly simple shape. While it is not
a priori obvious how to relate his classes to the corresponding boundary strata classes [Γ] ∈ R∗(𝔐𝑔,𝑛)

in the moduli stack of prestable curves, this is a question we plan to investigate in future work.
Example 4.3. In [Oes19], Oesinghaus computes the Chow ring (with integral coefficients) of a certain
open substack T of 𝔐0,3, defined by the conditions that the curve is semistable (i.e., every component
of the curve has at least two distinguished points) and that the markings 2, 3 are on a stable component
of the curve. As a consequence, the prestable graphs of geometric points of T are all of the form

12

3

where we denote by Γ𝑘 the graph of the shape above with k edges (for 𝑘 ≥ 0). The stack T has an atlas
given by

𝜋𝑛 : A𝑛 = [A𝑛/G𝑛
𝑚] → T for 𝑛 ≥ 1.

Since A𝑛 is a vector bundle over 𝐵G𝑛
𝑚, its Chow group14 is given by

CH∗(A𝑛) = Q[𝛼1, . . . , 𝛼𝑛],

where 𝛼ℓ is the class of the ℓth coordinate hyperplane

𝜄ℓ : [𝑉 (𝑥𝑖)/G
𝑛
𝑚] ↩→ A𝑛.

From a computation in [Oes19, Lemma 1], it follows that the first Chern class of the normal bundle of
𝜄ℓ is given by the restriction

𝑐1 (N 𝜄ℓ ) = 𝜄∗ℓ𝛼ℓ

14For the comparison with Oesinghaus’ results, we formulate everything in terms of Q-coefficients since this is the convention
of the present paper.
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of 𝛼ℓ to this hyperplane. Using the charts 𝜋𝑛, Oesinghaus shows that the Chow ring CH∗(T ) is given
by the ring QSym of quasi-symmetric functions on the index set Z>0. QSym can be seen as the subring
of Q[𝛼1, 𝛼2, . . .] with additive basis given by

𝑀𝐽 =
∑

𝑖1<...<𝑖𝑘

𝛼
𝑗1
𝑖1
· · · 𝛼

𝑗𝑘
𝑖𝑘

for 𝑘 ≥ 1, 𝐽 = ( 𝑗1, . . . , 𝑗𝑘 ) ∈ Z
𝑘
≥1. (35)

Under the isomorphism CH∗(T ) � QSym, the element 𝑀𝐽 is a basis element of degree
∑

ℓ 𝑗ℓ in the
Chow group of T. The pullback

𝜋∗𝑛 : CH∗(T) → CH∗(A𝑛) = Q[𝛼1, . . . , 𝛼𝑛]

is induced by the map sending 𝛼𝑚 to zero for 𝑚 > 𝑛. In particular, it is easy to see that it is injective in
Chow-degree at most n.

With these preparations in place, we can now identify the generators 𝑀𝐽 of CH∗(T) with tautological
classes. Indeed, we claim that 𝑀𝐽 corresponds to the class supported on the stratum 𝔐Γ𝑘 given by

(−𝜓 − 𝜓 ′) 𝑗1−1 (−𝜓 − 𝜓 ′) 𝑗ℓ−1 (−𝜓 − 𝜓 ′) 𝑗𝑘−1 12

3

(36)

To see this, we note that from the definition of the charts 𝜋𝑛 in [Oes19, Section 3.3] one can show that
we have a fibre diagram ⊔

1≤𝑖1< · · ·<𝑖𝑘 ≤𝑛 𝑉 (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) A𝑛

[
A𝑛/G𝑛

𝑚

]
𝔐Γ𝑘 𝔐0,3

𝜋𝑛

𝜉Γ𝑘

(37)

As a first example, this implies that [Γ𝑘 , 1] = (𝜉Γ𝑘 )∗ [𝔐Γ𝑘 ] corresponds to the class∑
1≤𝑖1< · · ·<𝑖𝑘 ≤𝑛

𝛼𝑖1 · · · 𝛼𝑖𝑘

on A𝑛, which indeed is equal to 𝜋∗𝑛 (𝑀(1,...,1) ). For the comparison of more complicated classes, we
observe that the decorations (−𝜓 − 𝜓 ′) 𝑗ℓ−1 are the ( 𝑗ℓ − 1)-st powers of the Chern class of the normal
bundle associated to the ℓth edge of Γ𝑘 . On the other hand, in the diagram in equation (37), the function
𝑥𝑖ℓ around the linear subspace 𝑉 (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) is the smoothing parameter for the ℓth node of the curve
and the first Chern class of the normal bundle to the locus 𝑉 (𝑥𝑖ℓ ), and where the ℓth node persists is
given by (the restriction of) 𝛼𝑖ℓ . Since 𝑉 (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) has class 𝛼𝑖1 · · · 𝛼𝑖𝑘 in A𝑛, we conclude that the
element equation (36) of CH∗(T) pulls back via 𝜋𝑛 to∑

1≤𝑖1< · · ·<𝑖𝑘 ≤𝑛

𝛼𝑖1 · · · 𝛼𝑖𝑘 · 𝛼
𝑗1−1
𝑖1
· · · 𝛼

𝑗𝑘−1
𝑖𝑘

= 𝑀𝐽 |A𝑛 .

This shows the desired correspondence because this holds for all n and 𝜋∗𝑛 is injective in degree at most n.
Using the correspondence, it is straightforward to see that the product formula for expressing 𝑀𝐽 ·𝑀𝐽 ′

in terms of basis elements 𝑀𝐽𝑖 discussed in [Oes19, Proposition 2] follows from the product formula
for decorated strata classes discussed in Section 3.2.
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In [Oes19], Oesinghaus also computes the Chow group of the semistable loci 𝔐𝑠𝑠
0,2 and 𝔐𝑠𝑠

0,3, and
there are correspondence results to the tautological generators of these spaces closely parallel to the
above discussion. We leave the details to the interested reader.

A. Chow groups of locally finite type algebraic stacks

The Chow group of a finite type algebraic stack over a field k is defined in [Kre99]. We extend this
notion to an algebraic stack that is not necessarily of finite type over k.
Definition A.1. Let 𝔐 be an algebraic stack, locally of finite type over a field k. Choose (U𝑖)𝑖∈𝐼 a
directed system15 of finite type open substacks of 𝔐 whose union is all of 𝔐. Then we define

CH∗(𝔐) = lim
←−−
𝑖∈𝐼

CH∗(U𝑖),

where for U𝑖 ⊆ U 𝑗 , the transition map CH∗(U 𝑗 ) → CH∗(U𝑖) is given by the restriction to U𝑖 . In other
words, we have

CH∗(𝔐) = {(𝛼𝑖)𝑖∈𝐼 : 𝛼𝑖 ∈ CH∗(U𝑖), 𝛼 𝑗 |U𝑖 = 𝛼𝑖 for U𝑖 ⊆ U 𝑗 }.

For the existence of a system (U𝑖)𝑖∈𝐼 as above, observe that since 𝔐 is locally of finite type, we can
simply take the system of all finite type substacks U ⊂ 𝔐. Moreover, given any two systems (U𝑖)𝑖∈𝐼 ,
(U′𝑖)𝑖∈𝐼 ′ , one uses Noetherian induction to show that they mutually dominate each other. By standard
arguments, the Chow group CH∗(𝔐) is independent of the choice of (U𝑖)𝑖∈𝐼 .

From the definition as a limit, one sees that the Chow groups CH∗(𝔐) inherit all the usual properties
(e.g., flat pullback, projective pushforward, Chern classes of vector bundles and Gysin pullbacks) of
the Chow groups from [Kre99]. Moreover, if 𝔐 is smooth and has affine stabilizer groups at geometric
points, the intersection products on the groups CH∗(U𝑖) give rise to an intersection product on CH∗(𝔐).
In this case, if 𝔐 is equidimensional, we often use the cohomological degree convention

CH∗(𝔐) = CHdim𝔐−∗(𝔐).

The Chow group of a locally finite type algebraic stack is defined as taking a projective limit. Since
taking projective limits is not an exact functor and does not commute with tensor products, some of the
properties of Chow groups of finite type algebraic stacks do not (obviously) extend. In the following
definition, we present two finiteness assumptions on locally finite type stacks, which guarantee that the
Chow groups we define continue to have some nice properties (like having an excision sequence).
Definition A.2. Let 𝔐 be an equidimensional algebraic stack, locally finite type over a field k.
a) We say 𝔐 is Lindelöf if every cover of 𝔐 by open substacks has a countable subcover.
b) We say that 𝔐 has a good filtration by finite type substacks16 if there exists a collection (U𝑚)𝑚∈N

of open substack of finite type on 𝔐 that is increasing (i.e., U𝑚 ⊂ Uℓ for 𝑚 < ℓ) and such that
dim(𝔐 \ U𝑚) < dim𝔐 − 𝑚.

Lemma A.3. A locally finite type algebraic stack 𝔐 over k is Lindelöf if and only if it has a countable
cover (U𝑖)𝑖∈N by finite type open substacks U𝑖 ⊆ 𝔐. In this case, the cover U𝑖 can be chosen to be
increasing. In particular, if 𝔐 has a good filtration by finite type substacks, it is automatically Lindelöf.
Proof. If 𝔐 is Lindelöf, its cover by the system of all finite type substacks has a countable subcover.
Conversely, assume that (U𝑖)𝑖∈N is a countable cover of 𝔐 by finite type open substacks. Given any
open cover (V 𝑗 ) 𝑗∈𝐽 of 𝔐, each single open U𝑖 is covered by finitely many elements V 𝑗𝑖,ℓ of the second
cover via Noetherian induction. Then the system (V 𝑗𝑖,ℓ )𝑖,ℓ is a countable subcover. �

15Recall that this means for all U𝑖 , U 𝑗 , there exists a Uℓ containing both of them.
16This definition is taken from [Oes19, Definition 5].

https://doi.org/10.1017/fms.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.21


26 Younghan Bae et al.

Example A.4.
a) The stacks 𝔐𝑔,𝑛 filtration by finite type substacks, given by the loci 𝔐≤𝑒

𝑔,𝑛 of curves having at most
e nodes.

b) The universal Picard stack 𝔓𝔦𝔠𝑔,𝑛 over 𝔐𝑔,𝑛 parameterizing tuples

(𝐶, 𝑝1, . . . , 𝑝𝑛,L)

of a prestable marked curve and a line bundle L on C is Lindelöf but does not have a good filtration
by finite type substacks.

Indeed, we do get a countable cover (U𝑚)𝑚∈N by finite type substacks, where U𝑚 is the set
of (𝐶, 𝑝1, . . . , 𝑝𝑛,L) such that C has at most m nodes and such that the absolute value of the
degree of L on any component of C is at most m. This cover is increasing but does not satisfy that
dim(𝔓𝔦𝔠𝑔,𝑛 \ U𝑚) goes to −∞.

