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Prior tests of Hicks’ Induced Innovation Hypothesis (IIH) have been greatly
hampered because the lack of supply-side data implicitly requires the untenable
assumption that the marginal research cost is the same for different inputs. We
document that, with appropriate model specification and panel data, a two-way
fixed-effects estimator can account for much of the non-neutrality of the
innovation function. Using a test procedure that is robust to a time-variant and
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1960–2004. We use only readily available data for innovation demand and total
public research expenditures.
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Introduction

The induced innovation hypothesis (IIH) postulated by Hicks (1932) more than
80 years ago has captured much attention because of the theoretical appeal that
prices may be important not only for input choices but also for technology
development to save inputs that become relatively more expensive. Although
it took more than 30 years before the theoretical foundations began to be
established (e.g., Kennedy 1964; Samuelson 1965; Ahmad 1966; Kamien and
Schwartz 1968; Binswanger 1974a), Hayami and Ruttan’s (1970) tests of the
IIH quickly inaugurated a large body of literature devoted to determining the
empirical validity of the IIH in a wide range of industries and countries.
Part of that attention is due to its important policy implications. Whether the

IIH is valid in a sector or a country is important to policy makers because of the
dynamic effects of economic policies. Taxes and subsidies are sometimes used
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to correct market failures when prices fail to reflect externalities. If the IIH is
valid, price interventions are expected to have multistage effects through
research and development (R&D) resource allocation decisions.
Despite the large body of literature that reports empirical tests of the IIH, most

of it has implicitly maintained the untenable hypothesis of a neutral innovation
function (i.e., that the marginal cost of R&D to augment one percent of an input is
the same across inputs). Addressing non-neutral innovation is a supply-side
issue, and statistical tests of the IIH have generally focused exclusively on the
demand for innovation and ignored its supply dimensions.
The one exception for the agricultural sector is Cowan, Lee, and Shumway

(2015). They tested the IIH using both demand-side data (input prices) from
the innovation-implementing industry (U.S. production agriculture) and supply-
side data (R&D investments to save individual inputs) from one innovation-
creating industry (U.S. public agricultural R&D). They found greater evidence of
support for the IIH than other recent studies that tested the hypothesis for the
same industry using only demand-side data on input prices and allocations
(e.g., Olmstead and Rhode 1993, Machado 1995, Liu and Shumway 2006, Liu
and Shumway 2009). The challenge for following their approach in further tests
is that suitable supply-side data is seldom available. For example, Cowan, Lee,
and Shumway (2015) were only able to obtain data on R&D investments that
save land, labor, fertilizer, and pesticides. This is far from an exhaustive set of
inputs. In fact, they represent less than half of expenditures on agricultural
production inputs in the U.S. over the period 1948–2013 (USDA ERS 2017).
Efforts to obtain supply-side data in other industries have proved equally
challenging (e.g., Popp 2002, Crabb and Johnson 2010, Johnstone et al. 2012).
Thus, it is likely that most future tests of the IIH will have to rely on demand-

side data. The problem facing such approaches is how to account for differences
in the marginal cost of R&D for different inputs (i.e., a non-neutral innovation
function). This paper addresses this challenge, which has seemed
insurmountable. Using only readily available demand-side data and total
public R&D expenditures, we develop both a theoretical foundation and a test
procedure that accounts for much of the difference in the marginal cost of
R&D for different inputs through model specification, use of panel data, and
econometric technique. We approach the issue of differences in marginal costs
as an omitted variables problem and use a fixed-effects estimator that
accounts for an important part of the differences in marginal costs. Although
we do not accommodate all sources of non-neutrality, we find greater support
for the IIH than alternative models that treat the innovation function as neutral.
We postulate a representative firm for each state that makes or influences two

distinct, temporally separate decisions—an R&D resource allocation decision
that is based on expected input prices and a subsequent input choice
decision based on existing technology and realized input prices. We develop
a multistage decision model that parametrically distinguishes intertemporal
effects of the IIH from those of contemporaneous input substitution. We
explicitly introduce an innovation function that is permitted to be non-
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neutral. With panel data, we show how a time-and-state two-way fixed-effects
formulation can account for some of the non-neutral marginal R&D costs in
empirical estimation and thus provide a more valid test of the IIH using data
only from the demand side.1

Our procedure allowsmarginal cost of R&D on technology that aims to augment
use of an input to vary across observational units and over time. We impose only
one simplifying assumption—that the trend in the rate of change in relative
marginal R&D cost is the same across states. This time-and-state two-way
fixed-effects formulation permits the cost-minimizing input ratio effects of
different marginal R&D costs across observational units and over time to be
controlled for, which could have otherwise caused omitted variables bias. While
our simplifying assumption is still restrictive, this assumption is much more
flexible than the assumption of a neutral innovation function maintained in
most previous tests. We implement our empirical test using a state-level panel
for the period 1960–2004 of readily available data—input prices and quantities
and total output for the innovation-implementing agricultural production
industry and total R&D expenditures for the innovation-creating public
agricultural R&D industry. The R&D resource allocation decision is based on
rational expectations of future input prices. Alternative expectation-generating
mechanisms are considered as robustness checks.
Our analytical results show that when the elasticity of substitution between

two inputs is less than one plus the magnitude of the innovation concavity
parameter (which itself must be greater than one to ensure a concave
innovation possibility frontier), a rise in the relative expected price of an
input results in its relatively lower use. However, when the elasticity of
substitution is greater than this magnitude, the IIH implies relatively greater
use of the input that is expected to become more expensive. We document
that the relationship between expected input prices and factor augmentation
is a non-monotonic function of the elasticity of substitution when the
innovation function is accounted for. We also find that the relationship
between marginal R&D cost and factor-saving behavior is a non-monotonic
function of the elasticity of substitution.
The empirical results indicate that the state-level U.S. agricultural data during

the 1960–2004 period provide moderate overall support for the IIH and strong
support with some inputs. Empirical evidence of consistency with the IIH is
concentrated in input decisions involving pairs of three inputs—capital,
intermediate inputs, and labor. Less support is found for input pairs involving
land. The level of support for the IIH is similar to other recent tests for the

1 Deininger (1995) noted that significant time dummies in a two-way fixed-effects model could
be interpreted as resulting from the supply side of technology. His paper appears to be the only
previous study that used two-way fixed effects to conduct a formal test of the IIH in response
to changes in input prices. We document how such a model can at least partially control for a
non-neutral innovation function and articulate the extent to which it can do so.
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IIH in this industry when innovation supply is accounted for. It is considerably
greater than that found in several studies that treat innovation supply as
input neutral (e.g., Olmstead and Rhode 1993, Machado 1995, Liu and
Shumway 2006, Liu and Shumway 2009).

Theoretical Model

We consider a cost-minimizing firm that makes input choice decisions in period
t and makes or influences R&D funding decisions in k earlier periods that
augment technology available in period t. To reduce notational clutter, we
ignore time subscripts in the equations in this section and refer to the time
when input choice decisions are made as period 2 and the time when R&D
funding decisions are made as period 1. We start with input choice decisions
in period 2 without imposing any restrictions on factor augmentation. We
then turn to the R&D resource allocation decision in period 1 and its factor
augmentation implications. By combining both components, we show how
relative price changes impact both factor augmentation and subsequent input
choice decisions. In doing so, we document that the IIH’s implications of
augmenting and saving the more expensive input is limited to certain ranges
of the firm’s elasticities of substitution and the innovation function’s
curvature parameter.
To allow parsimonious representation of a multiple-input production

function with the possibility that elasticities of substitution are not the same
for all input pairs, we consider a two-level constant elasticity of substitution
(CES) functional form as frequently used in IIH tests (e.g., Kawagoe, Otsuka,
and Hayami 1986; Thirtle Schimmelpfennig, and Townsend 2002; Piesse,
Schimmelpfennig, and Thirtle 2011; Cowan, Lee, and Shumway 2015):2

