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Abstract

In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life
insurance embedding the problem in a quantile regression framework using the neural network approach.
As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute
quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regres-
sion combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression
approach with a QRNN. In both cases, we adopt a two-part model scheme where we fit a logistic regression
to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the posi-
tive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better
performances of the proposed models with respect to the classical quantile regression one. We then use
the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing
that the proposed models provide a better risk differentiation.

Keywords: Quantile regression; Neural networks; Insurance pricing

1. Introduction

The use of machine learning in insurance pricing has flourished in recent years and the related lit-
erature is increasing accordingly. For example, Guelman (2012) adopts gradient boosting for auto
insurance cost modelling; Spedicato et al. (2018) performs insurance pricing optimisation using
several machine learning models; Henckaerts et al. (2021) use tree-based techniques such as GBM
in order to produce car insurance tariffs; Schelldorfer & Wiithrich (2019) employ neural networks
to enhance GLMs performances in non-life insurance and Wiithrich (2020) proposes two differ-
ent techniques to overcome the unbiasedness of neural network models for insurance portfolios.
Machine learning techniques have also found extensive application in the context of insurance
claim reserving: Gabrielli et al. (2020) improve the performances of over-dispersed Poisson model
for general insurance claims reserving by means of neural networks embedding, and Wiithrich
(2018) propose several machine learning algorithms for individual claim reserving.

However, such techniques only give an estimation of the expected value of the chosen variable
(claim frequency or claim severity), since they are designed to return the pure premium of a spe-
cific policy, where the expected value of the total claim amount is given by the product between
the expected values of claim frequency and claim severity. Hence, these models, even if they offer
insight into the average loss of a policy, are unable to provide the modeler with some valuable
information about its potential riskiness, e.g. the quantile of the total claim amount. To over-
come this problem a quantile regression approach, originally introduced by Koenker & Bassett
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(1978), may be considered since it provides information on the whole distribution of a given phe-
nomenon. The quantile regression technique represents a robust distribution-free methodology
that has been widely used in the financial literature to compute risk measures like the value-at-
risk (see for example Taylor, 2007; White et al., 2015; Laporta et al., 2018; Adrian & Brunnermeier,
2016; Petrella & Raponi, 2019; Taylor, 2020, and Merlo et al., 2021b).

The quantile regression approach appears particularly suitable in the insurance context, when
assessing the Solvency II capital requirements and calculating the premium safety loadings.
Furthermore, it enables the insurer to soundly gauge the portfolio riskiness (i.e. computing the
Value-at-Risk of a given portfolio). Modeling the quantile claim amount through the quantile
regression (QR) has already been discussed by a handful of authors: Kudryavtsev (2009) was the
first introducing the use of the two-stage QR model to estimate the quantile of the total claim
amount; Heras et al. (2018) propose a refinement of the previous model since they take into
account heterogeneous claim probabilities, whereas Kudryavtsev (2009) only considers a single
probability of having claims for each type of policyholder; Baione & Biancalana (2019) propose an
alternative two-stage approach, where the risk margin considered in the ratemaking is calibrated
on the claim’s severity for each risk class in the portfolio, avoiding some of the drawbacks that
characterise the technique proposed by Heras et al. (2018).

The common QR method requires the specification of a predetermined dependence structure
between the dependent variable and the covariates or to elaborate its complex functional form to
account for non-linearity or interactions among regressors. Unfortunately, the structural form of
the dependence is often unknown to the modeler. So, a different approach should be pursued in
this context. Neural networks appear to be an interesting modeling technique overcoming these
limitations since they can fit a complex data structure without any a priori assumption on the
relation among variables.

In this paper, we propose two innovative methods to estimate the conditional quantile of the
total claim amount for a group of health policies. The first one uses the quantile regression neural
network (QRNN), a particular specification of a feed-forward neural network originally intro-
duced by Taylor (2000), able to estimate conditional quantiles. This model, up to our knowledge,
has never been used in the context of insurance ratemaking.

