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Abstract

We show that if a finitely generated group G has a nonelementary WPD action on a hyperbolic metric
space X, then the number of G-conjugacy classes of X-loxodromic elements of G coming from a ball of
radius R in the Cayley graph of G grows exponentially in R. As an application we prove that for N ≥ 3
the number of distinct Out(FN )-conjugacy classes of fully irreducible elements ϕ from an R-ball in the
Cayley graph of Out(FN ) with log λ(ϕ) of the order of R grows exponentially in R.
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1. Introduction

The study of the growth of the number of periodic orbits of a dynamical system
is an important theme in dynamics and geometry. A classic and still incredibly
influential result of Margulis [20] computes the precise asymptotics of the number
of closed geodesics of length less than or equal to R (that is, of periodic orbits of
geodesic flow of length less than or equal to R) for a compact hyperbolic manifold.
A recent result of Eskin and Mirzakhani [12], which served as a motivation for this
note, shows that for the moduli space Mg of a closed oriented surface Sg of genus
g ≥ 2, the number N(R) of closed Teichmüller geodesics in Mg of length less than
or equal to R grows as N(R) ∼ ehR/hR as R→∞, where h = 6g − 6. Note that in the
context of a group G acting by isometries on a geodesic metric space, counting closed
geodesics in the quotient space amounts to counting conjugacy classes of elements of
G rather than counting elements displacing a basepoint by distance less than or equal
to R. Problems about counting conjugacy classes with various metric restrictions are
harder than those about counting group elements and many group-theoretic tricks (for
example, embeddings of free subgroups or of free subsemigroups) do not, a priori,
give any useful information about the growth of the number of conjugacy classes.
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In the context of the Eskin–Mirzakhani result mentioned above, a closed Teichmüller
geodesic of length less than or equal to R in Mg comes from an axis L(ϕ) in the
Teichmüller spaceTg of a pseudo-Anosov element ϕ ∈Mod(Sg) with translation length
τ(ϕ) ≤ R. Note that τ(ϕ) = log λ(ϕ), where λ(ϕ) is the dilatation of ϕ. Thus N(R) is the
number of Mod(Sg)-conjugacy classes of pseudo-Anosov elements ϕ ∈Mod(Sg) with
log λ(ϕ) ≤ R, where Mod(Sg) is the mapping class group.

In this note we study a version of this question for Out(FN) where N ≥ 3. The
main analogue of being pseudo-Anosov in the Out(FN) context is the notion of a fully
irreducible element. Every fully irreducible element ϕ ∈ Out(FN) has a well-defined
stretch factor λ(ϕ) > 1 (see [6]) which is an invariant of the Out(FN)-conjugacy class
of ϕ. For specific ϕ one can compute λ(ϕ) via train track methods, but counting the
number of distinct λ(ϕ) with log(λ(ϕ)) ≤ R (where ϕ ∈ Out(FN) is fully irreducible)
appears to be an unapproachable task. Other Out(FN)-conjugacy invariants such as the
index, the index list and the ideal Whitehead graph of fully irreducibles [7, 8, 15, 22]
also do not appear to be well suited for counting problems. Unlike the Teichmüller
space, the Outer space CVN does not have a nice local analytic/geometric structure
similar to the Teichmüller geodesic flow. Moreover, as we explain in Remark 3.3
below, it is reasonable to expect that (for N ≥ 3) the number of Out(FN)-conjugacy
classes of fully irreducibles ϕ ∈ Out(FN) with logλ(ϕ) ≤ R probably grows as a double
exponential in R (rather than as a single exponential in R, as in the case of Mg).
Therefore, to get an exponential growth of the number of conjugacy classes one needs
to consider a more restricted context, namely where the elements come from an R-ball
in the Cayley graph of Out(FN).

Here we obtain the following result.

Theorem 1.1. Let N ≥ 3. Let S be a finite generating set for Out(FN). For R ≥ 0, let
BR be the ball of radius R in the Cayley graph of Out(FN) with respect to S . There
exist constants σ > 1 and C2 > C1 > 0, R0 ≥ 1 such that the following result holds.
If cR denotes the number of distinct Out(FN)-conjugacy classes of fully irreducible
elements ϕ ∈ BR such that C1R ≤ log λ(ϕ) ≤ C2R, then

cR ≥ σ
R for all R ≥ R0.