The fact that no good filtration can exist follows from the observation that 𝔓𝔦𝔠𝑔,𝑛 has infinitely
many boundary divisors (corresponding to ways that the degree of L can split up on the components
of a curve with two components) and no finite type stack U1 can contain all generic points of these
divisors.

The paper [BHP+20] studied cycles and relations in the operational Chow ring CH∗op(𝔓𝔦𝔠𝑔,𝑛);
see Section C for details. While we do not pursue this direction of study in the current paper, the
Picard stack is one of our main motivations for introducing the property of being Lindelöf.

c) For completeness, let us mention that an example of an irreducible scheme that is not Lindelöf is the
line with uncountably many origins, obtained from the disjoint union of uncountably many copies
of the affine line by identifying them away from the origin.

When 𝔐 has a good filtration (U𝑚)𝑚∈N by finite type substacks, for fixed d, we have

CH𝑑 (𝔐) = CH𝑑 (U𝑚)

for 𝑚 > 𝑑. This implies that, as long as we are interested in a fixed codimension, all computations can
be carried out on a finite type stack, and thus essentially all results for the Chow groups of such stacks
carry over (e.g., the excision sequence, including the version extended on the left by one higher Chow
group from [Kre99, Proposition 4.2.1]).

For stacks that are Lindelöf, we get at least the first three terms of the excision sequence.

Proposition A.5. Let 𝔐 be an equidimensional algebraic stack, locally finite type over a field k that is
Lindelöf. Let 𝑗 : ℨ→𝔐 be a closed substack with complement 𝑖 : 𝔙 = 𝔐 \ℨ→𝔐. Then there exists
a complex

CH∗(ℨ)
𝑗∗
−→ CH∗(𝔐)

𝑖∗

−→ CH∗(𝔙) → 0 (38)

that is exact at CH∗(𝔙): that is, 𝑖∗ is surjective. If moreover the stack 𝔙 is a countable (finite or infinite)
disjoint union of quotient stacks, the sequence is also exact at CH∗(𝔐).

Note that while the condition on 𝔙 being a countable union of quotient stacks might sound far-
fetched, this is the situation we would encounter, for example, by taking 𝔐 to be the boundary of the
Picard stack 𝔓𝔦𝔠𝑔,𝑛 and taking ℨ ⊂ 𝔐 the closed substack where the curve has at least 2 nodes.

Proof of Proposition A.5. Let (U𝑚)𝑚∈N be an increasing cover of 𝔐 by finite type substacks. Denote
by 𝔐𝑚,ℨ𝑚,𝔙𝑚 the intersections of 𝔐,ℨ,𝔙 with U𝑚 and by 𝑗𝑚, 𝑖𝑚 the restrictions of 𝑗 , 𝑖. Then by the
usual excision sequence for finite-type stacks, we have that

0→ CH∗(ℨ𝑚)/ker(( 𝑗𝑚)∗)
( 𝑗𝑚)∗
−−−−→ CH∗(𝔐𝑚)

𝑖∗𝑚
−−→ CH∗(𝔙𝑚) → 0 (39)
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are exact sequences. From another application of the excision sequence, we see that the restriction maps

CH∗(ℨ𝑚) → CH∗(ℨ𝑚′ ) for 𝑚′ < 𝑚

are surjective. This implies that the system (CH∗(ℨ𝑚)/ker(( 𝑗𝑚)∗))𝑚 is Mittag-Leffler (see [Sta20, Tag
0596]). Then it follows from [Sta20, Tag 0598] that we obtain an exact sequence

0→ lim
←−−
𝑚

(CH∗(ℨ𝑚)/ker(( 𝑗𝑚)∗)) → CH∗(𝔐) → CH∗(𝔘) → 0.

This finishes the proof of exactness of equation (38) at CH∗(𝔘).
If 𝔙 is a countable disjoint union of quotient stacks, we can modify the exact sequence of equation

(39), extending it to the left to obtain

0→ CH∗(𝔙𝑚, 1)/ker(𝜕𝑚)
𝜕𝑚
−−→ CH∗(ℨ𝑚)

( 𝑗𝑚)∗
−−−−→ ker(𝑖∗𝑚) → 0. (40)

We claim that the directed system

(𝐾𝑚)𝑚 = (CH∗(𝔙𝑚, 1)/ker(𝜕𝑚))𝑚

is Mittag-Leffler: that is, for m fixed, the images of the restriction maps 𝐾𝑚′ → 𝐾𝑚 stabilize for 𝑚′ � 𝑚.
This follows from two easy observations:

◦ Since by construction 𝔙𝑚 = 𝔙∩ U𝑚 is of finite type, it is supported on a finite number of connected
components 𝔙1, . . . ,𝔙𝑒𝑚 of 𝔙.

◦ Since the stacks U𝑚 cover 𝔐, we know by Noetherian induction that for 𝑚′ � 𝑚 the stack 𝔙𝑚′

contains the union of 𝔙1, . . . ,𝔙𝑒𝑚 , so we have

𝐾𝑚′ =
𝑒𝑚⊕
𝑖=1

CH∗(𝔙𝑖 , 1) ⊕ CH∗

(
𝔙𝑚′ \

𝑒𝑚⋃
𝑖=1

𝔙𝑖 , 1

)
.

Under the map 𝐾𝑚′ → 𝐾𝑚, the second direct summand always maps to zero (since it is supported on a
different connected component). Thus indeed, for 𝑚′ � 𝑚, the image of 𝐾𝑚′ → 𝐾𝑚 stabilizes to the
image of the restriction morphism

𝑒𝑚⊕
𝑖=1

CH∗(𝔙𝑖 , 1) → CH∗(𝔙𝑚, 1) = 𝐾𝑚.

We conclude that the system (𝐾𝑚)𝑚 is Mittag-Leffler, so again using [Sta20, Tag 0598], we obtain an
exact sequence

0→ lim
←−−
𝑚

(𝐾𝑚) → CH∗(ℨ) → lim
←−−
𝑚

ker(𝑖∗𝑚) = ker(𝑖∗) → 0,

where we use that taking directed inverse limits is left-exact to identify the limit of ker(𝑖∗𝑚) as ker(𝑖∗).
Thus we conclude that CH∗(ℨ) surjects onto the kernel of 𝑖∗, obtaining exactness of equation (38) at
CH∗(𝔐). �

Remark A.6. In the context of algebraic spaces, a different definition of Chow groups for locally finite
type spaces is presented in [Sta20, Tag 0EDZ]. It works directly with formal linear combinations of
cycles where locally only finitely many of the coefficients are nonzero. We expect that by adapting
the definitions of [Kre99], one can give a similar definition in the case of algebraic stacks locally of
finite type. It seems likely that for stacks that are far away from being finite type (e.g., stacks not being
Lindelöf), these alternative Chow groups have better formal properties than the groups we construct,
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since, for example, in the setting of algebraic spaces, they satisfy an excision sequence without such
assumptions on the ambient space (see [Sta20, Tag 0EP9]). The advantage of Definition A.1 is that
it does not require us to reprove the standard constructions and properties of Chow groups since they
descend easily to the projective limit. We do expect that the alternative definition of Chow groups
modeled on [Sta20, Tag 0EDZ] coincides with our definition for algebraic stacks locally of finite type
over a field that have good filtration by finite type substacks.

B. Proper pushforward of cycles (jointly with J. Skowera)

It is known that algebraic stacks of finite type over a field that can be stratified by locally closed substacks
that are global quotient stacks admit an intersection theory with integral coefficients. The theory includes
a pushforward operation for projective morphisms [Kre99]. In the definition of the tautological ring,
we frequently use pushforwards along forgetful and morphisms. For the moduli stacks of prestable
curves, these morphisms are proper but not projective. A priori, this is a problem. Here we show that
the pushforward operation for integral coefficients may be extended to proper representable morphisms.
If the coefficients are rational, there is also a pushforward for morphisms of relative Deligne-Mumford
type.

B.1. Definitions and terminologies

Let a base field k be fixed. In this section, stacks are algebraic stacks of finite type over k. All morphisms
are morphisms over k. A morphism of stacks 𝑋 → 𝑌 is projective if it can be factored up to 2-
isomorphism through a closed immersion into the projective bundle P(E) → 𝑌 for a coherent sheaf E
of O𝑌 -modules.

We briefly recall the construction of the Chow groups of an algebraic stack Y of finite type over k. A
representative of a d-cycle is a pair ( 𝑓 , 𝛼) for a projective morphism 𝑓 : 𝑋 → 𝑌 from an algebraic stack
X and a naive cycle 𝛼 ∈ CH◦𝑑+rk 𝐸 (𝐸) on a vector bundle 𝐸 → 𝑋 of constant rank. The Chow groups of
Y are

CH𝑑 (𝑌 ) = lim
−−→

𝑋→𝑌 ∈𝔄𝑌

[
ĈH𝑑 (𝑋)/𝐵𝑑 (𝑋)

]
where

ĈH𝑑 (𝑋) = lim
−−→

𝐸 ∈𝔅𝑋

CH◦𝑑+rk 𝐸𝐸

CH◦𝑑 (𝐸) = 𝑍𝑑 (𝐸)/𝛿Rat𝑑 (𝐸)
𝑍𝑑 (𝐸) = 𝑑-dimensional cycles

Rat𝑑 (𝐸) =
⊕

𝑍

𝑘 (𝑍)∗, 𝑍 ⊂ 𝐸 integral closed , dim 𝑍 = 𝑑 + 1

𝑂𝑏(𝔄𝑌 ) = {𝑋 → 𝑌 | projective}
𝑀𝑜𝑟 (𝑋, 𝑋 ′) = {𝑋 → 𝑋 ′ | 𝑌 -isom. onto an open and closed substack of 𝑋 ′}

𝑂𝑏(𝔅𝑋 ) = {𝐸 → 𝑋 | vector bundle of constant rank}
𝑀𝑜𝑟 (𝐸, 𝐹) = {𝐸 → 𝐹 | surjective vector bundle morphism}.

The subgroup 𝐵𝑑 (𝑋) is defined to be

𝐵𝑑 (𝑋) =
∐

𝑝1 , 𝑝2:𝑊→𝑋
𝑔◦𝑝1�𝑔◦𝑝2

∐
𝐸,𝐹 ∈𝔅𝑋

𝑍𝐸,𝐹 ,
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𝑍𝐸,𝐹 =

{
𝑝2∗𝛽2 − 𝑝1∗𝛽1

    𝛽1 ∈ CH◦𝑑+rk 𝐸 (𝑝
∗
1𝐸), 𝛽2 ∈ CH◦𝑑+rk 𝐹 (𝑝

∗
2𝐹)

𝛽1 ∼ 𝛽2 in ĈH𝑑 (𝑊)

}
where the first union is over projective morphisms and introduces a dependence on the morphism
𝑔 : 𝑋 → 𝑌 through the constraint 𝑔 ◦ 𝑝1 � 𝑔 ◦ 𝑝2. This accomplishes in a single step what the original
definition [Kre99, Definition 2.1.4(iii)] does in two by assuming the vector bundles to be of constant
rank.