Y ¼ F(X1, X2) ¼ δX
ρ�1
ρ

1 þ (1� δ)X
ρ�1
ρ

2

� � ρ
ρ�1

for ρ ∈ [0, ∞),(1)

where 0 < ρ < ∞ is the elasticity of substitution between input indices Xi > 0,
i∈ (1, 2), and 0< δ< 1 is the share parameter.3 The input indices are produced
by pairs of inputs that also follow a CES form:

Xi ¼ Fi(xi1, xi2; ai1, ai2) ¼ δi(ai1xi1)
ρi�1
ρi þ (1� δi)(ai2xi2)

ρi�1
ρi

h i ρi
ρi�1

,(2)

2 This functional form satisfies the Gorman polar conditions for consistent aggregation (Brown
2014) and consequently is appropriate for modeling an industry of cost-minimizing firms as if it
consisted of a single representative firm.
3 For greater generality, the input indices could include augmentation parameters. We suppress
them because the analytical results are unaffected.
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where xij > 0 is the quantity of input j∈ (1, 2) used in production of input index
i, and a> 0 is a factor-augmenting parameter that captures technical progress,
0 < ρi <∞ and 0< δi <1, i ∈ (1, 2). The restrictions on parameter magnitudes
and input levels ensure the production function is quasi-concave and that a
competitive cost-minimizing solution exists for positive input prices.
The firm selects optimal input quantities in period 2 that minimize the cost of

producing a given output level with known input prices and technology. Since
the two-level CES production function maintains homotheticity, minimizing
cost provides the same optimal input ratios as maximizing profit with the
same input prices and technology. Taking the first-order conditions and with
a little reorganization documented in Appendix I, we obtain the optimal input
demand relationship:

x
�
i1

x
�
i2

¼ δi
1� δi

� �ρi wi1

wi2

� ��ρi ai1t
ai2t

� �ρi�1

,(3)

where wij > 0 is the price of input xij, and the asterisk on x denotes the cost-
minimizing input level.
Equation (3) documents that the qualitative effect of technical change

(represented by the ratio of factor augmentation parameters) on the input
ratio is dependent on the magnitude of the elasticity of substitution, as shown
by Acemoglu (2002, 2007), Funk (2002), and Armanville and Funk (2003).
Specifically, for two inputs, say labor and capital, without relative price changes,
labor-augmenting technical change (that augments labor relatively more than
capital) results in a labor-saving production decision if and only if the elasticity
of substitution is less than one (i.e., the two factors are gross complements).
However, if the inputs are gross substitutes (i.e., elasticity of substitution is
greater than one), labor-augmenting technical change results in relatively greater
use of labor because it is more easily substituted for capital. When the elasticity
of substitution is exactly one (as in the Cobb-Douglas production function),
technical change does not lead to changes in the cost-minimizing input ratio.
We now turn to the cost-minimizing R&D resource allocation decision made

in period 1. In doing so, we show that the relationship between relative price
and relative factor augmentation is a non-monotonic function of the elasticity
of substitution. More importantly, we document that competitive cost-
minimizing behavior in both periods results in saving the more expensive
input in period 2 even if the inputs are gross substitutes as long as the
elasticity of substitution is not too large.
We consider a simple but very general homothetic innovation function that

produces an innovation possibilities frontier that is strictly concave to the
origin, where innovation is defined as augmentation of at least one factor.4

4 An increase in a factor augmentation parameter shifts the entire production function upward.
But the shift may be greater in the region where the factor associated with the augmented
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It can accommodate both non-neutral and time-varying marginal R&D costs. For
a given R&D budget �R, the innovation function is given by:5

Ri ¼ (ci1âi1)
θi þ (ci2âi2)

θi(4)

where Ri is expenditure on R&D in period 1 to augment the ith input index, the
total R&D budget is assumed to be exogenously given and fully expended, i.e.,
�R ≡ R1 þ R2, âij is the expected factor-augmentation in period 2; 6 cij > 0
denotes marginal R&D costs (or degree of R&D difficulty considering all R&D
costs and probability of success) in period 1 for technology that is expected
to augment xij by one percent in period 2; and θi > 1 is a parameter
representing the rate of trade-off between the two R&D outcomes âi1 and âi2;
that is, the larger the parameter, the more concave is the frontier to the
origin (hereafter referred to as the “concavity parameter”). The marginal R&D
cost parameters represent both explicit cost (e.g., wages for scientists) and
the likelihood of success in the R&D.
The innovation function is neutral if and only if ci1¼ ci2. Figure 1 displays (a) a

neutral innovation function and (b) a non-neutral innovation function. In panel
(b) of the figure, the condition ci1 > ci2 implies that R&D on the xi1 input-
augmenting technology is more difficult (more costly) than that on input xi2 to
achieve the same level of augmentation. Increases in R&D funds expand the
innovation function radially parallel to the origin.7 The condition θi > 1 is
sufficient to ensure that ∂âi2

∂âi1
< 0 and ∂2âi2

∂â2i1
< 0 as demonstrated in Appendix II.

This simple formulation of the innovation function results in an inverse
relationship between degree of R&D difficulty and R&D outcome. An increase
in the marginal cost of R&D shifts the innovation frontier toward the origin.
Because the innovation function is output-homothetic on the frontier, the
share of R&D outputs measured by the ratio of the factor-augmenting
parameters does not depend on the total R&D budget.
Considering the opportunity to invest (or influence investment) in R&D in

period 1, perhaps many years before production inputs are selected, and
assuming a two-level CES production function as in the input decision, the
firm’s R&D resource allocation problem in period 1 can be written as follows:

min
~xij ,âij

X
i

X
j

E(wij)~xij s:t: �Y ¼ δ~X
ρ�1
ρ

1 þ (1� δ)~X
ρ�1
ρ

2

� � ρ
ρ�1

and �R ≡ R1 þ R2,(5)

parameter is used intensively, a feature similar to “localized” progress introduced by Atkinson and
Stiglitz (1969) and revisited by Acemoglu (2015).
5 This function is a modified version of the one employed by Armanville and Funk (2003,
p. 1633) and is similar to the innovation cost function considered in Acemoglu (2007).
6 The factor augmentation parameter is assumed to be nonregressive (that is, âijt � âijτ for t > τ).
7 In estimation, we impose homotheticity only as a local property by including total public
research expenditure as a control variable.
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where ~Xi ¼ δi(ai1~xi1)
ρi�1
ρi þ (1� δi)(ai2~xi2)

ρi�1
ρi

h i ρi
ρi�1

, Ri ¼ (ci1âi1)
θi þ (ci2âi2)

θi , a

tilde on input level denotes that it is a period 2 value “conceived” in period 1
and thus distinguished from the value that is actually chosen by the firm in
period 2 when input prices are known, E is the expectations operator E[ · |Ω],
and Ω is the firm’s information set in period 1. Maintaining restrictions
sufficient to ensure the production function is quasi-concave and the
innovation possibilities frontier is strictly concave also ensures a competitive
cost-minimizing solution for positive input prices.
Combining and rearranging the first-order conditions, the optimal innovation

ratios in period 1 are obtained (see Appendix I for derivation of equations (6)
and (7)):

â
�
i1

â�
i2

¼ δi
1� δi

� �ρi
ψi

E(wi1)
E(wi2)

� �1� ρi
ψi

ci1
ci2

� ��θi
ψi ,(6)

where ψi¼ 1þ θi� ρi and the asterisk denotes an optimal value. It is apparent
that the effect of an expected price change on the ratio of expected R&D
outcomes depends on the sign and magnitude of 1�ρi

ψi
and thus on the

magnitudes of both ρi and θi (see the first row in Table 1). Since ρi ≥ 0 and
θi > 1, an increase in the (expected) relative price of xi1 brings about factor-
augmenting technical change such that the input that is expected to become
more expensive is augmented more than the other whenever the two inputs