In the course of proving Theorem 1.1, we establish the following general result.

Theorem 1.2. Suppose G has a cobounded WPD action on a hyperbolic metric space
X and L is a nonelementary subgroup of G for this action. Let S be a generating set
of G. For R ≥ 1, let bR be the number of distinct G-conjugacy classes of elements of
g ∈ L that act loxodromically on X and such that |g|S ≤ R. Then there exist R0 ≥ 1 and
c > 1 such that, for all R ≥ R0,

bR ≥ cR.

This statement is most relevant in the case where G is finitely generated and S
is finite, but the conclusion of Theorem 1.2 is not obvious even if S is infinite.
Theorem 1.2 is a generalisation of [17, Theorem 1.1], which states (under a
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different but equivalent hypothesis (see [21])) that such G has exponential conjugacy
growth. The proofs of Theorem 1.2 and [17, Theorem 1.1] are similar and are both
based on the theory of hyperbolically embedded subgroups developed in [10], and
specifically the construction of virtually free hyperbolically embedded subgroups in
[10, Theorem 6.14].

Both Theorems 1.1 and 1.2 are derived using the following result.

Theorem 1.3. Suppose that G has a cobounded WPD action on a hyperbolic metric
space X and L is a nonelementary subgroup of G for this action. Then, for every n ≥ 2,
there exist a subgroup H ≤ L and a finite group K ≤ G such that:

(1) H � Fn;
(2) H × K ↪→h G;
(3) the orbit map H → X is a quasi-isometric embedding.

In particular, every element of H is loxodromic with respect to the action on X and two
elements of H are conjugate in G if and only if they are conjugate in H.

Here, for a subgroup A of a group G, writing A ↪→h G means that A is hyperbolically
embedded in G.

The proof of Theorem 1.1 also uses, as an essential ingredient, a result of Dowdall
and Taylor [11, Theorem 4.1] about quasigeodesics in the Outer spaces and the free
factor complex. Note that it is still not known whether the action of Out(FN) on the free
factor complex is acylindrical and, in a sense, the use of Theorem 1.2 provides a partial
workaround here. Note that in the proof of Theorem 1.1, instead of using Theorem 1.3,
we could have used an argument about stable subgroups having finite width. It is
proved in [3] that convex cocompact (that is, finitely generated and with the orbit map
to the free factor complex being a quasi-isometric embedding) subgroups of Out(FN)
are stable in Out(FN). In turn, it is proved in [2] that if H is a stable subgroup of a group
G, then H has finite width in G (see [2] for the relevant definitions). Having finite width
is a property sufficiently close to being malnormal to allow counting arguments with
conjugacy classes to go through. The proof given here, based on using Theorem 1.3
above, is different in flavour and proceeds from rather general assumptions. Note that
in the conclusion of Theorem 1.3 the fact that H × K ↪→h G implies that H and H × K
are stable in G.

Another possible approach to counting conjugacy classes involves the notion of
‘statistically convex cocompact actions’ recently introduced and studied by Yang;
see [23, 24] (particularly [24, Theorem B] about genericity of conjugacy classes of
strongly contracting elements). However, Yang’s results only apply to actions on
proper geodesic metric spaces with finite critical exponent for the action, such as the
action of the mapping class group on the Teichmüller space. For essentially the same
reasons as explained in Remark 3.3 below, the action of Out(FN) (where N ≥ 3) on
CVN , with either the asymmetric or symmetrised Lipschitz metric, has infinite critical
exponent. Still, it is possible that the statistical convex cocompactness methods may
be applicable to the actions on CVN of some interesting subgroups of Out(FN).

https://doi.org/10.1017/S0004972718000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000047


[4] Counting conjugacy classes 415

2. Conjugacy classes of loxodromics for WPD actions

We assume throughout that all metric spaces under consideration are geodesic and
all group actions on metric spaces are by isometries. Given a generating set A of a
group G, we let Cay(G,A) denote the Cayley graph of G with respect to A. In order
to apply results from [10] directly, it is more convenient to consider actions on Cayley
graphs. By the well-known Milnor–Svarc lemma, this is equivalent to considering
cobounded actions.