The above definition facilitates projective pushforwards: the cycle (𝑔, 𝛼) pushes forward under f to
( 𝑓 ◦ 𝑔, 𝛼). A projective morphism 𝑆 → 𝑈 to an open substack 𝑈 ⊂ 𝑌 can be realized as the pullback
of a projective morphism to Y [Kre99, Corollary 2.3.2]. It is unknown whether this property can be
extended to proper morphisms.

Definition B.1. Let 𝑓 : 𝑋 → 𝑌 be a morphism of algebraic stacks. We further define restricted Chow
groups formed from the pullbacks of vector bundles,

CH 𝑓
𝑑 (𝑋) = lim

−−→
𝑌 ′→𝑌 ∈𝔄𝑌

[
ĈH

𝑓 ′

𝑑 (𝑋
′)/𝐵

𝑓 ′

𝑑
(𝑋 ′)

]
,

where 𝑓 ′ : 𝑋 ′ → 𝑌 ′ is the pullback of f by the projective morphism 𝑌 ′ → 𝑌 . Recall that the restricted
Edidin–Graham–Totaro Chow groups [Kre99, Definition 2.1.4(iv)] are the groups defined by

ĈH
𝑓 ′

𝑑 (𝑋
′) = lim

−−→
𝐸 ∈𝔅𝑌 ′

CH◦𝑑+rk 𝐸 ( 𝑓
′∗𝐸). (41)

The quotient group

𝐵
𝑓 ′

𝑑 𝑋 ′ =
∐

𝑝1 , 𝑝2:𝑊→𝑌 ′
𝑔◦𝑝1�𝑔◦𝑝2

∐
𝐸,𝐹 ∈𝔅𝑌 ′

𝑍
𝑓
𝐸,𝐹 ,

where

𝑍
𝑓
𝐸,𝐹 =

{
𝑝′2∗𝛽2 − 𝑝′1∗𝛽1

     𝛽1 ∈ CH◦𝑑+rk 𝐸 (𝑝
′∗
1 𝑓
′∗𝐸), 𝛽2 ∈ CH◦𝑑+rk 𝐹 (𝑝

′∗
2 𝑓
′∗𝐹)

𝛽1 ∼ 𝛽2 in ĈH
𝑓 ′′

𝑑 (𝑊
′)

}
,

depends on the notation,

𝑊 ′ 𝑋 ′ 𝑋

𝑊 𝑌 ′ 𝑌 .

𝑝′1
𝑝′2

𝑓 ′′

𝑔′

𝑓 ′ 𝑓
𝑝1
𝑝2

𝑔

Recall that we only consider vector bundles of constant rank. Therefore a cycle in CH 𝑓
𝑑 (𝑋) is

represented by (𝑔, 𝛼′), 𝛼′ ∈ CH◦𝑑+rk 𝐸′ (𝐸
′) as in the pullback diagram

𝐸 ′ 𝑋 ′ 𝑋

𝐸 𝑌 ′ 𝑌 .

𝑓 ′′ 𝑓 ′ 𝑓 rep

𝜋 𝑔 proj

(42)

There is a natural morphism from the restricted Chow groups to the usual Chow groups

𝜄 𝑓 : CH 𝑓
𝑑 (𝑋) → CH𝑑 (𝑋).
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When f is proper and representable, the cycles in CH 𝑓
𝑑 (𝑋) can be pushed forward between naive

Chow groups by direct generalization of the definition of pushforward for Deligne-Mumford stacks
[Vis89, Definition 3.6]. If E is a vector bundle on 𝑌 ′, then 𝑓∗ pushes the class represented by a cycle
𝛼 ∈ CH◦∗ (𝐸 ′) forward to 𝑓 ′′∗ (𝛼) ∈ CH◦∗ (𝐸) in the notation of the diagram in equation (42).

Lemma B.2. If 𝑓 : 𝑋 → 𝑌 is a proper, representable morphism, then there is a proper pushforward
𝑓∗ : CH 𝑓

𝑑 (𝑋) → CH𝑑 (𝑌 ) for all d.

A morphism 𝑓 : 𝑋 → 𝑌 of stacks is of relative Deligne-Mumford type if any morphism 𝑇 → 𝑌 from
a scheme T to Y pulls back to a Deligne-Mumford stack 𝑋 ×𝑌 𝑇 . Note that representable morphisms
are of relative Deligne-Mumford type. The proper pushforward of naive Chow groups CH◦(−)Q along
a relative Deligne-Mumford type morphism is defined as follows: for 𝑓 : 𝑋 → 𝑌 a relative Deligne-
Mumford type, proper morphism between algebraic stacks, we construct a pushforward map

𝑓∗ : 𝑍∗(𝑋)Q → 𝑍∗(𝑌 )Q. (43)

To define equation (43), the degree of f defined in [Vis89] should be extended to this setting. We first
consider the case when X is an integral algebraic stack and Y is the image of f. For a smooth surjective
morphism 𝑢 : 𝑈 → 𝑌 from an integral scheme U, consider the Cartesian diagram

𝑈𝑋 𝑈

𝑋 𝑌.

𝑓 ′

𝑢

𝑓

Since f is a relative Deligne-Mumford type, the fibre product𝑈𝑋 is a Deligne-Mumford stack. Moreover,
𝑈𝑋 is reduced because 𝑈𝑋 → 𝑋 is smooth, and X is reduced. Let 𝑈𝑋 = ∪𝑖𝑈𝑖 be a finite number of
irreducible components of U, and let 𝑓 ′𝑖 : 𝑈𝑖 → 𝑈 be the restriction of 𝑓 ′ to each irreducible component.
We define

deg 𝑓 =

{∑
𝑖 deg 𝑓 ′𝑖 , when dim 𝑋 = dim𝑌

0, otherwise

where deg 𝑓 ′𝑖 is the degree of 𝑓 ′𝑖 between Deligne-Mumford stacks defined in [Vis89].17 This definition
is independent of the choice of a smooth atlas u. For an arbitraryQ-linear combination of integral cycles
𝑍 =

∑
𝑗 𝑎 𝑗 · 𝑍 𝑗 , the map in equation (43) is defined by

[𝑍] ↦→
∑

𝑗

𝑎 𝑗 deg( 𝑓 |𝑍 𝑗 ) · [ 𝑓 (𝑍 𝑗 )] .

It is straightforward to check that 𝑓∗ is functorial.
Similarly, we can define a proper pushforward

𝑓∗ : Rat∗(𝑋) → Rat∗(𝑌 )

on the space of rational equivalences. Let 𝑍 ⊆ 𝑋 be an integral closed substack of dimension 𝑑 + 1, and
let 𝜑 ∈ 𝑘 (𝑍)∗, giving an element (𝑍, 𝜑) ∈ Rat𝑑 (𝑌 ). Then for 𝑍 ′ = 𝑓 (𝑍) ⊆ 𝑌 , we set 𝑓∗(𝑍, 𝜑) = 0 if
dim 𝑍 ′ < dim 𝑍 and 𝑓∗(𝑍, 𝜑) = (𝑍 ′, 𝑁𝑘 (𝑍 )/𝑘 (𝑍 ′) (𝜑)) otherwise, where 𝑁𝑘 (𝑍 )/𝑘 (𝑍 ′) is the norm map of
the finite field extension 𝑘 (𝑍)/𝑘 (𝑍 ′).

17For a proper Deligne-Mumford type morphism, the degree is a rational number in general.
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Before continuing, we want to argue that this pushforward of rational equivalences is compatible
with taking smooth covers. Indeed, given a smooth surjective morphism 𝑈 → 𝑌 of relative dimension
e, consider the fibre diagram

𝑉 𝑈

𝑋 𝑌

𝑓

𝑓

.

Pullbacks to 𝑈,𝑉 induce maps Rat∗(𝑌 ) → Rat∗+𝑒 (𝑈) and Rat∗(𝑋) → Rat∗+𝑒 (𝑉), and we claim that
the natural diagram

Rat∗+𝑒 (𝑉) Rat∗+𝑒 (𝑈)

Rat∗(𝑋) Rat∗(𝑌 )

𝑓∗

𝑓∗

(44)

commutes. To see this, let 𝑍 ⊆ 𝑋 be an integral closed substack, write 𝑍 ′ = 𝑓 (𝑍) and denote by 𝑍𝑉 , 𝑍 ′𝑈
their preimages in 𝑉,𝑈. Then dim(𝑍 ′) < dim(𝑍) if and only if dim(𝑍 ′𝑈 ) < dim(𝑍𝑉 ). On the other
hand, when we have equality of dimensions and denote by 𝑍𝑉 ,𝑖 , 𝑍

′
𝑈,𝑖 the irreducible components of

𝑍𝑉 , 𝑍 ′𝑈 , it holds that 𝑘 (𝑍𝑉 ,𝑖) = 𝑘 (𝑍) ⊗𝑘 (𝑍 ′) 𝑘 (𝑍
′
𝑈,𝑖). Then we claim that for 𝜑 ∈ 𝑘 (𝑍), we have

𝑁𝑘 (𝑍 )/𝑘 (𝑍 ′) (𝜑) = 𝑁𝑘 (𝑍𝑉 ,𝑖)/𝑘 (𝑍
′
𝑈,𝑖)
(𝜑), (45)

which finishes the proof of the commutativity of the diagram in equation (44). But indeed, the claim in
equation (45) follows from the definition of the norm, since the determinant of an endomorphism of a
vector space over some field K is unchanged by tensoring with an extension field of K.
Lemma B.3. The pushforward 𝑓∗ commutes with the boundary map 𝛿 and thus passes through rational
equivalence.
Proof. We first argue that it is enough to prove the compatibility on a smooth atlas of Y. Let 𝑈 → 𝑌 be
a smooth atlas of relative dimension e; then we have a commutative diagram

0 𝑍∗(𝑌 ) 𝑍∗+𝑒 (𝑈) 𝑍∗+2𝑒 (𝑈 ×𝑌 𝑈),

0 Rat∗(𝑌 ) Rat∗+𝑒 (𝑈) Rat∗+2𝑒 (𝑈 ×𝑌 𝑈)

𝛿 𝛿 𝛿

where the rows are equalizer sequences. There is a similar diagram for the induced map𝑈×𝑌 𝑋 → 𝑋 , and
this diagram maps to the diagram above via the proper pushforward 𝑓∗. But then, due to the injectivity
of the map 𝑍∗(𝑌 ) → 𝑍∗+𝑒 (𝑈), the claimed equality of maps

𝑓∗ ◦ 𝛿 = 𝛿 ◦ 𝑓∗ : Rat∗(𝑋) → 𝑍∗(𝑌 )

can be checked on U. Thus we can reduce to checking the lemma for a target that is a scheme, in which
case the corresponding argument was given in the proof of [Vis89, Proposition 3.7].18 �

B.2. Properties of restricted Chow groups

Definition B.4 ([Tot99]). An approximating vector bundle of X in codimension d is a vector bundle
𝐸 → 𝑋 such that 𝐸 \ 𝑆 is an algebraic space for a closed substack S with codim𝐸𝑆 > 𝑑. It is called
approximating, because CH 𝑗 (𝑋)

∼
−→CH◦𝑗+rk 𝐸 (𝐸) for large enough j ([Kre99, Corollary 2.4.9]).