The second model we propose considers a new extension of the combined actuarial neural net-
work (CANN) proposed by Schelldorfer & Wiithrich (2019) in a quantile regression framework.
The original CANN formulation is devoted to claim frequency estimation and combines a Poisson
GLM with a neural network. In our model, since we are interested in the conditional quantile of
the total claim amount, we nest the QR model into the structure of a neural network (Quantile-
CANN henceforth). This approach is able to represent additional information incorporated in the
data and not captured by the simple QR model.

The structure of the approach here considered is based on a two-part model. A simple, but
common and useful version of such model involves a model for a binary indicator variable and
a model for the response variable given that the binary indicator takes the value one. Following
this approach, we fit a logistic regression for the binary variable to estimate the claim probability
while we use a QRNN or a Quantile-CANN to model the quantile of the positive outcome. Using
the estimated quantiles of the claim amount, we finally calculate a loaded premium following the
quantile premium principle considered in Heras et al. (2018).

To verify the predictive ability of the proposed models, we conduct an empirical analysis using
an Italian health insurance dataset, where we compare the performances of the QR, QRNN, and
Quantile-CANN. The results highlight that QRNN and Quantile-CANN exhibit better perfor-
mance in terms of the quantile loss function compared to the classical QR. In particular, we notice
that the Quantile-CANN architecture is always able to enhance the estimates given by the QR
model. We then exploit the estimates provided by the different models in the calculation of a
quantile based insurance premium using the quantile premium principle (QPP) aforementioned.
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The analysis shows that premiums produced by the Quantile-CANN and QRNN provide a better
risk diversification for the portfolio.

The remainder of the paper is structured as follows: Section 2 explores the two-part model
considered in this work. Section 3 introduces the use of QRNN and of Quantile-CANN for the
estimation of the quantile of the total claim amount. Section 4 presents the empirical application
carried out on an Italian health insurance claim dataset. Section 5 concludes.

2. The Two-Part Quantile Model

In this Section, we discuss the two-part quantile regression framework, first considered by Heras
et al. (2018), devoted to conditional quantile estimation of the aggregate claim amount S; at level t
and for a specific policyholder i. Commonly, two-part models involve a mixture distribution con-
sisting in mixing a discrete point mass, with all mass at zero, and a continuous random variable.
In particular, they are described by two equations: a binary choice model is fitted for the proba-
bility of observing a positive-versus-zero outcome. Then, conditional on a positive outcome, an
appropriate regression model is fitted for the continuous outcome. The common structure of such
models assumes that the effect of the covariates influence the mean of the conditional distribution
of the response. However, in many real-world applications like the actuarial ones, the effect of the
covariates can be different on different parts of the distribution. For instance, the gender of the
policyholder may be irrelevant when modeling the average claim severity, while it may be strongly
significant when studying the upper quantiles of the claim severity. This idea is supported by the
results reported in Heras et al. (2018), where the authors show that the significance of a specific
categorical variable may vary across quantiles. For this reason, a quantile regression approach in
the two-part model may be appropriate.

In this paper, we focus our attention on the effect of covariates on the quantile of the aggregate
claim amount ;. In order to build the two-part quantile model (see Duan et al., 1983; Frees, 2010,
and Merlo et al., 2021a), we consider the indicator random variable Iy, measuring whether the
policyholder has zero claims or positive claims (where N; is the number of claims submitted by
the policyholder). If N; > 0 then a positive aggregate claim severity S; is observed.

Consistently with this approach, given a set covariates x;, we model the 7-th conditional
quantile of the total claim amount Qg,(7|x;) in two stages:

o the first stage allows to estimate the no claim probability p; = Pr(Ily, = 0) = Pr(N; =0) as
function of covariates. To achieve this goal, we use the logistic regression:

log (%) =xp, (1)

1

where the no claim probability is obtained as p; = m;

o The second stage uses p; to obtain the 7;* conditional quantile level of S, Qgi(ri* |x;), corre-
sponding to the v quantile level defined on the total claim amount S;, Qg;(t|x;). Following
Heras et al. (2018), the 7} level can be calculated as