Figure 1. Neutral and Non-Neutral Innovation Function
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are gross complements (0≤ ρi< 1). Conversely, when the inputs are gross
substitutes (ρi > 1) and the elasticity of substitution is less than 1 plus the
concavity parameter (ρi < θiþ 1), the same increase will induce technical
change that augments the input that is expected to become less expensive.
Note that the sign change at ρi¼ 1 has been shown in previous literature,
e.g., Acemoglu (2002). However, a new result arises in the two-period model
with endogenous technical change: if the inputs are gross substitutes (ρi > 1)
and the elasticity of substitution is greater than 1 plus the concavity
parameter (ρi > 1þ θi), then the same increase will again induce technical
change that augments the input that is expected to become more expensive.
Thus, it is clear that cost-minimizing firms respond not only to price
incentives but also to the technological opportunity costs in making R&D
resource allocation decisions. Further, the relationship between the elasticity
of substitution and the impact of an input price change on factor
augmentation is neither monotonic nor continuous.8

The firm optimizes in period 2 by solving the input choice decision problem in
which the R&D outcomes are taken as given. Substituting the expected
augmentation parameters, â�i1=â

�
i2, into the equilibrium condition (3) yields

the following input demand relationship:

x
�
i1

x
�
i2

¼ δi
1� δi

� �θiρi
ψi wi1

wi2

� ��ρi E(wi1)
E(wi2Þ

� ��(1�ρi)
2

ψi ci1
ci2

� �θi(1�ρi)
ψi

,(7)

which is homogeneous of degree zero in current prices, in expected prices, and
in both current and expected prices.9

Table 1. Effect of a Change in Expected Input Price Ratio, Δ E(wi1)
E(wi2)

� �
> 0

Impact on Inputs Gross Complements
0< ρ< 1

Inputs Gross Substitutes

1< ρ <θþ 1 ρ> θþ 1

Factor augmentation

Δ
â�i1
â�i2

� � Positive Negative Positive

Optimal input ratio

Δ
x�i1
x�i2

� �
Negative Negative Positive

8 Although not critical to the central theme of this paper, it is apparent that the qualitative
impact of a change in the marginal cost of research on factor augmentation is also dependent
on the magnitudes of ρi and θi.
9 Our assumptions of a quasi-concave production function and strictly concave innovation
possibilities frontier also ensure that the cost function is homogeneous of degree 1, concave,
and monotonically increasing in prices.
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With this combined condition, it is now easy to distinguish optimal input
choice effects of technical change caused by changes in the expected price
ratio from input substitution effects caused by changes in the current
price ratio. As with factor augmentation, the effect of an expected relative
price change on the optimal input ratio depends on the magnitudes of both ρi
and θi (see the second row in Table 1). An increase in the expected input
price ratio, E(wi1)

E(wi2)
, results in a production decision to save the input that

becomes more expensive only if inputs are gross complements (0≤ ρi <1) or
if they are gross substitutes (ρi > 1) and the elasticity of substitution is less
than 1 plus the concavity parameter (ρi < θiþ 1). If the inputs are gross
substitutes (ρi > 1) and the elasticity of substitution is greater than 1 plus
the concavity parameter (ρi > 1þ θi), the increase results in a production
decision to save the input that becomes less expensive.10 Our parametric
relationships are qualitatively the same as Acemoglu’s (2007, Example I)
static results when ρi <1 and when ρi > 1þ θi. When ρi > 1þ θi, both the
static and two-period results show that the demand curve for an input can be
positively sloped in the long run. However, our two-period result differs from
his static result when 1 < ρi < 1þ θi.

Empirical Model – Two-Way Fixed-Effects Approach

In this section we document how a time-and-state two-way fixed-effects
formulation can be used to control for unobserved non-neutral marginal R&D
costs. We focus on the agricultural production sector and treat states as
though they were price-taking cost-minimizing firms, a hypothesis previously
not rejected by empirical testing (Lim and Shumway 1992). Although little
formal R&D is conducted by agricultural firms, they may have influence
through the political process on the allocation of public R&D funds. Thus, we
treat public agricultural R&D in the state as an appendage to the
representative state-level agricultural firm.
Including the state subscript s, time subscript t on period 2 variables, and

time subscript t-k on period 1 variables and expectations, and taking
the natural logarithm of both sides of equation (7), we obtain the regression
model:

ln
xi1st
xi2st

� �
¼ βi0 þ βi1 ln

wi1st

wi2st

� �
þ βi2 ln

Et�k(wi1st)
Et�k(wi2st)

� �
þ βi3 ln

ci1s(t�k)

ci2s(t�k)

� �

þ Γ0iZist þ εist(8)

10 The qualitative impact of a change in the marginal cost of research on the input choice
decision is also dependent on the magnitudes of ρi and θi and is not monotonic.
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where Z is a vector of other control variables, ɛist is an error term, and the β’s
and the vector Γ are parameters. The parameters βi1, βi2, and βi3 correspond

to � ρi,
�(1�ρi)

2

ψi
, and θi(1�ρi)

ψi
, respectively, in equation (7).11 Empirical support

for the IIH (i.e., factor-saving behavior in response to the relative price
increase) is provided by a significantly negative βi2, the coefficient on the
expected input price ratio.12

If the marginal cost of R&D to augment one percent of an input is the same
across inputs, i.e., ci1t¼ ci2t (which represents a neutral innovation function),
the ratio of marginal R&D costs vanishes from the regression model and does
not affect the optimal input ratio. With few exceptions (e.g., Deininger 1995,
Fulginiti 1994), this has been implicitly assumed in the IIH testing literature
until recently. Formal tests have been intrinsically limited to the demand side
without accounting for possible non-neutrality in the supply of innovation.
However, there is no reason to expect that the innovation function is neutral,
so we must deal with the omitted variables problem due to the lack of
explicit data on marginal R&D costs. To surmount this problem, we use a
two-way fixed-effects approach in which we allow marginal costs to vary
across inputs, across states, and over time.
The time-difference equation can be written as follows:

Δt ln
xi1st
xi2st

� �
¼ βi1Δt ln

wi1st

w12st

� �
þ βi2Δt ln

Et�k(wi1st)
Et�k(wi2st)

� �
þ βi3Δt ln

ci1s(t�k)

ci2s(t�k)

� �

þ Γ0iΔtZist þ Δtεist

(9)

where Δt is the time-difference operator. If the ratio of marginal R&D costs
varies across states but is invariant over time, then

Δt ln
ci1s(t�k)

ci2s(t�k)

� �
¼ ln

ci1s(t�k)

ci2s(t�k)

ci2s(t�k�1)

ci1s(t�k�1)

� �
¼ ln

ci1s
ci2s

ci2s
ci1s

� �
¼ 0

and the equation would be estimable in its current form without data on
marginal R&D costs. However, since it is unknown whether the marginal
R&D cost is invariant over time, we estimate the two-way fixed-effects

11 These three parameters of equation (8) overidentify the two parameters in equation (7).
Since our subsequent estimation procedure does not require us to estimate βi3, this
overidentification disappears.
12 For factor-saving behavior to also be consistent with cost minimizing behavior, the elasticity
of substitution must be greater than zero and less than 1 + θi. Since θi> 1, factor-saving behavior is
clearly consistent with cost-minimizing behavior if 0 < ρi < 2, i.e., 0 > βi1 >� 2.
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formulation:

Δt,s ln
xi1st
x12st

� �
¼ βi1Δt,s ln

wi1st

wi2st

� �
þ βi2Δt,s ln

Et�k(wi1st)
Et�k(wi2st)

� �
þ βi3Δt,s ln

ci1s(t�k)

ci2s(t�k)

� �

þ Γ0iΔt,sZist þ Δt,sεist

(10)

where Δt,s is the time-and-state difference operator. Thus, defining the change
rate term,

gi1(t�k) ¼ ci1(t�k)

ci1(t�k�1)
,

Δt,s ln
ci1s(t�k)

ci2s(t�k)