18We want to thank Andrew Kresch and Rachel Webb for many helpful discussions on technical details of this proof.
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Let 𝑋 = [𝑋/𝐺] be a global quotient stack. Then for any d, X has an approximating vector bundle in
codimension d, which is the pullback of Hom𝑘 (𝑘

𝑁+𝑛,𝑊) from 𝐵𝐺 for a faithful representation W of G
of dimension n and N large ([Tot99, Remark 1.4]).

Lemma B.5. Let 𝑓 : 𝑋 → 𝑌 be a representable morphism. Let (𝑔, 𝛼) be a cycle in CH𝑑 (𝑋) or
CH 𝑓

𝑑 (𝑋), and let F be an approximating vector bundle of X in codimension D, respectively the pullback
by f of an approximating vector bundle on Y in codimension D. When D is sufficiently large, we have
(𝑔, 𝛼) ∼ (1𝑋 , 𝛿) for some naive cycle 𝛿 ∈ CH◦𝑑+rk 𝐹 (𝐹). In fact, the natural map CH◦𝑑+rk 𝐹 (𝐹) →
CH𝑑 (𝑋), 𝛿 ↦→ (1𝑋 , 𝛿) is an isomorphism.

Proof. We consider the case of CH𝑑 (𝑋); the case of CH 𝑓
𝑑 (𝑋) is analogous. Let 𝛼 ∈ CH◦𝑑+rk 𝐸 (𝐸) be a

representative of a cycle in CH𝑑 (𝑋). Consider the following Cartesian diagram:

𝐸 ⊕ 𝐻 𝐻 𝐹

𝐸 𝑋 ′ 𝑋.

𝑝

𝑞 𝑠

v.b. 𝑔 proj

Let 𝑆 ⊂ 𝐹 be a closed substack with codim𝐹𝑆 > 𝐷 and such that 𝐹 \ 𝑆 is an algebraic space. Then the
intersection of S with any fibre of 𝐹 → 𝑋 has codimension at least 𝐷 − dim(𝑋) inside the fibre, and
thus, after taking the Cartesian diagram with 𝑔 : 𝑋 ′ → 𝑋 , we have

codim𝐻 𝑠−1(𝑆) > 𝐷 − dim(𝑋).

Moreover, since s is projective, we know that H is an algebraic space away from 𝑠−1 (𝑆). Let 𝑟 = rk 𝐹; then
for 𝐷 > dim(𝑋)+dim(𝑋 ′)−𝑑, we have that CH𝑑+𝑟 (𝐻) � CH◦𝑑+𝑟 (𝐻) and likewise CH𝑑+𝑟+rk 𝐸 (𝐸⊕𝐻) �
CH◦𝑑+𝑟+rk 𝐸 (𝐸 ⊕ 𝐻). Since the pullback 𝑞∗ on the usual Chow groups is an isomorphism by [Kre99,
Theorem 2.1.12 (vi)], we conclude that

𝑞∗ : CH◦𝑑+𝑟 (𝐻) → CH◦𝑑+𝑟+rk 𝐸 (𝐸 ⊕ 𝐻)

is an isomorphism.
Now, starting with the cycle 𝛼 on E, we have that 𝛽 = 𝑝∗𝛼 is a cycle on 𝐸 ⊕ 𝐻. Since the map 𝑞∗

above is an isomorphism, there exists a unique 𝛾 ∈ CH◦𝑑+𝑟 (𝐻) such that 𝛽 = 𝑞∗𝛾. Then on the one hand
we have (𝑔, 𝛼) ∼ (𝑔, 𝛽) ∼ (𝑔, 𝛾) by [Kre99, Remark 2.1.5]. On the other hand, defining 𝛿 = 𝑠∗𝛾 we have
(𝑔, 𝛾) ∼ (1𝑋 , 𝛿) as in [Kre99, Remark 2.1.16], concluding the proof. Going through this construction,
the association (𝑔, 𝛼) ↦→ (1𝑋 , 𝛿) gives a well-defined map, and it is immediate to check that it gives the
inverse to the natural homomorphism CH◦𝑑+rk 𝐹 (𝐹) → CH𝑑 (𝑋). �

Proposition B.6. If Y is a global quotient stack and 𝑓 : 𝑋 → 𝑌 is representable, then for all d, the
natural morphism 𝜄 𝑓 : CH 𝑓

𝑑 (𝑋) → CH𝑑 (𝑋) is an isomorphism.

Proof. In the notation of equation (42), let F be the pullback of an approximating vector bundle on Y.
Then 𝜄 𝑓 factors as

CH 𝑓
𝑑 (𝑋)

∼
→CH◦𝑑+rk 𝐹 (𝐹)

∼
→CH𝑑+rk 𝐹 (𝐹)

∼
←CH𝑑 (𝑋).

The association (𝑔, 𝛼) ↦→ (1𝑋 , 𝛿) of Lemma B.5 defines the first isomorphism. Its inverse is the
inclusion CH◦𝑑+rk 𝐹 (𝐹) → CH 𝑓

𝑑 (𝑋). The second map is an isomorphism because F is an algebraic space
in dimension 𝑑 + rk 𝐹 ([Kre99, Theorem 2.1.12(i)]). The third map is an isomorphism by homotopy
invariance [Kre99, Corollary 2.4.9]. �

Proposition B.7. If 𝑓 : 𝑋 → 𝑌 is of relative Deligne-Mumford type and Y is a global quotient stack,
then the natural morphism 𝜄 𝑓 : CH 𝑓

𝑑 (𝑋,Q) → CH𝑑 (𝑋,Q) is an isomorphism for all d.

https://doi.org/10.1017/fms.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.21


Forum of Mathematics, Sigma 33

Proof. By the fact that CH◦𝑑 (𝑋,Q) � CH𝑑 (𝑋,Q) for any Deligne-Mumford stack X [Kre99, Theorem
2.1.12(ii)], the morphism 𝜄 𝑓 factors in the same way as 𝜄 𝑓 in Proposition B.6 over Q. �

Let 𝑓 : 𝑋 → 𝑌 be a proper morphism of relative Deligne-Mumford type, and let ℎ : 𝑊 → 𝑌 be a
morphism of algebraic stacks. Consider the following Cartesian diagram:

𝑉 𝑋

𝑊 𝑌.

𝑓 𝑓

ℎ

For each d, the groups CH 𝑓
𝑑 (𝑋) satisfy the following properties:

(i) Let the above morphism ℎ : 𝑊 → 𝑌 be a flat morphism of relative dimension r. Then there is a
functorial pullback homomorphism CH 𝑓

𝑑 (𝑋) → CH 𝑓
𝑑+𝑟 (𝑉).

(ii) Let the above morphism ℎ : 𝑊 → 𝑌 be a projective morphism; then there is a functorial pushfor-
ward homomorphism CH 𝑓

𝑑 (𝑉) → CH 𝑓
𝑑 (𝑋).

(iii) The homomorphisms (i) and (ii) are compatible with the natural morphism from restricted Chow
groups to the usual Chow groups; that is, we have commutative diagrams

CH 𝑓
𝑑 (𝑋) CH 𝑓

𝑑+𝑟 (𝑉)

CH𝑑 (𝑋) CH𝑑+𝑟 (𝑉)

ℎ∗

ℎ∗

and
CH 𝑓

𝑑 (𝑉) CH 𝑓
𝑑 (𝑋)

CH𝑑 (𝑉) CH𝑑 (𝑋)

ℎ∗

ℎ∗

.

Proposition B.8 (Excision). Let 𝑖 : 𝑍 → 𝑌 be a closed substack, and 𝑗 : 𝑈 → 𝑌 its complement. Let
𝑍 ′ → 𝑋 be the preimage of Z under f, and let 𝑈 ′ be its complement. Let 𝑓 ′ = 𝑓 |𝑍 ′ and 𝑓̃ = 𝑓 |𝑈 ′:

𝑍 ′ 𝑋 𝑈 ′

𝑍 𝑌 𝑈.

𝑓 ′ 𝑓 𝑓

𝑖 𝑗

Then for each d, the flat pullback and projective pushforward fit together into an exact sequence

CH 𝑓 ′

𝑑 (𝑍
′) CH 𝑓

𝑑 (𝑋) CH 𝑓
𝑑 (𝑈

′) 0.𝑖∗ 𝑗∗

Proof. This is [Kre99, Proposition 2.3.6] where constructions are performed in the lower level (𝑌, 𝑍,𝑈)
and pulled back by f. �

Recall that the excision sequence for Chow groups may be extended using underlined Chow groups.
Imitating the definition of Chow groups, these were defined in [Kre99], beginning with a ‘naive’ variant
𝐴◦𝑑 (𝑋) in [Kre99, Definition 4.1.3], which satisfies functoriality under proper pushforwards and flat
pullbacks. As before, the theory is extended via limits over projective morphisms 𝑍 → 𝑋 and vector
bundles on Z in [Kre99, Corollary 4.1.10]. Here we define their restricted analogues.

Definition B.9. Let 𝑓 : 𝑋 → 𝑌 be a morphism of algebraic stacks. Let

𝐴
𝑓
𝑑 (𝑋) = lim

−−→
𝑌 ′ ∈𝔄𝑌

[
𝐴

𝑓 ′

𝑑 (𝑋
′)/𝐵

𝑓 ′

𝑑 (𝑋
′)

]
,
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where 𝐴
𝑓 ′

𝑑 is defined in analogy with equation (41). The quotient group

𝐵
𝑓 ′

𝑑 𝑋 ′ =
∐

𝑝1 , 𝑝2:𝑊→𝑌 ′
𝑔◦𝑝1�𝑔◦𝑝2

∐
𝐸,𝐹 ∈𝔅𝑌 ′

𝑍
𝑓
𝐸,𝐹 ,

where

𝑍
𝑓
𝐸,𝐹 =

{
𝑝′2∗𝛽2 − 𝑝′1∗𝛽1

     𝛽1 ∈ 𝐴◦𝑑+rk 𝐸 (𝑝
′∗
1 𝑓
′∗𝐸), 𝛽2 ∈ 𝐴◦𝑑+rk 𝐹 (𝑝

′∗
2 𝑓
′∗𝐹)

𝛽1 ∼ 𝛽2 in 𝐴̂
𝑓 ′′

𝑑 (𝑊
′)

}
,

depends on the diagram used in the Definition B.1. There is a natural homomorphism 𝜄 𝑓 : 𝐴 𝑓
𝑑 (𝑋) →

𝐴𝑑 (𝑋).