=D ()
1-— pi
for which
Qs (7 |x1) = Qs (z|xy). (3)

In the literature, Qgi(ri*lx,-) is generally calculated using the well known quantile regres-
sion approach of Koenker & Bassett (1978). In this paper, we will generalised this approach by
introducing two alternative methods, the QRNN, a particular specification of Regression Neural
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Network introduced by Taylor (2000), and the Quantile Combined Actuarial Neural Network
(Quantile-CANN) which is a new method to calculate quantiles embedding the CANN approach
of Schelldorfer & Wiithrich (2019) in a quantile regression framework. These approaches allow
performing quantile estimation without imposing any predetermined structure for the relations
between the claim severity and the related covariates.

3. Quantile Claim Severity Models

The standard approach to tackle the problem of quantile claim severity estimation refers to
traditional QR models, see for example Kudryavtsev (2009), Heras et al. (2018) and Baione &
Biancalana (2019). In this paper, we generalise this approach by proposing the use of neural net-
work models to estimate the conditional quantile of the aggregate claim severity. This approach
allows performing these calculations without imposing any predetermined structure for the rela-
tions between the aggregate claim severity and the related covariates. In this way, we can capture
nonlinear and complex patterns in the data and possible interactions between predictors.

The first model we introduce is QRNN, which is basically a feed-forward neural network min-
imising the same quantile loss function minimised by a QR model. The second one is a new
model that generalises the CANN approach introduced by Schelldorfer & Wiithrich (2019) by
combining the QR model with a QRNN to improve the model’s performance, we call this model
Quantile-CANN.

Since all the aforementioned models are somehow based on quantile regression, we give a light
insight on QR models in the next subsection.

3.1. Quantile regression

Quantile regression, originally introduced by Koenker & Bassett (1978), is a distribution free
method providing a way to model the conditional quantiles of a response variable with respect
to a set of covariates in order to have a more robust and complete picture of the entire condi-
tional distribution with respect to the classical mean regression. Quantile regression approach is
quite suitable method used in all the situations where specific features, like skewness, fat-tails, out-
liers, truncation, censoring, and heteroscedasticity arise. In this section, we show how to calculate
le_(ri* |x;) using QR standard tools, in particular, we analyse how to calculate the quantile of the

log(gi). The use of the logarithmic function derives from the need to transform the dependent
variable from R to R to apply the QR approach. Moreover, the use of the logarithmic transfor-
mation is coherent within the insurance pricing context, since it allows to consider multiplicative
tariffs. In addition, by considering the equivariance under monotone transformation property of
the quantile, it is possible to retrive the quantity of interest, i.e. Qlog(gi)(rﬂxi) = log(Qgi(ri*|xi)).
For notational simplicity, hereafter, we will use 7* instead of ;" in the formulas below.

The quantile regression model can be stated as follows:

log(S)) = %.B(t*) + &, forall i=1,2,...,1, (4)
where B(t*) = (B1(t*), B2(T%), . . ., By (t™)) € RT is the vector of unknown regression parame-
ters and ¢; having the 7*-th conditional equal to zero foralli =1, 2, . . ., I. The estimation of the of

the regression parameters f8(t*) can be obtained by solving the following minimisation problem:

T
N 1 ~
B(r*) =argmin — 3 pe-(log(S) — ¥(x"), (5)
B(r*) i=1
1
where p,+ is the quantile loss function defined as
prr (1) = u (t* — Lu<p)) (6)
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with I(,) being the indicator function. The conditional quantile of S; is then estimated as

Qs (T*|x) = exp(«/B(1*)).
In what follows we explore the model proposed based on the neural network approach.