Lemma 2.1 (Milnor–Svarc). If G acts coboundedly on a geodesic metric space X, then
there existsA ⊆ G such that Cay(G,A) is G-equivalently quasi-isometric to X.

Definition 2.2. Let H be a subgroup of G and S a subset of G such that 〈H ∪ S 〉 = G.
We identify Cay(H,H) with the corresponding complete subgraph of Cay(G,H ∪ S ).
We say that H is hyperbolically embedded in G with respect to S if the following two
conditions are satisfied.

(1) Cay(G,H ∪ S ) is a hyperbolic metric space.
(2) For each n ∈ N, there are at most finitely many h ∈ H such that there exists a path

in Cay(G,H ∪ S ) from 1 to h of length at most n which contains no edges of
Cay(H,H).

We use H ↪→h (G, S ) to denote that H is hyperbolically embedded in G with respect to
S , or simply H ↪→h G if H ↪→h (G, S ) for some S ⊆ G.

This definition can be naturally extended to a collection of subgroups; we refer
to [10] for more details. The only property of a hyperbolically embedded subgroup H
that we use is that H is almost malnormal, that is, for g ∈ G \ H, the intersection of H
and Hg is finite [10, Proposition 4.33]. Note that this implies that any two infinite-order
elements of H are conjugate in G if and only if they are conjugate in H.

For a metric space X and an isometry g of X, the asymptotic translation length ‖g‖X
is defined as ‖g‖X = limi→∞ d(gix, x)/i, where x ∈ X. It is well known that this limit
always exists and is independent of x ∈ X. If ‖g‖X > 0 then g is called loxodromic. For
a group G acting on X, a loxodromic element is called a WPD element if, for all ε > 0
and all x ∈ X, there exists m ∈ N such that

|{h ∈ G | d(x, hx) < ε, d(gmx, hgmx) < ε}| <∞.

We say that the action of G on X is WPD if every loxodromic element is a WPD
element.

We now fix a subset A ⊆ G such that Cay(G,A) is hyperbolic and the action of G
on Cay(G,A) is WPD. We say that g ∈G is loxodromic if it is loxodromic with respect
to the action of G on Cay(G,A). Each such element is contained in a unique, maximal,
virtually cyclic subgroup E(g) [10, Lemma 6.5].

Lemma 2.3 [16, Corollary 3.17]. If g1, . . . , gn are noncommensurable loxodromic
elements, then {E(g1), . . . , E(gn)} ↪→h (G,A).
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A subgroup L ≤ G is called nonelementary if L contains two noncommensurable
loxodromic elements. Let KG(L) denote the maximal finite subgroup of G normalised
by L. When L is nonelementary, this subgroup is well defined by [16, Lemma 5.5].

The following lemma was proved in [16] under the assumption that the action is
acylindrical, but the proof only requires that the action is WPD.

Lemma 2.4 [16, Lemma 5.6]. Let L be a nonelementary subgroup of G. Then there
exist noncommensurable, loxodromic elements g1, . . . , gn contained in L such that
E(gi) = 〈gi〉 × KG(L).

Proof of Theorem 1.3. First we note that statement (1.3) in the theorem implies that
every element of H is loxodromic with respect to the action on X. Also, the fact
that two elements of H are conjugate in G if and only if they are conjugate in H
follows from the fact that H × K is almost malnormal in G and K acts trivially on H
by conjugation.

We use the construction from [10, Theorem 6.14]. As in [10, Theorem 6.14], we let
n = 2 since the construction from this case can be easily modified for any n.

By Lemma 2.1, we can assume X = Cay(G,A) for some A ⊆ G. Let g1, . . . , g6 be
elements of L given by Lemma 2.4. Then each E(gi) = 〈gi〉 × KG(L) and, furthermore,
{E(g1), . . . , E(g6)} ↪→h (G,A) by Lemma 2.3. Let

E =

6⋃
i=1

E(gi) \ {1}.