� �
¼ ln

gi1s(t�k)

gi2s(t�k)
=
gi1�s(t�k)

gi2�s(t�k)

� �
,

where �s ≠ s is a reference state.
We maintain the sufficient condition that the change rate in relative marginal

costs of R&D over time is equal across states.13 More restrictive assumptions
such as state-invariant marginal R&D costs (as typically assumed) and/or
time-invariance are sufficient but not necessary for the equation to be
identified. Importantly, identification under our sufficient condition does not
require identical marginal R&D costs across inputs, and thus the equation is
estimable with a non-neutral innovation function even without data on
marginal R&D costs. Further, the assumption still allows for differences in
marginal R&D costs across states and for changes in the innovation function
over time so long as the pattern of change is common across states.
If the sufficient condition noted above holds, the two-way fixed-effects

formulation surmounts the omitted variable problem caused by the lack of
marginal R&D cost data and makes estimation of βi3 unnecessary. To the extent
that condition is not a reasonable approximation, this approach is unable to
fully capture the effects of a non-neutral innovation function. Equation (10) is
estimated using a two-way fixed-effects (state and time) panel data estimator.14

We include two additional control variables—total public agricultural R&D
expenditures for each state s and year t-k and total agricultural output for
each state s and year t. These variables are included to control for potential
size effects of total R&D expenditures in the innovation creation industry and

13 Without innovation supply data, there does not appear to be any way to account for all types
of non-neutrality in the innovation function. This approach allows us to deal with three of the four
types of non-neutrality—across inputs, states, and time.
14 Although our identification strategy requires a fixed-effects estimator, we also conducted the
Hausman test using the rational expectations price model. The hypothesis of random effects was
rejected at the 0.01 significance level in all input pairs, so the data also support fixed effects as the
preferred specification.
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of total agricultural output in the innovation-implementation industry. Inclusion
of these control variables renders homotheticity as a local property rather than a
global constraint for both the production function and the innovation function.

Data and Variable Specification

The data used for our test of the IIH include annual agricultural input quantities
and prices for four exhaustive input categories (land, non-land capital, labor,
and intermediate inputs) as well as total agricultural output and total public
expenditures for agricultural productivity R&D for each of the 48 contiguous
U.S. states for the years 1960–2004. The panel data set is balanced over the
entire period. Summary statistics are presented in Table 2.
The agricultural input prices and quantities and total output are from the U.S.

Department of Agriculture (USDA ERS 2015). For details regarding original data
sources and construction of this state-level aggregated series, see Ball, Hallahan,
and Nehring (2004) and Ball et al. (1999). Total annual public expenditures for
agricultural productivity R&D by state are from Huffman (2012). They were
compiled following the procedures outlined in Huffman (2015). Specifically,
R&D expenditure data collected by the USDA in its Current Research
Information System (CRIS) were used. CRIS includes funding from all sources
for agricultural R&D undertaken by both federal R&D organizations (U.S.
Department of Agriculture) and state public R&D entities (state agricultural
experiment stations and veterinary colleges at land grant universities).
Expenditures on post-harvest R&D and R&D on households, families, and
communities were excluded from Huffman’s series.

Expected Prices and Forecasting

In the theory of induced innovation, it is the expectation of future input prices
that drives invention to economize “the use of a factor which has become
relatively expensive” (Hicks 1932). Thus, for consistency with the IIH,
expected future prices should be a key determinant in R&D resource
allocation decisions. The challenge is to determine how future price
expectations are formulated. Much of the empirical IIH testing literature has
relied on adaptive expectation formulations (e.g., Popp 2002, Esposti and
Pierani 2006, Crabb and Johnson 2010, Cowan, Lee, and Shumway 2015).
Although they are easy to implement, adaptive expectations suffer from the
conceptual drawback that they are backward-looking. As such, they embed
systematic errors from previous forecasts (Hommes 1998). To overcome this
conceptual problem of adaptive expectations, we use rational expectations in
our base model to forecast future input prices.15 Rational expectations theory

15 We use adaptive expectations for a robustness check. Futures prices are also frequently used
as expected commodity prices in economic analysis. Although they are often regarded as rational
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Table 2. Summary Statistics

Variable Unit Mean Value Standard Deviation Minimum Value Maximum Value

Land price Index a 0.606616 0.575 0.006 3.631

Labor price Index a 0.439577 0.334 0.048 2.110

Capital price Index a 0.638603 0.370 0.129 1.237

Intermediate inputs price Index a 0.887015 0.382 0.224 2.022

Land quantity Thousands of $ 1996b 714,651 758,782 4,014 5,155,293

Labor quantity Thousands of $ 1996b 1,971,694 1,742,262 18,189 9,476,398

Capital quantity Thousands of $ 1996b 662,047 591,411 7,350 3,330,621

Intermediate inputs quantity Thousands of $ 1996b 1,761,636 1,636,347 12,918 9,454,613

Total agricultural output Thousands of $ 1996b 3,814,100 3,846,671 42,552 30,129,558

Total public R&D expenditure Thousands of $ 1996 19,888 17,150 487 111,612

a Measured relative to a 1996 Alabama price of 1.00.
b Measured as the value of the input, in thousands of dollars, used for agricultural production in the state divided by the price index.
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postulates that economic agents use all relevant information so their
forecasting is not prone to systematic errors.
To obtain forecasted future input prices that are consistent with rational

expectations theory, we identified the autoregressive (AR) structure for each
input price to ensure that the forecasted prices based on the AR model give
zero expected errors.16 This was done by first using the Im-Pesaran-Shin
(2003) test for nonstationarity of the panel price data and then fitting an
AR model consistent with the time series test results.17 The detailed
development of our rational expectation forecasts is reported in Appendix III.

R&D Lag

The importance of expected price rather than current price in testing the IIH
comes from the fact that there is a lag between R&D efforts by the
innovation-creating industry and use of new technology by the innovation-
implementing industry. In our theoretical model, we treat both activities as
embodied within the same firm. In reality, they may be entirely separate
entities. The theoretical model still applies as long as the innovation-
implementing firm can influence decisions by the innovation-creating unit.
We test the IIH allowing for the technology in any year to be affected most by

R&D conducted five years earlier. The appropriate length of the lag is uncertain
and is a subject of research itself. To examine the IIH in the U.S. energy sector,
Popp (2002) employed up to 20 years of lagged prices while Crabb and Johnson
(2010) used only 24 months of lagged prices. Cowan, Lee, and Shumway (2015)
used ten years of lagged prices to test the hypothesis in U.S. agriculture. A
strand of literature has focused on measuring the lag between research and
its impact on productivity in U.S. agriculture (e.g., Chavas and Cox 1992,
Huffman and Evenson 2006, Wang et al. 2013). Our choice of five years is
much shorter than their findings and is motivated by the short length of our
price data series. Public agricultural R&D expenditure data are available
much earlier but are only useful in the estimation if input price data are also
available. The latter are required to create expectations of future prices at the
time R&D investment occurs.
To keep more observations in the statistical estimation and to retain data

consistency with the rational expectations formulation (e.g., one input price
requires seven years of data in the autoregressive structure), we truncated

expectations (e.g., Gardner 1976, Bray 1981, Shonkwiler andMaddala 1985), they are not available
for many agricultural inputs, and their performance as price expectations has been mixed in a
variety of economic models (e.g., McIntosh and Shumway 1994, Gertchev 2007).
16 While rational expectation formulations can follow structures other than AR, AR is typically
used because of its simplicity and because it ensures that the expected error is zero.
17 Other than the nonstationarity tests conducted to identify the appropriate AR structure for
input prices, no other time series tests were conducted due to the relatively short length of the
data period and the low power of cointegration tests for short data spans (Pedroni 2004).
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the number of expected prices that are assumed to affect R&D resource
allocation decisions at five years. Such a short lag structure prevents our
analysis from picking up the effect of early research funding decisions. Thus,
we are only able to benefit from decisions late in the R&D funding process.
We considered two options: (a) a single price expectation given information

available at t-k, where k¼ 5, which implies that R&D conducted five years
earlier is primarily responsible for changes in current technology, and (b) a
weighted average of price expectations for k¼ 2, …, 5, which implies that
R&D conducted between two and five years earlier is primarily responsible
for changes in current technology. For the latter, we used weights for the
first five years of Wang et al.’s (2013) trapezoidal structure for private
research stock. Specifically, weights of 0.1, 0.2, 0.3, and 0.4 were assigned to
the expectations made between two and five years earlier, respectively.
Using a weighted average of price expectations amounts to solving the
cost minimization problem, equation (5), with the objective functionP5

h¼2

P
i

P
j ωhEt�h(wijst)~xijst where ω denotes the weights.