3.2, Quantile Regression Neural Networks
QRNN is a modeling technique introduced by Taylor (2000) based on the neural networks that
enables to estimate the conditional probability distribution of multiperiod financial return within
a quantile regression framework. With this approach, it is possible to estimate potential non-linear
quantile relations without imposing any distributional assumption or functional relations between
dependent and independent variables. Several applications of the methodology have already been
implemented in different fields, see for instance Xu et al. (2017) and Cannon (2011). Up to our
knowledge, the QRNN methodology has never been considered in an insurance pricing context.
At a deeper insight QRNN model, for a fixed depth K € N, and fixed t*, follows a typical feed-
forward structure:

Quogs) (T =exp <0(K+1), <Z(K)(9(K)) 00290900 z<1)(0<1))> (xz-)>, fori=1,2,....I, (7)
where the output of the network is given by the exponential activation function applied to the
scalar product between the readout parameter vector 8X*?) returning one neuron in the out-
put layer and the composition of the different K hidden layers z(l)(ﬂ(l)), . ,z(K)(ﬂ(K)), where

oW, ... 0% are the parameters belonging to each layer.
The generic s-th hidden layer s©)(8)) of dimension g; € N is defined as

2909 RIS RE, 200 = (20600), - ,200), L Z009), ®)

where the j-th neuron in the s-th hidden layer is given by

qs—1
29609 =¢ <9jf3’ DI Zfs‘”w?s‘”)) = (69,2700 ), (9)
=1
where ¢ is the activation function and 0](-5) = (Gj(’f)),Qj(j), ... ,9]-(’;)571)’ is the vector of parame-

ters belonging to j-th neuron in the s-th hidden layer. Considering the vector of parameters
0(15), . ,05;5) for each neuron in (8), we can define the matrix of parameters for the s-th hidden

layer as 00 = (0(15), o ,0;5), cs 05;5))/ of dimension g5 x (1 + qs_l)l.
Since the network in (7) has K hidden layers, it is possible to denote with 6 the full set of
parameters for the network gathering the matrix of parameters of each layer:

0 — {,,(1)),,, 00 ... ,0<K>’0(K+1)} (10)
with dimension r, where r = Zf:ll qs(1 + gs—1)-

To obtain the optimal set of parameters 0 for (10), we train the network (7) minimising the
quantile loss function:

I
1 ~
argmin 7 E pr+(10g(8i) — Qg3 (T™)) (11)
0 i=1

where we fix the starting value of the network parameter 6 at the beginning of the training.
From (7) and (11), we estimate Qlog( gi)(r*), then given the equivariance to monotone transfor-

mation of the quantile function we retrive Qsi(r*) = exp( Ql o g(gi)(r*)).

Note, when s = 1 in (9) we have z(¥) = x; as the input layer in the right hand side of the equation.
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Figure 1. QRNN architecture.

It is worth noting that if we replace the exp and the ¢ activation functions in (7) and in (9) with
the linear activation function and we consider no hidden layers, then the QRNN boils down to the
classical QR model in (5). For a visualisation of the QRNN architecture, see Figure 1.

3.3. Quantile-CANN

The innovative model we propose in this section to estimate the quantiles for the distribution of
interest is an extension of the combined actuarial neural network (CANN) approach proposed
by Schelldorfer & Wiithrich (2019) and launched in the editorial of Wiithrich & Merz (2019).
In particular, the CANN framework nests a generic regression model into the neural network
architecture to enhance the estimates given by the generic regression model. Following the CANN
approach, but in a quantile framework, we boost the QR model with the neural network features
proposing the so-called Quantile-CANN model. Our approach allows for exploiting the quantile
neural networks to improve the conditional quantile estimates given by a QR model. In such a
way, the neural network directly improves the classical QR estimates, preserving the information
contained therein.

The main advantage of the Quantile-CANN approach compared to the QRNN is that it com-
bines the flexibility of the networks with the interpretability of a QR approach, so providing higher
explainability. According to Wiithrich & Merz (2019), when the reference regression model is
already close to optimal, its maximum likelihood estimator can be used as initialisation of the
neural network fitting algorithm, we use the QR estimator to initialise the network parameter
of the Quantile-CANN, then obtaining lower computational time for the network parameters
calibration than the QRNN model.