Proposition B.10. Let 𝑝 : 𝐸 → 𝑌 be a vector bundle on a Deligne-Mumford stack. Then the natural
flat pullback map 𝑝∗ : 𝐴◦𝑑 (𝑌,Q) → 𝐴◦𝑑+rk 𝐸 (𝐸,Q) is a surjection for all d.

Proof. First, we note that the existence of the map 𝑝∗ follows directly from the definition of 𝐴◦𝑑 , as was
observed in [Kre99, Remark 4.1.4]. To show that it is surjective, we first reduce to the case of global
quotient stacks of the form [𝑊/𝐺] for a scheme W and a finite group G. Assuming the proposition holds
for such quotient stacks, let 𝑈 ⊂ 𝑌 be such a stack, non-empty and open in Y. Such U always exists by
[LMB00, Corollaire 6.1.1]. By naturality of the long exact sequence in [Kre99, equation (4.2.1)], there
are morphisms

𝐴◦∗ (𝑍,Q) 𝐴◦∗ (𝑌,Q) 𝐴◦∗ (𝑈,Q) CH◦∗ (𝑍,Q)

𝐴◦∗ (𝐸 |𝑍 ,Q) 𝐴◦∗ (𝐸,Q) 𝐴◦∗ (𝐸 |𝑈 ,Q) CH◦∗ (𝐸 |𝑍 ,Q)

∼

𝛿

∼

where 𝑍 = 𝑌 \ 𝑈. The rightmost morphism is an isomorphism by homotopy invariance of Deligne-
Mumford stacks with rational coefficients. By noetherian induction on Y, the leftmost vertical morphism
is surjective. Hence 𝐴◦∗ (𝑌,Q) → 𝐴◦∗ (𝐸,Q) is a surjection by the four lemma.

For the base case, consider a quotient [𝑊/𝐺] with vector bundle E. Then E has the form [𝑉/𝐺] for
a vector bundle 𝑉 → 𝑊 . There is a diagram

CH∗(𝑊 ; 1)Q CH∗(𝑉 ; 1)Q

𝐴◦∗ (𝑊,Q) 𝐴◦∗ (𝑉,Q)

𝐴◦∗ ([𝑊/𝐺],Q) 𝐴◦∗ (𝐸,Q)

∼

𝑞∗

∼

∼

𝑠∗

𝑟∗

∼

𝑞∗

𝑝∗

𝑟∗

The upper square vertical isomorphisms follow from the natural isomorphism for schemes
𝐴◦∗ (−)

∼
−→CH∗(−; 1); see [Kre99, Proposition 4.1.7]. The lower squares exist because the quotient

morphisms are flat and proper, and they commute by compatibility of pullback and pushforward. The
morphism 𝑟∗ is surjective, because 𝑟∗ ◦ 𝑟∗ is multiplication by |𝐺 |. But 𝑟∗ = 𝑝∗ ◦ 𝑞∗ ◦ (𝑠

∗)−1, so 𝑝∗ must
also be surjective. By similar reasoning, 𝑝∗ is injective, hence an isomorphism. �

Using Proposition B.10, we can generalize Lemma B.5 to the setting of underlined Chow groups.
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Lemma B.11. Let 𝑓 : 𝑋 → 𝑌 be a representable (respectively, relative Deligne-Mumford type) mor-
phism and let F be the pullback by f of an approximating vector bundle on Y in codimension D. Let fur-
thermore (𝑔, 𝛼) be a cycle in 𝐴𝑑 (𝑋) or 𝐴 𝑓

𝑑 (𝑋) (respectively, a cycle in 𝐴𝑑 (𝑋,Q)). When D is sufficiently
large, we have (𝑔, 𝛼) ∼ (1𝑋 , 𝛿) for some naive cycle 𝛿 ∈ 𝐴◦𝑑+rk 𝐹 (𝐹) (respectively, 𝛿 ∈ 𝐴◦𝑑+rk 𝐹 (𝐹,Q)).
In fact, in this case the natural maps

𝑗 : 𝐴◦𝑑+rk 𝐹 (𝐹) → 𝐴𝑑 (𝑋), 𝑗 𝑓 : 𝐴◦𝑑+rk 𝐹 (𝐹) → 𝐴
𝑓
𝑑 (𝑋) (46)

are isomorphisms.

Proof. To show the lemma, one repeats the proof of Lemma B.5 verbatim, replacing (naive) Chow
groups with (naive) underlined Chow groups. In the last step of the argument, we need to show that the
pullback 𝑞∗ under a vector bundle map 𝑞 : 𝐸 ⊕ 𝐻 → 𝐻 induces an isomorphism of naive underlined
Chow groups in the correct degree, for f representable. To see this, we note that 𝐸 ⊕ 𝐻 and H are
algebraic spaces away from a high-codimension subset, and so by the excision sequence for naive
underlined Chow groups ([Kre99, equation (4.2.1)]) these groups are unchanged by restricting to these
open subspaces. Then the isomorphism follows by identifying naive and non-naive underlined Chow
groups of these algebraic spaces ([Kre99, Corollary 4.1.10]) and using that pullback by a vector bundle
induces an isomorphism for the latter ([Kre99, Proposition 4.3.1]).19

On the other hand, in case f is of relative Deligne-Mumford type, we need to show that 𝑞∗ gives a
surjection, which follows from Proposition B.10. �

Proposition B.12. If 𝑓 : 𝑋 → 𝑌 is representable and𝑌 = [𝑉/𝐺] is the global quotient stack of a quasi-
projective scheme V by a linear algebraic group G acting linearly on U, then the natural morphism
𝜄 𝑓 : 𝐴 𝑓

𝑑 (𝑋) → 𝐴𝑑 (𝑋) is an isomorphism for all d.

Proof. The assumptions on Y imply that it possesses approximating vector bundles that are algebraic
spaces away from subsets of arbitrarily large codimension by using [EG98, Lemma 9, Proposition 23].
Let F be the pullback by f of such a vector bundle; then the map 𝜄 𝑓 is simply the composition 𝜄 𝑓 = 𝑗 ◦ 𝑗−1

𝑓
for the isomorphisms 𝑗 , 𝑗 𝑓 from equation (46). �

For relative Deligne-Mumford type morphisms, we have a weaker property that is enough for our
purpose.

Proposition B.13. If 𝑓 : 𝑋 → 𝑌 is of relative Deligne-Mumford type and Y is a global quotient stack,
the natural morphism 𝜄 𝑓 : 𝐴 𝑓

𝑑 (𝑋,Q) → 𝐴𝑑 (𝑋,Q) is a surjection for all d.

Proof. Let (𝑔, 𝛼) ∈ 𝐴𝑑 (𝑋,Q). By Lemma B.11, (𝑔, 𝛼) ∼ (1𝑋 , 𝛿) for some naive cycle 𝛿 on the pullback
of a vector bundle on Y by f. Then (1𝑋 , 𝛿) maps to (𝑔, 𝛼) under 𝜄 𝑓 . �

Proposition B.14. With the notation of Proposition B.8, there is a connecting homomorphism 𝛿 𝑓 fitting
into a commutative diagram with the connecting homomorphism of [Kre99, equation (4.2.2)],

𝐴
𝑓
𝑑 (𝑈

′) CH 𝑓 ′

𝑑 (𝑍
′)

𝐴𝑑 (𝑈
′) CH𝑑 (𝑍

′).

𝛿 𝑓

𝛿

Proof. The construction of 𝛿 in [Kre99, equation (4.2.2)] goes through for restricted Chow groups. �

Propositions B.8 and B.14 fit together in an exact sequence.

19Note that while these results are stated with scheme assumptions, their proofs (in particular, Remark 4.1.2 of [Kre99]) can be
generalized to algebraic spaces. We thank Andrew Kresch for pointing this out.
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Proposition B.15. With the notation of Proposition B.8, let U be a global quotient stack. Then there is
an exact sequence

𝐴
𝑓
𝑑 (𝑈

′)
𝛿 𝑓
→ CH 𝑓 ′

𝑑 (𝑍
′) → CH 𝑓

𝑑 (𝑋) → CH 𝑓
𝑑 (𝑈

′) → 0.

Proof. The proof is completely analogous to the proof of [Kre99, Proposition 4.2.1]. �

B.3. Main theorems

Recall that a stack admits a stratification by global quotient stacks if and only if every geometric stabilizer
is affine [Kre99, Proposition 3.5.9].

Proposition B.16. Let Y be a stack stratified by global quotient stacks, and let 𝑓 : 𝑋 → 𝑌 be rep-
resentable. Then CH 𝑓

𝑑 (𝑋) → CH𝑑 (𝑋) is an isomorphism for all d. If, alternatively, f is of relative
Deligne-Mumford type, then CH 𝑓

𝑑 (𝑋,Q) → CH𝑑 (𝑋,Q) is an isomorphism for all d.

Proof. The proof proceeds by Noetherian induction. Using the same notation as Proposition B.8, let U
be a nonempty global quotient stack. There is a morphism from the exact sequence of Proposition B.15
to the exact sequence of [Kre99, Proposition 4.2.1]

𝐴
𝑓
𝑑 (𝑈

′) CH 𝑓 ′

𝑑 (𝑍
′) CH 𝑓

𝑑 (𝑋) CH 𝑓
𝑑 (𝑈

′) 0

𝐴𝑑 (𝑈
′) CH𝑑 (𝑍

′) CH𝑑 (𝑋) CH𝑑 (𝑈
′) 0.

𝑐′

𝛿 𝑓

𝑎 𝑏 𝑐

𝛿

The morphism a is an isomorphism by the induction hypothesis and morphism c by Proposition B.6.
Then 𝑐′ is an isomorphism by Proposition B.12 if f is representable, and is a surjection by Proposition
B.13 if f is of relative Deligne-Mumford type where all Chow groups are taken with Q-coefficients. By
the five lemma, b is also an isomorphism. �

Theorem B.17. Let Y be an algebraic stack stratified by global quotient stacks, and let 𝑓 : 𝑋 → 𝑌 be
a proper, representable morphism. Then there is a proper pushforward 𝑓∗ : CH𝑑 (𝑋) → CH𝑑 (𝑌 ) for
all d. If, instead, f is proper and of relative Deligne-Mumford type, then there is a proper pushforward
𝑓∗ : CH𝑑 (𝑋,Q) → CH𝑑 (𝑌,Q) for all d.