Test Results

The estimation model, equation (10), was estimated using a two-way fixed-
effects panel data estimator. The statistical estimates based on rational price
expectations are presented in Table 3. Estimation results are reported from
two model specifications in which only price expectation differed: the first
used a single price expectation lagged five years and the second used a
weighted average of expected prices lagged two to five years. Each column
contains estimates for one input pair.
For comprehensive coverage, we tested for consistency with the IIH by

considering all six exhaustive pairs of the four inputs (i.e., labor/land,
capital/land, intermediate inputs/land, capital/labor, intermediate inputs/
labor, and intermediate inputs/capital). Due to potential heteroskedasticity
and autocorrelation, robust standard errors were obtained using a clustered
sandwich estimator with the state as the unit of cluster (Wooldridge 2002).18

Time and state fixed effects were included in all equations, but these
estimates are not reported in the table to conserve space. The number of
observations included in each of the regressions varied across input ratios
due to the different number of lags involved in the calculation of rational
expectations of future price.

18 Based on the Wooldridge test, the hypothesis of no serial correlation was rejected in each
input pair at the 0.01 significance level. Clustering in the computation of robust standard errors
takes care of serial correlation. In the applied microeconomics literature, using robust standard
errors from an unbiased estimator is generally regarded as the preferred way to deal with
potential serial correlation. FGLS is an alternative, but its potential for increased efficiency
comes only with the imposition of additional assumptions that may result in misspecification
(Bertrand, Duflo, and Mullainathan 2004).
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Table 3. Statistical Estimates with Rational Expectation Price Forecastsa

Parameter Labor/Land Capital/Land
Intermediate
inputs/Land Capital/Labor

Intermediate
inputs/Labor

Intermediate
inputs/Capital

A single price expectation lagged five years

Current price ratio
(βi1)

�0.19787*** �0.04478 �0.08009** �0.29171*** �0.35002*** �0.54031***
(0.03419) (0.03628) (0.04247) (0.03431) (0.03573) (0.08229)

Expected future
price ratio (βi2)

�0.11118** �0.13664*** �0.09704* �0.15303* �0.16168 �0.20492***
(0.06607) (0.06682) (0.06507) (0.11034) (0.13213) (0.08504)

Total agricultural
output

0.36315*** 0.19109*** 0.82940*** �0.11165 0.50564*** 0.62433***
(0.10030) (0.05091) (0.08701) (0.09053) (0.11606) (0.06987)

Total public R&D
funds

0.01343 0.06810 �0.00440 0.09368** 0.01005 �0.08779***
(0.06747) (0.04315) (0.04068) (0.04078) (0.04598) (0.02859)

Constant �4.49910*** �2.76671*** �11.06790*** 0.67070 �7.07749*** �7.65521***
(1.44822) (0.77475) (1.32141) (1.29626) (1.72343) (1.02867)

R&D concavity
parameter (θi)

b
4.98499 5.72251 7.80056 2.56998 1.96304 0.57151

(3.65915) (3.49600) (5.76520) (2.44010) (2.19680) (0.73951)

R-square 0.43977 0.67243 0.66757 0.43559 0.75363 0.89067

Number of
Observations

1,584 1,584 1,584 1,776 1,824 1,776

A weighted average of price expectations lagged two–five years

Current price ratio
(βi1)

�0.19950*** �0.03171 �0.07112* �0.28332*** �0.33322*** �0.53087***
(0.03198) (0.03322) (0.04374) (0.03289) (0.03428) (0.07833)

Expected future
price ratio (βi2)

�0.01243 �0.05083 �0.03864 �0.08158** �0.11449** �0.18466***
(0.03947) (0.04029) (0.03809) (0.04748) (0.05232) (0.07443)

Total agricultural
output

0.35015*** 0.18702*** 0.82752*** �0.10617 0.51089*** 0.62681***
(0.10120) (0.05132) (0.08737) (0.08916) (0.11374) (0.07005)
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Total public R&D
funds

0.01332 0.06898 �0.00392 0.09772** 0.01473 �0.08867***
(0.06634) (0.04291) (0.04091) (0.04082) (0.04608) (0.02872)

Constant �4.22069*** �2.64218*** �11.07869*** 0.54001 �7.17650*** �7.69130***
(1.45744) (0.75843) (1.31140) (1.27949) (1.68790) (1.03056)

R&D concavity
parameter (θi)

b
50.75222 17.47722 21.40078 5.57935 3.21649 0.722698

(164.35842) (14.81224) (21.62498) (3.76596) (1.88834) (0.83070)

R-square 0.43655 0.66879 0.66621 0.43467 0.75404 0.89084

Number of
Observations

1,584 1,584 1,584 1,776 1,824 1,776

a Standard errors are in parentheses; p-value of estimated parameters: * p< 0.1, ** p< 0.05, *** p< 0.01. The t-tests conducted for the coefficients on current
and expected price ratios are one-tailed tests (with the null hypothesis that the coefficient is greater than or equal to zero). T-tests for coefficients on other
regressors are two-tailed tests (null hypothesis that the coefficient is equal to zero). Time fixed effects and state fixed effects parameter estimates are
suppressed.
b Standard errors of the R&D concavity parameter are obtained using the delta method.
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Estimates of the effect of the current price ratio on the input quantity ratio,
βi1, are the negative of the estimated elasticity of substitution, ρi, and
estimates of the effect of the expected future price ratio on the input quantity
ratio correspond to βi2 in equation (10). For all 12 estimated equations in
this table, the elasticity of substitution was estimated to be substantially less
than 2.0 (0.03–0.54).19 Thus, empirical support for the IIH and cost-
minimizing behavior is provided by a significantly negative βi2.
Using a single price expectation based on the information set available

five years earlier, five of the six pairings of inputs (83%) supported the
IIH: labor/land, capital/land, intermediate inputs/land, capital/labor, and
intermediate inputs/capital. Using a weighted average of price expectations
given the information set available two to five years earlier, three equations
(50%) supported the IIH: capital/labor, intermediate inputs/labor, and
intermediate inputs/capital. Apart from statistical significance, the estimated
signs on the expected future price ratio as well as on the current price ratio
are negative for all 12 equations, and thus the directional impact of technical
change inferred from the point estimates are found to be consistent with the
IIH in all the estimated equations.
Effects of total agricultural output were estimated to have a significantly

positive effect in 10 of the 12 equations and an insignificantly negative effect
in the other two. Based on the results, we conclude that increases in total
output lead to more intense use of non-land inputs (i.e., labor, capital, and
intermediate inputs) than land—see the first three columns of Table 3—and
to more intense use of intermediate inputs (energy, fertilizer, etc.) than labor
and capital—see the last two columns. These results that reject the null
hypothesis imply that the agricultural production function is not globally
homothetic.
Total public R&D funds were estimated to have a significantly positive effect

in two equations and a significantly negative effect in two, while the rest were
statistically insignificant. These results cause us to reject the hypothesis that the
innovation function is globally homothetic. They imply that increases in total
R&D funds lead to behavior that saves labor and intermediate inputs relative
to capital. Consequently, the evidence implies that the marginal cost of R&D
to save 1 percent of the capital input relative to that of labor or intermediate
inputs increases as total R&D investment increases. Non-homotheticity of the
innovation function could have biased several earlier studies away from
consistency with the IIH as it renders neutrality only as a local property. For
example, in both Binswanger (1974b) and Huffman and Evenson (1989), a
locally non-neutral innovation function could have contributed to their
rejection of changes in machinery use being consistent with the induced