Let H = 〈x, y〉, where x = gn
1gn

2gn
3 and y = gn

4gn
5gn

6 for sufficiently large n. It is shown
in [10] that x and y generate a free subgroup of G and this subgroup is quasiconvex
in Cay(G,A ∪ E). Hence H (with the natural word metric) is quasi-isometrically
embedded in Cay(G,A ∪ E), and since the map Cay(G,A)→ Cay(G,A ∪ E) is 1-
Lipschitz H is also quasi-isometrically embedded in Cay(G,A). Let K = KG(L).
Since x and y both commute with K, it follows that 〈H, K〉 � H × K. Finally, we
can apply [10, Theorem 4.42] to see that H × K ↪→h G. Verifying the assumptions of
[10, Theorem 4.42] is identical to the proof of [10, Theorem 6.14].

Note that Theorem 1.2 is an immediate consequence of Theorem 1.3.

3. The case of Out(FN)

We assume familiarity on the part of the reader with the basics related to Out(FN)
and Outer space. For background information on these topics we refer the reader
to [5, 6, 9, 13].

In what follows we assume that N ≥ 2 is an integer, CVN is the (volume-one
normalised) Culler–Vogtmann Outer space, FN is the free factor complex for FN , dC is
the asymmetric Lipschitz metric on CVN and dsym

C is the symmetrised Lipschitz metric
on CVN . When we talk about the Hausdorff distance dHaus in CVN , we always mean
the Hausdorff distance with respect to dsym

C . For K ≥ 1, by a K-quasigeodesic in CVN
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we mean that a function γ : I → CVN (where I ⊆ R is an interval) such that, for all
s, t ∈ I with s ≤ t,

1
K

(t − s) − K ≤ dC(γ(s), γ(t)) ≤ K(t − s) + K.

For ε > 0 we denote by CVN,ε the ε-thick part of CVN .

Remark 3.1 (Left and right actions on CVN). There is a natural right action of Out(FN)
on CVN . If T ∈ CVN is an R-tree with a minimal free discrete isometric action of
FN and if Φ ∈ Aut(FN) is an automorphism, then the point TΦ ∈ CVN is defined
as the tree T with the action of FN twisted via Φ: for x ∈ T and u ∈ FN , we have
u ·

TΦ
x := Φ(u) ·

T
x. This action of Aut(FN) descends to the action of Out(FN) on CVN .

At the level of translation length functions, for T ∈ CVN , ϕ ∈ Out(FN) and u ∈ FN ,
we have ‖u‖Tϕ = ‖ϕ(u)‖T . This right action of Out(FN) on CVN can also be converted
to a left action by setting ϕT := Tϕ−1 for T ∈ CVN , ϕ ∈ Out(FN). We will need to
work with both the right and left actions of Out(FN) on CVN . Note, however, that
periodic folding lines in CVN coming from train track maps naturally correspond to
the right action of Out(FN) on CVN . More precisely, if f : G→ G is a train track map
representing some ϕ ∈ Out(FN), then f naturally defines a ‘folding’ path from G̃ to G̃ϕ
in CVN , which can be extended to a bi-infinite ϕ-periodic folding path. See [4, 13, 15]
for more details.

We recall a portion of one of the main technical results of Dowdall and Taylor, [11,
Theorem 4.1].

Proposition 3.2. Let K ≥ 1 and let γ : R→ CVN be a K-quasigeodesic such that its
projection π ◦ γ : R→FN is also a K-quasigeodesic. There are constants D > 0, ε > 0,
depending only on K and N, such that the following result holds. If ρ : R→ CVN is
any geodesic with the same endpoints as γ, then

(1) γ(R), ρ(R) ⊂ CVN,ε;
(2) dHaus(γ(R), ρ(R)) ≤ D.

Here saying that γ and ρ have the same endpoints means that supt∈R dsym
C (γ(t),

ρ(t)) <∞.

Proof of Theorem 1.1. By [5], the action of Out(FN) on FN satisfies the hypothesis
of Theorem 1.3. Let H be the subgroup provided by Theorem 1.3 with L = Out(Fn).
We fix a free basis A = {a, b} for the free group H, and let dA be the corresponding
word metric on H.

Note that the assumptions on H imply that every nontrivial element of H is fully
irreducible. Moreover, if we pick a basepoint p in FN , then there is K ≥ 1 such that
the image of every geodesic in the Cayley graph Cay(H,A) in FN under the orbit map
is a (parameterised) K-quasigeodesic.