Proof. The pushforward arises from the factorization

CH 𝑓
𝑑 (𝑋) CH𝑑 (𝑌 )

CH𝑑 (𝑋)

∼ .

In case f is of relative Deligne-Mumford type, Chow groups should be taken with Q-coefficients. �

B.4. Properties of proper pushforward

The proper pushforward satisfies the following expected properties.

Proposition B.18. Let Y be an algebraic stack stratified by global quotient stacks and let 𝑓 : 𝑋 → 𝑌
be a proper, representable morphism as above. Then the proper pushforward is compatible with the
representable flat pullback and refined Gysin maps for representable regular local immersions. The same
compatibilities hold for Chow groups with Q-coefficients when f is of relative Deligne-Mumford type.
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Proof. We will prove the case when f is a representable morphism. The proof for the Deligne-Mumford
type is similar. We first prove the compatibility of proper pushforwards with flat pullbacks. Consider a
Cartesian diagram

𝑊 𝑋

𝑍 𝑌

𝑣

𝑔 𝑓

𝑢

(47)

where 𝑢 : 𝑍 → 𝑌 is a representable flat morphism of relative constant dimension ℓ. Since u is rep-
resentable, Z is stratified by global quotient stacks (see [Kre99, Proposition 3.5.5]). By property (iii)
mentioned above Proposition B.8, the natural isomorphism CH 𝑓

∗ → CH∗ is compatible with flat pull-
backs. A class (𝜌, 𝛼) in CH 𝑓

∗ (𝑋) is represented by the following Cartesian diagram

𝐸 ′ 𝑋 ′ 𝑋

𝐸 𝑌 ′ 𝑌

𝑓 ′′ 𝑓 ′ 𝑓

𝜋 𝜌

(48)

where 𝜌 is a projective morphism, E is a vector bundle on 𝑌 ′ and 𝛼 is a class in CH◦𝑑+rk𝐸′ (𝐸
′). By

pulling back equation (48) along equation (47), we get

CH◦𝑑+rk𝐸′ (𝐸
′) CH◦𝑑+rk𝐸′ (𝐸)

CH◦𝑑+rk𝐸′+ℓ (𝐹
′) CH◦𝑑+rk𝐸′+ℓ (𝐹)

𝑓 ′′∗

𝑣∗ 𝑢∗

𝑔′′∗

where F is the pullback of E to 𝑍 ×𝑌 𝑌 ′ and 𝐹 ′ is the pullback of 𝐸 ′ to𝑊 ×𝑋 𝑋 ′. This diagram commutes
because of the corresponding statement for naive Chow groups. Therefore the following diagram

CH 𝑓
𝑑 (𝑋) CH𝑑 (𝑌 )

CH𝑔
𝑑+ℓ (𝑊) CH𝑑+ℓ (𝑍)

𝑓∗

𝑣∗ 𝑢∗

𝑔∗

commutes.
The compatibility with regular local immersions states that for the Cartesian diagram in equation (47)

with u a regular local immersion, we have 𝑢! 𝑓∗ = 𝑔∗𝑣
!. Note that here the pushforward by g is well-defined

since the assumption that Y is stratified by global quotient stacks together with the representability of u
implies that Z likewise is stratified by global quotient stacks, using [Kre99, Proposition 3.5.5]. Then the
desired compatibility also follows from a formal argument as above (see [BHP+20, Proposition 18]). �

The following proposition is a generalization of [Vis89, Lemma 3.8] to algebraic stacks.

Proposition B.19. Let X and Y be algebraic stacks, finite type over a field k and stratified by global
quotient stacks. Let 𝑓 : 𝑋 → 𝑌 be a proper, surjective morphism of relative Deligne-Mumford type.
Then the pushforward

𝑓∗ : CH𝑑 (𝑋,Q) → CH𝑑 (𝑌,Q)

is surjective for all d.

Proof. By the assumption of being stratified by global quotient stacks, there exists a nonempty open
substack 𝑈 ⊂ 𝑌 isomorphic to a quotient 𝑈 � [𝑇/𝐺] of a quasi-projective scheme T by a smooth,
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connected linear algebraic group G acting linearly on T. Let 𝑍 = 𝑌 \𝑈 be the complement. Consider a
commutative diagram

CH𝑑 ( 𝑓
−1(𝑍),Q) CH𝑑 (𝑋,Q) CH𝑑 ( 𝑓

−1(𝑈),Q) 0

CH𝑑 (𝑍,Q) CH𝑑 (𝑌,Q) CH𝑑 (𝑈,Q) 0

(49)

with exact rows from the excision sequences and vertical arrows from the proper pushforwards by f as
defined above. Commutativity of the squares follows from the compatibility of proper pushforwards
with compositions of proper maps and pullbacks by flat maps. The pushforward 𝑓∗ is surjective over
Y if it is surjective over U and Z by the four lemma. Since the assumptions of the proposition hold
for Z and since Y is of finite type, we can reduce by Noetherian induction to showing the statement
over U.

By [Kre99, Proposition 3.5.10], the global quotient U admits a vector bundle 𝜋 : 𝐸 → 𝑈 such that
E is represented by a scheme off a locus of arbitrarily high codimension. Moreover, the pullback 𝜋∗

induces an isomorphism of Chow groups. Let𝑉 = 𝑓 −1(𝑈) and 𝐸 ′ = ( 𝑓 |𝑉 )∗𝐸 → 𝑉 be the pullback of E
under f. It suffices to show that the pushforward under 𝐸 ′ → 𝐸 is surjective because of the compatibility
of proper pushforward with flat pullback. This computation can be done away from the locus where E
is not a scheme because we work in a fixed dimension d. Thus we have reduced to the case where the
target is a scheme.

Now assume that 𝑓 : 𝑋 → 𝑌 is as in the proposition and Y is a scheme. Then the domain is a Deligne-
Mumford stack because f is assumed to be of relative Deligne-Mumford type. By [EHKV01, Theorem
2.7], such a stack admits a finite surjective morphism from a scheme. This means the machinery of
Chow groups as developed by Vistoli in [Vis89] is applicable. By [Vis89, Lemma 3.8], the pushforward
𝑓∗ is surjective on naive Chow groups (withQ-coefficients). Since Y is a scheme, the naive Chow groups
agree with those defined in [Kre99], so for every cycle on Y, there exists a naive cycle on X pushing
forward to it. Finally, for naive cycles on X, the definition of proper pushforward agrees with the naive
pushforward, so we are done. �

Remark B.20. Even in very good situations, the pushforward by proper, surjective maps of finite type
stacks is not surjective on naive Chow groups. Indeed, for 𝑛 ≥ 1, consider the map

𝑓 : [P𝑛/PGL𝑛+1] → 𝐵PGL𝑛+1,

where PGL𝑛+1 acts in the usual way on P𝑛. Then f is a representable, proper surjective morphism of
quotient stacks, and in fact we claim that it is also projective. To see the latter, note that the line bundle
OP𝑛 (𝑛 + 1) on P𝑛 is PGL𝑛+1-linearisable (see, e.g., [Bri18, Example 3.2.7]). Thus it descends to a line
bundle on [P𝑛/PGL𝑛+1], which is relatively ample for f. Therefore, the proper morphism f is indeed
projective. However, even though f has all these nice properties, the pushforward 𝑓∗ still vanishes on
naive Chow groups. Let 𝑉 → [P𝑛/PGL𝑛+1] be an integral closed substack. Let 𝑉P𝑛 be the fibre product

𝑉P𝑛 𝑉

P𝑛 [P𝑛/PGL𝑛+1] .

Then 𝑉P𝑛 is a closed subscheme of P𝑛 that is invariant under PGL𝑛+1 so 𝑉P𝑛 = P𝑛 and thus also
𝑉 = [P𝑛/PGL𝑛+1]. On the other hand, f is relative dimension n, hence 𝑓∗ [𝑉]=0. We are grateful to
Andrew Kresch, who pointed out this example to us.
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Remark B.21. Since the proper pushforward constructed in this section is compatible with flat pull-
backs, it follows immediately from the definition of Chow groups of locally finite type stacks in the
previous section that these inherit the proper pushforward construction. In particular, Theorem B.17
and Proposition B.18 remain true for stacks only locally of finite type.

On the other hand, Proposition B.19 remains true for algebraic stacks 𝑋,𝑌 that are Lindelöf and
stratified by global quotient stacks (as is the case for the stacks 𝔐𝑔,𝑛,𝑎 described in Section 2.2).

Indeed, let 𝑈𝑖 be a finite type cover of Y; then 𝑉𝑖 = 𝑓 −1(𝑈𝑖) is also finite type since f is proper. Let
𝐾𝑖 be the kernel of the proper pushforward 𝑓∗ : CH∗(𝑉𝑖) → CH∗(𝑈𝑖); then applying the proposition,
we have a commutative diagram

0 0 0

𝐾𝑖 𝑗 𝐾𝑖 𝐾 𝑗

CH∗(𝑉𝑖 \𝑉 𝑗 ) CH∗(𝑉𝑖) CH∗(𝑉 𝑗 ) 0

CH∗(𝑈𝑖 \𝑈 𝑗 ) CH∗(𝑈𝑖) CH∗(𝑈 𝑗 ) 0

0 0 0

(50)

The columns are exact by Proposition B.19, and the middle and the bottom rows are exact by [Kre99,
Proposition 2.3.6]. Applying a small variant of the Snake lemma,20 we see that the maps 𝐾𝑖 → 𝐾 𝑗 of
the directed system (𝐾𝑖)𝑖 are surjective, so this system is Mittag-Leffler (see [Sta20, Tag 0596]). Then
it follows from [Sta20, Tag 0598] that the induced map

CH∗(𝑋) = lim
←−−

𝑖

CH∗(𝑉𝑖) −→ lim
←−−

𝑖

CH∗(𝑈𝑖) = CH∗(𝑌 )

is indeed surjective.

C. Operational Chow groups for algebraic stacks

In this section, we give a definition of operational Chow classes for algebraic stacks, which we assume
throughout to be locally finite type over k.