19 Because each estimated elasticity of substitution is less than one, they also imply that the
production function is monotonically increasing and that an increase in marginal cost of
research to augment one input will induce factor-saving behavior for the other input.
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innovation hypothesis. The same could have occurred in Liu and Shumway’s
(2009) direct econometric test results with variations in the labor/capital
input ratio.
However, it does not help with Kawagoe, Otsuka, and Hayami’s (1986)

rejection of the induced hypothesis in the land/labor or land/fertilizer input
ratios. Total public R&D funds were not found to be significant in any of the
equations where land was included as an input (see the first three columns
of Table 3). Unlike de Janvry, Sadoulet, and Fafchamps (1991), we fail to find
evidence that total public R&D expenditures bias technical change toward
land-saving technology in U.S. agriculture.
Derived estimates for the R&D concavity parameter θi are also reported in

Table 3. Except for the intermediate inputs and capital ratio, all estimates are
greater than 1.0, as required for a concave innovation possibility frontier. The
estimated concavity parameter is highly sensitive both to input pair and to
the information used to estimate price expectations, but none is significantly
different from one. The variance of the input quantity ratio explained by the
estimated models ranged from 44 to 89 percent of total variance.

Robustness Checks

We consider several alternative model specifications to examine the robustness
of initial model results. We consider variants of our price expectations
assumption, the type of estimator used, and the nature of fixed effects.

Adaptive and Naïve Price Expectations

We use the adaptive expectations hypothesis and the naïve expectations
hypothesis as two alternative specifications in our robustness analysis. To
create adaptive expectations, we first forecast prices one year ahead at time
t-k using geometrically declining distributed lags on five years of realized
prices:

Et�k(wis(t�kþ1)) ¼ wwis(t�k) þ w(1� w)wis(t�k�1) þ w(1� w)2wis(t�k�2) þ � � �
þ w(1� w)4wis(t�k�4)

where φ denotes the weight. The subsequent, 2-, ..., k-year ahead forecasts are
sequentially updated as

Et�h(wist) ¼
Xh�1

p¼1

w(1� w) p�1Et�h(wis(t�p))þ
X5
p¼h

w(1� w) p�1wis(t�p))

for h¼ 2, …, k. We select the optimal weight φ based on the Akaike Information
Criterion. To ensure that the cumulative weights are over 0.9 within the
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assumed R&D period (i.e.,
P5

t¼1 w(1� w)t�1 > 0:9), we only consider φ ¼ 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9. When φ¼ 1, the expectation of future price is the
realized lagged price, Et�k(wist)¼wis(t�k). This is the naïve expectation.
Forecasts of future prices from these two expectation hypotheses are created
using a single price expectation lagged five years and a weighted average of
expected prices lagged two to five years.

Estimation Method

Based on the two-level CES production function, there are three alternative
ways the pairs of input ratios could be combined: labor/land and
intermediate inputs/capital, capital/land and intermediate inputs/labor, and
intermediate inputs/land and capital/labor. Because the error terms between
pairs of equations could be correlated, we estimate the three systems of
equations using seemingly unrelated regression (SUR) considering rational
price expectations lagged five years and a weighted average of expected
prices lagged two to five years.
To assess omitted variables bias from ignoring non-neutrality in innovation,

we examine the impact of alternative fixed-effects specifications with the five-
year rational price expectations. We perform pooled regression and one-way
(either state dummies or time dummies alone) to determine how empirical
support for the IIH would be affected when non-neutrality in innovation
supply side is not (or is less rigorously) controlled for.

Robustness Results

Table 4 documents whether estimated signs and magnitudes of the parameters
on current and expected price ratios are consistent with multistage cost
minimization conditions and the IIH under each of the alternative
specifications. Compared to the test results with the rational expectation
hypothesis, somewhat less support for the IIH was found with both the
adaptive and naïve expectations.20 For capital/labor, intermediate inputs/
labor and intermediate inputs/capital equations, all four of these estimated
equations were found to be supportive of the IIH. For labor/land and

20 To see whether the different test results were driven by the different number of observations
used in estimation, we also performed the tests using the same number of observations across
models with the three expectations hypotheses. To do so, we restricted data included in
estimation to be the largest intersection of data used in the original estimation based on each
expectation hypothesis. As a result, 1,584 observations were used to estimate the labor/land,
capital/land, and intermediate inputs/land equations, and 1,728 observations were used to
estimate the capital/labor, intermediate inputs/labor, and intermediate inputs/capital equations
with all price expectation specifications. Except for the capital/labor equation, test conclusions
were not different from the results using all available data.
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Table 4. Parameter Signs and Magnitudes Consistent with the IIH and Cost Minimization, Alternative Price
Expectations, and Estimation Methods a

Estimation Method
Labor/
Land

Capital/
Land

Intermediate
inputs/Land

Capital/
Labor

Intermediate
inputs/Labor

Intermediate
inputs/Capital

Price Expectation

Adaptive Expectations, Single Price Yes No (βi2) Yes Yes* Yes* Yes*

Adaptive Expectations, Weighted Price Yes No (βi2) Yes Yes* Yes* Yes*

Naïve Expectations, Single Price Yes Yes Yes Yes* Yes* Yes*

Naïve Expectations, Weighted Price No (βi2) No (βi1) No (βi1) Yes* Yes* Yes*

Estimation Method

SUR, Single Price Forecast Yes* Yes* Yes* Yes Yes* Yes

SUR, Weighted Price Forecast No (βi2) Yes* Yes Yes Yes* Yes*

Two-way Fixed Effects b Yes* Yes* Yes* Yes* Yes Yes*

Pooled Regression b Yes* Yes* Yes* No (βi1) Yes* Yes*

State Fixed Effects b No (βi2) No (βi2) No (βi2) No (βi1) Yes* Yes*

Time Fixed Effects b Yes* Yes* Yes* Yes* Yes* No (βi2)

a “Yes” indicates that the estimate is consistent (in terms of sign) with the IIH and cost minimization conditions, and the asterisk (*) indicates that the estimate is
statistically significant at the 10 percent level; “No (βi1)” and “No (βi2)”, respectively, indicate that the elasticity of substitution is negatively estimated or that the
expected input price ratio positively affects the input quantity ratio.
b Based on a single five-year rational expectations price forecast.
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intermediate inputs/land, three of the four estimates had expected signs and
magnitudes, but none was statistically significant.
The SUR results provided the same support for the IIH as previously (50

percent) when using the weighted average of price expectations and slightly
lower support than previously (67 percent vs. 83 percent) when using a
single price expectation lagged five years.
While all parameters were consistent with cost minimization and the IIH with

two-way fixed effects, inconsistencies were found with each of the alternative
fixed-effects specifications. Not accounting for time fixed effects results in
four input pairs being inconsistent with the joint hypothesis. Failing to
account either for state fixed effects or any fixed effects (i.e., pooled
regression) results in one input pair being inconsistent with the joint
hypothesis.
Considering only statistically significant estimates, five of the six input pairs

were consistent with the joint hypothesis when estimated using two-way
fixed effects, time fixed effects, or pooled regression. Only two were
consistent when estimated using state fixed effects.
The null hypothesis that fixed effects are zero was soundly rejected at the 1

percent level of significance in all specifications. Thus, unobserved state and
time effects are concluded to be important for explaining changes in relative
input demands. Two-way fixed-effects estimation provides the greatest
support for cost minimization and the IIH. Any omitted variables bias in the
alternatives reduces support for this joint hypothesis.21