Pick a basepoint G0 ∈ CVN . Since the projection π : (CVN , dC)→ FN is coarsely
Lipschitz [5], and since the orbit map H → FN is a quasi-isometric embedding, it
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follows that the orbit map (H, dA)→ (CVN , dC), u 7→ uG0 is a K1-quasi-isometric
embedding for some K1 ≥ 1. Moreover, the image of this orbit map lives in an ε0-thick
part of CVN (where ε0 is the injectivity radius of G0). Since on CVN,ε0 the metrics dC

and dsym
C are bi-Lipschitz equivalent (see [1, Theorem 24]), it follows that the orbit map

(H, dA)→ (CVN , d
sym
C ), u 7→ uG0 is a K2-quasi-isometric embedding for some K2 ≥ 1.

For every c ∈ A±1, fix a dC-geodesic τc from G0 to cG0.
Now let γ : I → Cay(H,A) be a geodesic such that γ−1(H) = I ∩ Z and such that

the endpoints of I (if any) are integers. We then define a path γ : I → CVN as
follows. Whenever n ∈ Z is such that [n, n + 1] ⊆ I, then γ(n) = g and γ(n + 1) = gc
for some c ∈ A±1. In this case we define γ|[n,n+1] to be gτc. Then, for every geodesic
γ : I → Cay(H,A) as above, the path γ : I → CVN is K3-quasigeodesic with respect
to both dC and dsym

C , for some K3 ≥ 1 independent of γ. Moreover, γ(I) ⊂ CVN,ε1 for
some ε1 > 0 independent of γ.

Let w be a cyclically reduced word of length n ≥ 1 in H. Consider the bi-infinite
w−1-periodic geodesic γ : R→ Cay(H,A) with γ(0) = 1 and γ(n) = w−1. Thus the path
γ : R→ CVN is K3-quasigeodesic, with respect to both dC and dsym

C , and γ(R) ⊂ CVN,ε1 .
Since 1 , w ∈ H, it follows that w is fully irreducible as an element of Out(FN). Hence
w can be represented by an expanding irreducible train track map f : G → G with
the Perron–Frobenius eigenvalue λ( f ) equal to the stretch factor λ(w) of the outer
automorphism w ∈ Out(FN). There exists a volume-one ‘eigenmetric’ d f on G with
respect to which f is a local λ( f )-homothety. If we view (G, d f ) as a point of CVN ,
then dC(G,Gw) = log λ(w). Moreover, in this case we can construct a w-periodic dC-
geodesic folding line ρ : R→ CVN with the property that ρ(i) = Gwi for any integer i.
Hence, dC(Gwi,Gw j) = ( j − i) log λ(w) for integers i < j. Thus, for any i > 0, we have
dC(G,w−iG) = i log λ(w).

The bi-infinite lines ρ and γ are both w−1-periodic (in the sense of the left action of
w−1) and therefore supt∈R dsym

C (γ(t), ρ(t)) < ∞. Hence, by Proposition 3.2, there exist
constants D > 0 and ε > 0 (independent of w) such that ρ ⊂ CVN,ε and dHaus(ρ, γ) ≤ D.
The fact that ρ ⊂ CVN,ε implies that ρ is a K4-quasigeodesic with respect to dsym

C for
some constant K4 ≥ 1 independent of w.

Consider the asymptotic translation length ‖w‖CV , where w is viewed as an isometry
of (CVN , d

sym
C ). On the one hand (using the line ρ),

1
K4

log λ(w−1) ≤ ‖w‖CV ≤ K4 log λ(w−1),

and on the other hand (using the line γ),

1
K3

n ≤ ‖w‖CV ≤ K3n.

Therefore
1

K3K4
n ≤ log λ(w−1) ≤ K3K4n.
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Recall also that, by a result of Handel and Mosher [14], there exists a constant
M = M(N) ≥ 1 such that, for every fully irreducible ϕ ∈ Out(FN),

1
M
≤

log λ(ϕ)
log λ(ϕ−1)

≤ M.

Therefore, for w as above,

1
K3K4M

n ≤ log λ(w) ≤ K3K4Mn.