Definition C.1. An operational class c in the pth operational Chow group CH𝑝
OP (𝑋) is a collection of

homomorphisms

𝑐(𝑔) : CH𝑚(𝐵) → CH𝑚−𝑝 (𝐵)

for all morphisms 𝑔 : 𝐵 → 𝑋 , where B is an algebraic stack of finite type over k, stratified by global
quotient stacks and for all integers m, compatible with representable proper pushforward, flat pullback,
and refined Gysin pullback along representable lci morphisms (see [Ful98, Section 17.1]). In particular,
the compatibility with refined Gysin pullback means the following compatibility condition: consider a
diagram

20Note that in comparison to the usual situation of the Snake lemma, we don’t have injectivity of the map 𝑖∗ : CH∗ (𝑈𝑖 \𝑈 𝑗 ) →
CH∗ (𝑈𝑖) . This can be repaired by replacing CH∗ (𝑈𝑖 \ 𝑈 𝑗 ) with CH∗ (𝑈𝑖 \ 𝑈 𝑗 )/ker(𝑖∗) and observing that the map from
CH∗ (𝑉𝑖 \ 𝑉𝑗 ) is still surjective.
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𝐵′ 𝑍 ′

𝐵 𝑍

𝑋

𝑓 ′ 𝑓

𝑔

where 𝑔 : 𝐵 → 𝑋 is a morphism from an algebraic stack B of finite type over k, stratified by global
quotient stacks, 𝑓 : 𝑍 ′ → 𝑍 is a representable lci morphism and 𝑍 ′ is stratified by global quotient stacks
and the square in the diagram is Cartesian. Then we require that for all 𝑐 ∈ CH∗OP (𝑋) and 𝛼 ∈ CH∗(𝐵),
we have

𝑓 !(𝑐(𝑔) ∩ 𝛼) = 𝑐(𝑔 𝑓 ′) ∩ 𝑓 !𝛼 in CH∗(𝐵′).

This notion of the operational Chow group of algebraic stacks shares the following formal properties
of the operational Chow group of schemes: it is a contravariant functor for all morphisms and has
the structure of an associative Q-algebra coming from composing two operations. Note that for the
functoriality under all morphisms, it is important that we did not restrict the morphisms 𝑔 : 𝐵 → 𝑋 in
the definition above, for example, to be representable. Otherwise, we would only get functoriality under
representable morphisms.

Example C.2. Let E be a vector bundle on X; then its rth Chern class

𝑐𝑟 (𝐸) ∈ CH𝑟
OP (𝑋)

is naturally an operational class on X. Given 𝑔 : 𝐵→ 𝑋 , it acts by

(𝑐𝑟 (𝐸)) (𝑔) : CH𝑚(𝐵) → CH𝑚−𝑝 (𝐵), 𝛼 ↦→ 𝑐𝑟 (𝑔
∗𝐸) ∩ 𝛼,

where the Chern class of 𝑔∗𝐸 and its action on the cycle 𝛼 on B are as defined in [Kre99].

We start with a small observation: the operational Chow group of X can be computed on a suitable
finite-type cover of X.

Lemma C.3. Let X be a locally finite type algebraic stack over k. Let (U𝑖)𝑖∈𝐼 be a directed system of
finite type open substacks of X whose union is all of X. Then the flat pullbacks 𝑗∗𝑖 by the inclusions
𝑗𝑖 : U𝑖 → 𝑋 induce a map

Φ : CH∗OP (𝑋) → lim
←−−
𝑖∈𝐼

CH∗OP (U𝑖),

and this map Φ is an isomorphism.

Proof. The proof, which uses the fact that each map 𝐵 → 𝑋 from a finite-type stack B must factor
through one of the U𝑖 by Noetherian induction, goes verbatim as the proof presented in [BHP+20,
Corollary 15]. �

Lemma C.4. Let 𝑓 : 𝑋 → 𝑌 be a representable, proper, flat morphism of relative dimension d. Then
there is a pushforward map

𝑓∗ : CH∗OP (𝑋) → CH∗−𝑑
OP (𝑌 )
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defined as follows. For a Cartesian diagram

𝐶 𝐵

𝑋 𝑌

𝑓 ′

𝑔′ 𝑔

𝑓

(51)

and 𝑐 ∈ CH∗OP (𝑋),

( 𝑓∗𝑐) (𝑔) · 𝛼 = 𝑓 ′∗ (𝑐(𝑔
′) · ( 𝑓 ′)∗𝛼), for 𝛼 ∈ CH∗(𝐵).

If 𝑓 : 𝑋 → 𝑌 is a representable, proper, lci morphism of relative dimension d, the pushforward map is
similarly defined by the formula

( 𝑓∗𝑐) (𝑔) · 𝛼 = 𝑓 ′∗ (𝑐(𝑔
′) · 𝑓 !𝛼), for 𝛼 ∈ CH∗(𝐵)

using the refined Gysin pullback. For a morphism f that is representable, flat and lci, the two definitions
coincide.

Proof. We check that the collection of maps 𝑓∗𝑐 defines an operational Chow class. We will only give
a proof for the case that f is lci; the proof for flat morphisms is similar. The fact that the two notions
coincide for f both flat and lci follows from the formula and the fact that the flat pullback and the lci
pullback of cycles coincide.

Let ℎ : 𝐵′ → 𝐵 be a representable proper morphism, and consider the following Cartesian diagram:

𝐶 ′ 𝐵′

𝐶 𝐵

𝑋 𝑌.

𝑓 ′′

ℎ′ ℎ

𝑓 ′

𝑔′ 𝑔

𝑓

(52)

For 𝑐 ∈ CH∗OP (𝑋) and 𝛼 ∈ CH∗(𝐵′), we have

ℎ∗( 𝑓∗𝑐) (𝑔 ◦ ℎ) (𝛼) = ℎ∗

(
𝑓 ′′∗ (𝑐(𝑔

′ ◦ ℎ′) · 𝑓 !𝛼)
)

= 𝑓 ′∗

(
ℎ′∗ (𝑐(𝑔

′ ◦ ℎ′) · 𝑓 !𝛼)
)

= 𝑓 ′∗

(
𝑐(𝑔′) · ℎ′∗ 𝑓

!𝛼
)

= 𝑓 ′∗

(
𝑐(𝑔′) · 𝑓 !ℎ∗𝛼

)
= ( 𝑓∗𝑐) (𝑔) (ℎ∗𝛼),

where the third equality uses the compatibility with proper pushforward for the operational class c and
the fourth equality uses compatibility of Gysin pullback and proper pushforward in Proposition B.18.

Similarly, let ℎ : 𝐵′ → 𝐵 be a flat morphism and 𝛽 ∈ CH∗(𝐵); then we have

( 𝑓∗𝑐) (𝑔 ◦ ℎ) (ℎ
∗𝛽) = 𝑓 ′′∗ (𝑐(𝑔

′ ◦ ℎ′) · 𝑓 !ℎ∗𝛽)

= 𝑓 ′′∗ (𝑐(𝑔
′ ◦ ℎ′) · (ℎ′)∗ 𝑓 !𝛽)

= 𝑓 ′′∗ ((ℎ
′)∗ (𝑐(𝑔′) · 𝑓 !𝛽))

= ℎ∗ 𝑓 ′∗ (𝑐(𝑔
′) · 𝑓 !𝛽) = ℎ∗( 𝑓∗𝑐) (𝑔) (𝛽),
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where the second equality uses compatibility of Gysin maps with flat pullbacks, the third equality uses
that c is compatible with flat pullbacks and the fourth equality uses that pushforwards are compatible
with flat pullbacks.

Let 𝑗 : 𝐵 → 𝑍 be a morphism and ℎ : 𝑍 ′ → 𝑍 be a (representable) regular local immersion where
𝑍 ′ is stratified by global quotient stacks. Consider the fibre diagram

𝐶 ′ 𝐵′ 𝑍 ′

𝐶 𝐵 𝑍

𝑋 𝑌

𝑓 ′′

ℎ′′

𝑗′

ℎ′ ℎ

𝑓 ′

𝑔′

𝑗

𝑔

𝑓

.

For 𝛼 ∈ CH∗(𝐵), we have

ℎ! ( 𝑓∗𝑐) (𝑔) (𝛼) = ℎ!
(
𝑓 ′∗ (𝑐(𝑔

′) · 𝑓 !𝛼)
)

= 𝑓 ′′∗

(
ℎ! (𝑐(𝑔′) · 𝑓 !𝛼)

)
= 𝑓 ′′∗

(
𝑐(𝑔′ ◦ ℎ′′) · ℎ! 𝑓 !(𝛼)

)
= 𝑓 ′′∗

(
𝑐(𝑔′ ◦ ℎ′′) · 𝑓 !ℎ! (𝛼)

)
= ( 𝑓∗𝑐) (𝑔 ◦ ℎ

′) (ℎ!𝛼),

where the fourth equality comes from the commutativity of refined Gysin pullback ([Kre99, Section
3.1]) and the second equality comes from Proposition B.18. �

Lemma C.5. Let X be an equidimensional algebraic stack of dimension n that is stratified by global
quotient stacks. Then there exists a well-defined map

∩ [𝑋] : CH∗OP (𝑋) → CH𝑛−∗(𝑋). (53)

Proof. Let (U𝑖)𝑖∈𝐼 be a directed system of finite type open substacks of X whose union is all of X. Given
𝑐 ∈ CH∗OP (𝑋), for each open embedding 𝜄𝑖 : U𝑖 → 𝑋 , we consider the cycle 𝑐(𝜄𝑖) · [U𝑖] ∈ CH∗(U𝑖). For
a given 𝑖 ∈ 𝐼, let ℓ ∈ 𝐼 be an element such that Uℓ contains U𝑖 . Let 𝜄𝑖ℓ : U𝑖 → Uℓ be the open embedding.
Since an operational Chow class commutes with the flat pullback, we have

𝜄∗𝑖ℓ (𝑐(𝜄ℓ ) · [Uℓ]) = 𝑐(𝜄𝑖) · (𝜄
∗
𝑖ℓ [Uℓ]) = 𝑐(𝜄𝑖) · [U𝑖] .

Therefore the collection of cycles 𝑐(𝜄𝑖) · [U𝑖] gives a well-defined element in lim
←−−𝑖∈𝐼

CH∗(U𝑖). �

The following theorem is an analogy of the Poincaré duality for smooth stacks.

Theorem C.6. Let X be a smooth equidimensional algebraic stack of dimension n stratified by global
quotient stacks. Then the canonical map in equation (53) with Q-coefficients is an isomorphism of
associative Q-algebras.

Proof. In the following proof, all Chow groups are with Q-coefficients. By Lemma C.3, we see that
both sides of equation (53) can be defined as the inverse limit over a cover of X by finite-type open
substacks U𝑖 and the map in equation (53) is the map induced by the compatible system of maps

∩ [U𝑖] : CH∗OP (U𝑖) → CH𝑛−∗(U𝑖), 𝑐 ↦→ 𝑐(id) · [U𝑖] .