Assessment

Considering non-neutrality in innovation as an omitted variables issue, a
moderate level of support for the IIH and multistage cost minimization was
found using 1960–2004 U.S. agricultural state-level data. With input prices
assumed to be formulated via rational expectations, 2/3 of the individually
estimated equations provided support for the IIH. That dropped to half under
adaptive and naïve input price expectations. Considering all 48 two-way
fixed-effects equations estimated, 27 (57 percent) provided support for the
IIH. Empirical evidence of consistency with the IIH was concentrated in three
input pairs: intermediate inputs/labor, intermediate inputs/capital, and
capital/labor, with 88 percent, 88 percent, and 75 percent support,
respectively. All input ratios that included land provided much less
consistency with the IIH, with support ranging from 25 to 38 percent.
The overall level of support for the IIH found here using readily available

demand-side price and allocation data is similar to the 59 percent support
found by Cowan, Lee, and Shumway (2015) in their recent tests accounting

21 Using longer lags with our relatively short data series also reduced support for the IIH.
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for non-neutrality in innovation supply based on public R&D expenditures data.
In both cases, the greatest support was found for intermediate inputs and least
support for land and labor. Ours differed from theirs only in that relative
support was reversed for labor and land. Thus, the emerging evidence of
support for the IIH in this industry when innovation supply is accounted for
is considerably greater than that found in several other studies that treated
innovation supply as input neutral (e.g., Olmstead and Rhode 1993, Machado
1995, Liu and Shumway 2006, Liu and Shumway 2009).
Our results are consistent with other literature (e.g., Huntington 2010) that

finds that technical change includes both price-induced and exogenous
components. Our lower level of support for the IIH in land choices may be
attributed to the relative fixity of this input. Land is often documented in the
dynamic adjustment literature on the agricultural industry as a quasi-fixed
input (e.g., Vasavada and Chambers 1986, Taylor and Kalaitzandonakes
1990). Quasi-fixity implies that high adjustment costs hinder immediate
response to shocks such as prices and possibly new technology. In such a
case, the adjustment rate toward the optimal input utilization would be
sluggish.

Conclusions

Most tests of the induced innovation hypothesis (IIH) with its important policy
implications have implicitly maintained the untenable hypothesis of a neutral
innovation function. Relying on demand-side data, they have not accounted
for differences in the marginal cost of augmenting different inputs. However,
because data for the supply side of innovation are seldom available, this
obstacle has appeared insurmountable.
In this paper, we document that, with panel data, a two-way fixed-effects

estimation procedure can accommodate a time-varying and non-neutral
innovation function in the absence of data on marginal R&D costs.
Considering a two-level CES production function and a homothetic innovation
function, we also derive the complete set of multistage optimization
conditions that build a parametric connection between expected price ratios
and factor augmentation, between factor augmentation and cost-minimizing
input allocations, and thus between the expected price ratio and subsequent
cost-minimizing input allocations.
Our analytical results show that when the elasticity of substitution between

two inputs is less than one plus the magnitude of the innovation concavity
parameter (which must be greater than one), a rise in the relative expected
price of an input results in its relatively lower use. However, when the
elasticity of substitution is greater than this magnitude, the IIH implies
relatively greater use of the input that is expected to become more expensive.
We document that the relationship between expected input prices and factor
augmentation is a non-monotonic function of the elasticity of substitution
when the innovation function is accounted for. We also find that the
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relationship between marginal R&D cost and factor-saving behavior is a non-
monotonic function of the elasticity of substitution.
We test whether the IIH holds in U.S. agriculture under multistage cost

minimization for the period 1960–2004 using only state-level panel input
price and quantity and total output data for the agricultural production
sector and total public agricultural R&D expenditures. Our test procedure
imposes only one simplifying assumption on the innovation function—that
the trend in the rate of change in marginal R&D cost is the same across
observation units. This two-way fixed-effects formulation permits the cost-
minimizing input ratio effects of unobserved differences in marginal R&D
costs across observation units and over time to be controlled for, which could
have otherwise caused omitted variables bias. Because the remaining
simplifying assumption is an important limitation, albeit much less severe
than employed in previous tests, our approach is admittedly only one
important step in addressing non-neutral innovation functions.
We implement our test using a rational expectations specification of future

input prices at the time R&D resource allocation decisions are made.
Homotheticity conditions on both innovation-creating and innovation-
implementing industries are imposed only as local conditions. We then
conduct several robustness checks, including alternative price expectation
specifications and alternative estimation methods.
We find empirical evidence of consistency with the IIH and cost-minimizing

behavior concentrated in input decisions involving pairs of three inputs—
capital, intermediate inputs, and labor. Considerably less support is evident
for input pairs involving land. The level of support for the IIH is similar to
recent tests for the IIH in this industry when innovation supply is accounted
for (Cowan, Lee, and Shumway 2015) and considerably greater than that
found in several other studies that treated innovation supply as input neutral
(e.g., Olmstead and Rhode 1993, Machado 1995, Liu and Shumway 2006, Liu
and Shumway 2009). Support is greater when input prices are formulated via
the rational expectations hypothesis than when they are based on other
common expectations mechanisms. It is also greater when two-way fixed-
effects estimation is used.

Supplementary material

The supplementary material that includes appendices, data and code for this
article can be found at https://doi.org/10.1017/age.2020.1

References

Acemoglu, D. 2002. “Directed Technical Change.” Review of Economic Studies 69: 781–809.
——— 2007. “Equilibrium Bias of Technology” Econometrica 75(5): 1371–1409.
——— 2015. “Localized and Biased Technologies: Atkinson and Stiglitz’s New View, Induced

Innovations, and Directed Technological Change.” Economic Journal 125(583): 443–463.

Agricultural and Resource Economics Review488 December 2020

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
0.

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2020.1
https://doi.org/10.1017/age.2020.1
https://doi.org/10.1017/age.2020.1


Ahmad, S. 1966. “On the Theory of Induced Invention.” Economic Journal 76: 344–357.
Armanville, I., and P. Funk. 2003. “Induced Innovation: An Empirical Test.”Applied Economics

35: 1627–1647.
Atkinson, A.B., and J.E. Stiglitz. 1969. “A New View of Technical Change.” Economic Journal

79(315): 573–578.
Ball, V.E., F.M. Gollop, A. Kelly-Hawke, and G.P. Swinand. 1999. “Patterns of State Productivity

Growth in the U.S. Farm Sector: Linking State and Aggregate Models.”American Journal of
Agricultural Economics 81: 164–179.

Ball, V.E., C. Hallahan, and R. Nehring. 2004. “Convergence of Productivity: An Analysis of the
Catch-Up Hypothesis within a Panel of States.”American Journal of Agricultural Economics
86: 1315–1321.

Bertrand, M., E. Duflo, and S. Mullainathan. 2004. “HowMuch ShouldWe Trust Differences-in-
Differences Estimates?” Quarterly Journal of Economics 119(1): 249–275.

Binswanger, H.P. 1974a. “A Microeconomic Approach to Induced Innovation.” Economic
Journal 84(336): 940–958.

——— 1974b. “The Measurement of Technical Change Biases with Many Factors of
Production.” The American Economic Review 64(6): 964–976.

Bray, M. 1981. “Futures Trading, Rational Expectations, and the Efficient Markets
Hypothesis.” Econometrica 49(3): 575–596.

Brown, D.J. 2014. “Approximate Solutions of the Walrasian Equilibrium Inequalities with
Bounded Marginal Utilities of Income.” Cowles Foundation Discussion Paper No. 1955,
Yale University.

Chavas, J.P., and T.L. Cox. 1992. “A Nonparametric Analysis of the Influence of Research on
Agricultural Productivity.” American Journal of Agricultural Economics 73(3): 583–591.

Cowan, B.W., D. Lee, and C.R. Shumway. 2015. “The Induced Innovation Hypothesis and U.S.
Public Agricultural Research.”American Journal of Agricultural Economics 97(3): 727–42.