Now recall that A = {a, b} and that S is a finite generating set for Out(FN).
Put M′ = max{|a|S , |b|S } so that, for every freely reduced word w in H, we have
|w|S ≤ M′|w|A.

For R � 1, put n = bR/M′c. The number of distinct H-conjugacy classes
represented by cyclically reduced words w of length n is equal to or greater than 2n,
for n big enough. Recall that two elements of H are conjugate in H if and only if they
are conjugate in Out(FN). Therefore, we get at least 2n ≥ 2R/M′−1 distinct Out(FN)-
conjugacy classes from such words w. As we have seen above, each such w gives us a
fully irreducible element of Out(FN) with

1
K3K4M

R
2M′

≤ log λ(w) ≤ K3K4Mn ≤ K3K4M
R

M′
,

and the statement of Theorem 1.1 is verified.

Remark 3.3. As noted in the introduction, unlike the mapping class group case, we
expect that, for N ≥ 3, the number of Out(FN)-conjugacy classes of fully irreducibles
ϕ ∈ Out(FN) with log λ(ϕ) ≤ R grows as a double exponential in R. A double
exponential upper bound follows from general Perron–Frobenius considerations.
Every fully irreducible ϕ ∈ Out(FN) can be represented by an expanding irreducible
train track map f : G→ G, where G is a finite connected graph with b1(G) = N and
with all vertices in G of degree 3 or less. The number of possibilities for such G is
finite in terms of N. By [19, Proposition A.4], if f is as above and λ := λ( f ), then
max mi j ≤ kλk+1 (where k is the number of edges in G and M = (mi j)i j is the transition
matrix of f ). If logλ ≤ R, we get max log mi j ≤ log k + (k + 1)R and max mi j ≤ ke(k+1)R.
Thus we get exponentially many (in terms of R) possibilities for the transition matrix
M of f . Since, for a given length L, there are exponentially many paths of length L
in G, this yields an (a priori) double exponential upper bound for the number of train
track maps representing fully irreducible elements of Out(FN) with log λ ≤ R.

For the prospective double exponential lower bound we give the following explicit
construction for the case of F3. Let w ∈ F(b, c) be a nontrivial positive word containing
the subwords b2, c2, bc and cb. Consider the automorphism ϕw of F3 = F(a, b, c)
defined by ϕw(a) = b, ϕw(b) = c, ϕw(c) = aw(b, c). We can also view ϕw as a graph
map fw : R3 → R3, where R3 is the 3-rose with the petals marked by a, b, c. Then fw
is an expanding irreducible train track map representing ϕw. Moreover, a direct check
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shows that, under the assumptions made on w, the Whitehead graph of fw is connected.
Additionally, for a given n ≥ 1, ‘most’ positive words of length n in F(b, c) satisfy the
above conditions and define fully irreducible automorphisms ϕw. To see this, observe
that the free-by-cyclic group Gw = F3 oϕw Z can be rewritten as a one-relator group:

Gw = 〈a, b, c, t | t−1at = b, t−1bt = c, t−1ct = aw(b, c)〉
= 〈a, t | t−3at3 = aw(t−1at, t−2at2)〉.

Moreover, one can check that if w was a C′(1/20) word, then the above one-relator
presentation of Gw satisfies the C′(1/6) small cancellation condition, and therefore
Gw is word-hyperbolic and the automorphism ϕw ∈ Out(F3) is atoroidal. Since,
as noted above, ϕw admits an expanding irreducible train track map on the rose
with connected Whitehead graph, a result of Kapovich [18] implies that ϕ is fully
irreducible. Moreover, if |w| = L, then it is not hard to check that log λ( fw) = log λ(ϕw)
grows like log L.

Since ‘random’ positive words w ∈ F(b, c) are C′(1/20) and contain b2, c2, cb, bc
as subwords, for sufficiently large R ≥ 1, the above construction produces doubly
exponentially many atoroidal fully irreducible automorphisms ϕw with |w| = eR and
log λ(ϕw) of the order of R. We conjecture that in fact most of these elements are
pairwise nonconjugate in Out(F3) and that this method yields doubly exponentially
many fully irreducible elements ϕ of Out(F3) with log λ(ϕ) ≤ R. However, verifying
this conjecture appears to require some new techniques and ideas beyond the reach of
this paper.
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