Thus it suffices to prove the result for X of finite type over k.
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To start, there exists a map

Φ : CH𝑛−∗(𝑋) → CH∗OP (𝑋) (54)

constructed in [BHP+20, Section 2.3]. Given 𝛽 ∈ CH𝑛−∗(𝑋) and 𝜑 : 𝐵 → 𝑋 from an algebraic stack
finite type over k, stratified by global quotient stacks, consider the graph morphism 𝜑𝐵 : 𝐵 → 𝐵 × 𝑋 .
Then 𝜑𝐵 is representable and regular local immersion because X is smooth over k. The map Φ is
defined by

Φ(𝛽) (𝜑) : CH∗(𝐵) → CH∗(𝐵), 𝛼 ↦→ 𝜑!
𝐵 (𝛼 × 𝛽).

We show that Φ is the inverse of ∩ [𝑋] following the parallel argument in [Ful98, Chapter 17]. We note
that from the definition of Φ it is easy to see that it is multiplicative, using that the product in CH∗(𝑋)
is defined by 𝛽1 · 𝛽2 = Δ ! (𝛽1 × 𝛽2), where Δ : 𝑋 → 𝑋 × 𝑋 is the diagonal morphism.

Let 𝑝2 : 𝑋 × 𝑋 → 𝑋 be the projection to the second factor. For all 𝛽 ∈ CH∗(𝑋), we have

Δ !( [𝑋] × 𝛽) = Δ !𝑝∗2𝛽 = Δ !𝑝!
2𝛽 = 𝛽

by the functoriality of the Gysin pullback. It shows that Φ(𝛽) ∩ [𝑋] = 𝛽.
We prove the other direction. For 𝑐 ∈ CH∗OP (𝑋) and 𝛼 ∈ CH∗(𝐵) it is sufficient to prove that

𝜑!
𝐵 (𝛼 × (𝑐(id) · [𝑋])) = 𝑐(𝜑) · 𝛼.

Let 𝑝2 : 𝐵 × 𝑋 → 𝑋 be the projection to the second factor. We first prove

𝛼 × (𝑐(id) · [𝑋]) = 𝑐(𝑝2) · (𝛼 × [𝑋]) in CH∗(𝐵 × 𝑋). (55)

When B is equidimensional and 𝛼 is the class of the fundamental class [𝐵], the equality follows from
the compatibility of c with flat pullback by 𝑝2:

[𝐵] × (𝑐(id) · [𝑋]) = 𝑝∗2 (𝑐(id) · [𝑋]) = 𝑐(𝑝2) · [𝐵 × 𝑋] . (56)

A general class 𝛼 can be represented as ( 𝑓 , 𝛼0), where 𝑓 : 𝑌 → 𝐵 is a projective morphism and E is a
vector bundle on Y and 𝛼0 ∈ CH◦∗ (𝐸). Adding a trivial component to Y, we may assume f is surjective.
By Proposition B.19 and the homotopy invariance property, it is enough to check this equality for a class
in CH◦∗ (𝐸). A class in CH◦∗ (𝐸) can be written as a linear combination of classes [𝑉], where 𝑗 : 𝑉 → 𝐸
are integral closed substacks. Thus it suffices to show the statement for 𝛼0 = [𝑉]. For this, consider the
composition of maps

𝑉 × 𝑋
𝐽= 𝑗×id
−−−−−→ 𝐸 × 𝑋

𝑝2
−−→ 𝑋.

By the definition of the exterior product, we have

𝐽∗([𝑉] × (𝑐(id) · [𝑋])) = 𝑗∗ [𝑉] × (𝑐(id) · [𝑋])

in CH∗(𝐸 × 𝑋). Then we get

𝑗∗ [𝑉] × (𝑐(id) · [𝑋]) = (𝐽)∗([𝑉] × 𝑐(id) · [𝑋])
= (𝐽)∗(𝑐(𝑝2 ◦ 𝐽) · [𝑉 × 𝑋])

= 𝑐(𝑝2) · 𝐽∗ [𝑉 × 𝑋]

= 𝑐(𝑝2) · ( 𝑗∗ [𝑉] × [𝑋]),
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where the second equality follows from the proven case in equation (56) and the third equality follows
from the compatibility of proper pushforward. Using equation (55), we then have

𝜑!
𝐵 (𝛼 × (𝑐(id) · [𝑋])) = 𝜑!

𝐵 (𝑐(𝑝2) · (𝛼 × [𝑋]))

= 𝑐(𝜑) · 𝜑!
𝐵 (𝛼 × [𝑋]) = 𝑐(𝜑) · 𝛼,

which proves the theorem. �

The above theorem gives the commutativity of the operational Chow group under assumptions.

Corollary C.7. Let X be an algebraic stack stratified by global quotient stacks.

a) When X is smooth over k, CH∗OP (𝑋)Q is a commutative ring.
b) When char(𝑘) = 0, CH∗OP (𝑋)Q is a commutative ring.

Proof. We adapt the proof of [Ful98, Example 17.4.4]. Part a) is a direct consequence of Theorem C.6
since the intersection product of [Kre99] is commutative:

𝛼 · 𝛽 = Δ ! (𝛼 × 𝛽) = Δ !(𝛽 × 𝛼) = 𝛽 · 𝛼

for 𝛼, 𝛽 ∈ CH∗(𝑋) and where Δ : 𝑋 → 𝑋 × 𝑋 is the diagonal, which is invariant under switching the
factors of 𝑋 × 𝑋 .

The proof of b) relies on the functorial resolution of singularities. When char(𝑘) = 0, the resolution
of singularities can be done functorially with respect to smooth morphisms; see [EV98]. Therefore we
can find a smooth stack 𝑋̃ and a representable, surjective, birational morphism 𝑝 : 𝑋 → 𝑋 . Since
X is stratified by global quotient stacks and p is representable, 𝑋 is also stratified by global quotient
stacks. Therefore the commutativity of CH∗OP (𝑋)Q follows because the pullback 𝑝∗ on CH∗OP (−)Q is
injective. �

When k is a perfect field, the commutativity of rational operational Chow groups of schemes
follows from de Jong’s alteration ([dJ96]). However, the authors do not know whether a functorial
(with respect to smooth morphisms) construction of alteration is possible. Hence we cannot prove for
now the commutativity of operational Chow groups for algebraic stacks over a perfect field of positive
characteristic.

However, we note that nonetheless, all results and formulas concerning tautological classes discussed
in the main text are valid over arbitrary fields. Indeed, the operational classes only appear in intermediate
steps of some of the computations, and while these contain some examples of non-smooth spaces (like
the universal curve over the space 𝔐Γ), we are never in the position of having to exchange orders of
multiplication of operational classes on these singular spaces.

In the main part of the paper, we use Theorem C.6 above to realize tautological classes in CH∗(𝔐𝑔,𝑛,𝑎)

as operational Chow classes. The following lemma is then useful when doing calculus between tauto-
logical classes.

Lemma C.8. Consider the following commutative diagram

𝑈

𝑊 𝑍

𝑋 𝑌,

𝑟

𝑠

𝑝

𝑓 ′

𝜋′ 𝜋

𝑓
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where all stacks are locally of finite type over k, equidimensional and stratified by global quotient
stacks and the square in the middle is a Cartesian square. Suppose f is representable, proper and 𝜋 is
representable, proper, flat and p is representable, proper, birational. For 𝛼 ∈ CH∗OP (𝑋),

𝜋∗ 𝑓∗(𝛼 ∩ [𝑋]) = 𝑟∗(𝑠
∗𝛼 ∩ [𝑈]) inCH∗(𝑍,Q).

Proof. Using the compatibility of proper pushforward and flat pullback of the cycle𝛼∩[𝑋] in CH∗(𝑋,Q)
and the fact that, by definition, 𝛼 is compatible with flat pullback by 𝜋′, we have

𝜋∗ 𝑓∗(𝛼 ∩ [𝑋]) = 𝑓 ′∗ (𝜋
′)∗ (𝛼 ∩ [𝑋])

= 𝑓 ′∗ (((𝜋
′)∗𝛼) ∩ (𝜋′)∗ [𝑋])

= 𝑓 ′∗ (((𝜋
′)∗𝛼) ∩ [𝑊]).

Since 𝑝∗ [𝑈] = 𝑊 , we use the projection formula for the proper morphism p and obtain

𝑓 ′∗ (((𝜋
′)∗𝛼) ∩ [𝑊]) = 𝑓 ′∗ (((𝜋

′)∗𝛼) ∩ 𝑝∗ [𝑈])

= 𝑓 ′∗ (𝑝∗((𝑝
∗(𝜋′)∗𝛼) ∩ [𝑈]))

= 𝑟∗(𝑠
∗𝛼) ∩ [𝑈] .

This proves the identity. �

We conclude the section by comparing the approach to operational classes above to the one taken in
the paper [BHP+20]. This paper studies the intersection theory of the universal Picard stack 𝔓𝔦𝔠𝑔,𝑛 of
the universal curve ℭ𝑔,𝑛 → 𝔐𝑔,𝑛. However, instead of studying the operational Chow classes defined
above, this paper considers operational Chow groups CH∗op(𝔓𝔦𝔠𝑔,𝑛) where the test spaces 𝐵 → 𝑋 are
restricted to be finite type schemes. A class 𝑐 ∈ CH𝑝

op (𝑋) on a locally finite type algebraic stack X over
k is a collection of operations

𝑐(𝜑) : CH∗(𝐵) → CH∗−𝑝 (𝐵)

for every morphism 𝜑 : 𝐵 → 𝑋 , where B is a scheme of finite type over k, satisfying compatibility
conditions as in Definition C.1; see [BHP+20, Definition 10] for details. We have comparison maps
between CH∗OP,CH∗op and CH∗.21 As explained in [BHP+20, Section 2.3], for X smooth, equidimensional
and admitting a stratification by global quotient stacks, there exists a natural map

CH∗(𝑋) → CH∗op(𝑋). (57)

On the other hand, for any algebraic stack X, there exists a natural map

CH∗OP (𝑋) → CH∗op(𝑋) (58)

defined by the restriction. The following statement is a direct consequence of Theorem C.6.
Corollary C.9. When X is an equidimensional smooth Deligne-Mumford stack over k, the comparison
maps in equations (57) and (58) are isomorphisms.
Proof. Indeed, for the two maps

CH∗(𝑋) → CH∗OP (𝑋) → CH∗op (𝑋)

we have that the first is an isomorphism by Theorem C.6 and the composition is an isomorphism by
[BHP+20, Lemma 15], and thus the second map must also be an isomorphism. �

21For the remainder of the section, we assume that X is equidimensional and write CH∗ (𝑋 ) for the Chow ring indexed by
codimension, to emphasize that the comparison maps below are morphisms of graded rings.
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