Crabb, J.M., and D.K.N. Johnson. 2010. “Fueling Innovation: The Impact of Oil Prices and CAFÉ
Standards on Energy-Efficient Automotive Technology.” Energy Journal 31: 199–216.

Deininger, K.W. 1995. Technical Change, Human Capital, and Spillovers in United States
Agriculture, 1949–1985. London: Routledge.

de Janvry, A., E. Sadoulet, and M. Fafchamps. 1991. “Agrarian Structure, Technological
Innovations, and the State.” Chapter 18 in P.K. Bardhan, ed. The Economic Theory of
Agrarian Institutions. Cambridge: Oxford University Press.

Esposti, R., and P. Pierani. 2006. “Price-Induced Technical Progress in Italian Agriculture.”
Review of Agricultural and Environmental Studies 89(4): 5–28.

Fulginiti, L.E. 1994. “Price-Conditional Technology.” Journal of Agricultural and Resource
Economics 19(1): 161–72.

Funk, P. 2002. “Induced Innovation Revisited.” Economica 69: 155–171.
Gardner, B.L. 1976. “Futures Prices in Supply Analysis.” American Journal of Agricultural

Economics 58(1): 81–84.
Gertchev, N. 2007. “A Critique of Adaptive and Rational Expectations.” Quarterly Journal of

Austrian Economics 10: 313–329.
Hayami, Y., and V.W. Ruttan. 1970. “Factor Prices and Technical Change in Agricultural

Development: The United States and Japan, 1880–1960.” The Journal of Political
Economy 78: 1115–1141.

Hicks, J.R. 1932. The Theory of Wages. London: Macmillan.
Hommes, C.H. 1998. “On the Consistency of Backward-looking Expectations: The Case of the

Cobweb.” Journal of Economic Behavior & Organization 33: 333–362.
Huffman, W.E. 2012. “Public Agricultural Research Expenditure and Stock Data by State,

1927–2009.” Iowa State University, Personal communication.
Huffman, W.E. 2015. “Measuring Public Agricultural Research Capital and Its Impact on State

Agricultural Productivity in the United States.” In L. Singh, K.J. Joseph, and D.K. Johnson,

Lee, Cowan and Shumway Non-Neutral Marginal Innovation Costs 489

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
0.

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2020.1


eds. Technology, Innovations and Economic Development: Essays in Memory of Robert
E. Evenson. New Delhi: Sage.

Huffman, W.E., and R. Evenson. 1989. “Supply and Demand Functions for Multiproduct U.S.
Cash Grain Farms: Biases Caused by Research and Other Policies. American Journal of
Agricultural Economics 71(3): 761–773.

———. 2006. “Do Formula or Competitive Grant Funds Have Greater Impacts on State
Agricultural Productivity?” American Journal of Agricultural Economics 88(4): 783–798.

Huntington, H.G. 2010. “Oil Demand and Technical Progress.” Applied Economics Letters 17:
1747–1751.

Im, K.S., M.H. Pesaran, and Y. Shin. 2003. “Testing for Unit Roots in Heterogeneous Panels.”
Journal of Economics 115: 53–74

Johnstone, N., I. Hascic, J. Poirier, M. Hemar, and C. Michel. 2012. “Environmental Policy
Stringency and Technological Innovation: Evidence from Survey Data and Patent
Counts.” Applied Economics 44: 2157–2170.

Kamien, M.I., and N.L. Schwartz. 1968. “Optimal ‘Induced’ Technical Change.” Econometrica
36: 1–17.

Kawagoe, T., K. Otsuka, and Y. Hayami. 1986. “Induced Bias of Technical Change in
Agriculture: The United States and Japan, 1880–1980.” Journal of Political Economy 94
(3): 523–544.

Kennedy, C. 1964. “Induced Bias in Innovation and the Theory of Distribution.” Economic
Journal 74(295): 541–547.

Lim, H., and C.R. Shumway. 1992. “Profit Maximization, Returns to Scale, and Measurement
Error.” Review of Economics and Statistics 74(August): 430–438.

Liu, Q., and C.R. Shumway. 2006. “Geographic Aggregation and Induced Innovation in
American Agriculture.” Applied Economics 38: 671–682.

Liu, Y., and C.R. Shumway. 2009. “Induced Innovation in U.S. Agriculture: Time-series,
Econometric, and Nonparametric Tests.” American Journal of Agricultural Economics
91(1): 224–236.

Machado, F.S. 1995. “Testing the Induced Innovation Hypothesis Using Cointegration
Analysis.” Journal of Agricultural Economics 46(3): 349–360.

McIntosh, C.S., and C.R. Shumway. 1994. “Evaluating Alternative Price Expectation Models for
Multiproduct Supply Analysis. Agricultural Economics 10(1): 1–11.

Olmstead, A.L., and P. Rhode. 1993. “Induced Innovation in American Agriculture: A
Reconsideration.” Journal of Political Economy 101: 100–118.

Pedroni, P. 2004. “Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled
Time Series Tests with an Application to the PPP Hypothesis.” Econometric Theory 20
(3): 597–625.

Piesse, J., D. Schimmelpfennig, and C. Thirtle. 2011. “An Error Correction Model of Induced
Innovation in UK Agriculture.” Applied Economics 43: 4081–4094.

Popp, D. 2002. “Induced Innovation and Energy Prices.” The American Economic Review 92:
160–180.

Samuelson, P.A. 1965. “A Theory of Induced Innovation along Kennedy-Weisäcker Lines.”
Review of Economics and Statistics 47(4): 343–356.

Shonkwiler, J.S., and G.S. Maddala. 1985. “Modeling Expectations of Bounded Prices: An
Application to the market for Corn.” Review of Economics and Statistics 67: 697–702.

Taylor, T.G., and N. Kalaitzandonakes. 1990. “A Test of Asset Fixity in South-Eastern U.S.
Agriculture.” Southern Journal of Agricultural Economics 22: 105–111.

Thirtle, C.G., D.E. Schimmelpfennig, and R.E. Townsend. 2002. “Induced Innovation in United
States Agriculture, 1880–1990: Time Series Tests and an Error Correction Model.”
American Journal of Agricultural Economics 84: 598–614.

USDA Economic Research Service. 2015. “Agricultural Productivity in the U.S.” http://ers.
usda.gov/data-products/agricultural-productivity-in-the-us.aspx#28247, Table 23.

Agricultural and Resource Economics Review490 December 2020

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
0.

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx%2328247
http://ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx%2328247
http://ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx%2328247
https://doi.org/10.1017/age.2020.1


———. 2017. “Agricultural Productivity in the U.S.” http://ers.usda.gov/data-products/
agricultural-productivity-in-the-us.aspx#28247, Table 1a.

Vasavada, U., and Chambers, R.G. 1986. “Investment in U.S. Agriculture.”American Journal of
Agricultural Economics 68(4): 950–960.

Wang, S.L., P.W. Heisey, W.E. Huffman, and K.O. Fuglie. 2013. “Public R&D, Private R&D, and
U.S. Agricultural Productivity Growth: Dynamic and Long-Run Relationships.” American
Journal of Agricultural Economics 95: 1287–1293.

Wooldridge, J.M. 2002. Economic Analysis of Cross Section and Panel Data. Cambridge, MA:
MIT Press.

Lee, Cowan and Shumway Non-Neutral Marginal Innovation Costs 491

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
0.

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx%2328247
http://ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx%2328247
http://ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx%2328247
https://doi.org/10.1017/age.2020.1

	Non-Neutral Marginal Innovation Costs, Omitted Variables, and Induced Innovation
	Introduction
	Theoretical Model
	Empirical Model – Two-Way Fixed-Effects Approach
	Data and Variable Specification
	Expected Prices and Forecasting
	RD Lag

	Test Results
	Robustness Checks
	Adaptive and Naïve Price Expectations
	Estimation Method
	Robustness Results
	Assessment

	Conclusions
	Supplementary material
	References