Formally, we define the Quantile-CANN as

QAN (%) = (B(x*),x1) + (867D, (200X 0 02060W)) (x),  for i=1,2..,1, (12)
where the first term of the right hand side of (12) refers to the QR model in (4) with vector of
parameters (t*), while the second term is the QRNN model displayed in (7) (except for the miss-
ing exponential activation in the output layer). Therefore, the Quantile-CANN model combines
the models discussed in the two previous subsections (3.1 and 3.2) by embedding the QR into
the network architecture using a skip connection that links the input given by the QR estimates
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Figure 2. Quantile-CANN architecture.

to the output layer (see Figure 2 for a graphical representation), where the models are merged
by summing the two parts as in (12). The network parameter of the Quantile-CANN model is
denoted by # and consists of

9= {ﬂ(l’*)ﬁ} — {,B(T*),0(1), .. ’g(K),o(KH)} (13)

The optimal set for the network parameter # of (13) is obtained training the Quantile-CANN
(12) minimising the quantile loss function:

1

1 -

argmin > pr+(log(8;) — QN (). (14)
s i=1 t

The optimisation process to estimate ¢ in (13) works as follows: we first obtain B(t*) parameters
minimising the quantile loss function for the quantile in (5). Then we use such parameters to
initialise the network parameter of the Quantile-CANN by considering # = { [}(r*), 0o }, where
0 is the starting value of the network parameter belonging to the QRNN part of model (12).
Therefore, starting from #(, we optimise # minimising (14) by means of the gradient descent
algorithmz. During the optimisation process, both 6 and B(z*) parameters are trained.
Given the optimal set of parameters #, from (12), we estimate
A A A(K+1) ~(K) ~(1)
QAN ) = (B x) + (87 (296 )0+ 0200™)) (x0) (15)
CANN (%
gy (7))
Note that if the Quantile-CANN model does not return any improvement with respect to
the QR model it means that the latter is already able to capture all the relevant information
incorporated in the data.

then, the quantile of the claim severity is obtained as Qg_ANN (%) = exp(@

2Gradient descent is an optimisation algorithm used to find the parameters minimising a loss function. On each iter-
ation, the parameters are updated in the opposite direction of the gradient of the loss function and the local minimum is
reached by following downbhill the direction of the gradient, see Hastie et al. (2009).
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Table 1. Summary of the variables available in the dataset.

Variable Description

Covariates

AG(age) e Ageofthemsured(myears) e e et
GE(gender) S Genderofthelnsured(male/female) SN
PE (permanence) Years of permanence in the insurance coverage for the insured

'RE(region) Italian Region of residence for the insured (categorical variables with 21 classes)

DM (dimension) ~ Dimension of the company the policyholder is working for (number of employees),

for insured different than the policyholder the dataset reports the value of the policyholder
Binary dependent variable
Iy; (claims binary variable) Binary variable reporting 1 if the insured filed at least a claim and 0 otherwise
Positive dependent variable
S; (total claim severity) Total claim severity submitted by the insured during the year (in euros)
If the insured submits no claims the dataset reports a blank

4. Case Study
4.1. Data description
To assess the ability of the models proposed to capture additional information incorporated in
the data, we carry out an empirical case study based on an Italian health insurance claim dataset.
The data stem from an Italian insurer and report the claims collected in a general health insurance
plan during 2018. The plan provides risk coverage for managers and retired managers belonging
to companies of a specific industry in Italy. More specifically, the dataset consists of 132, 499 pol-
icyholders (employees or former employees). Since each policyholder can also enroll his relatives
(spouse and children below 25 years of age) in the insurance coverage, we totally have 301,405
insured. For each one of them, the following information is available: a binary variable signaling
whether the insured submitted at least a claim during the year, total claim severity per year, age,
gender, region, firm dimension, and time of coverage permanence (in years). Table 1 provides a
summary for the information available in the dataset.

Among the insured, we count a total of 217,006 claimants, the monetary volume of the
submitted claims is about euro 243 m.

In Figure 3 and Table 2, we report the histograms and the frequency tables for the variables
in the dataset. The age (AG) variable is strongly concentrated at older ages, we notice a “dip” in
the distribution between 25 and 40 years, this is due to the specific subscription policies of the

Italian insurer: since the policyholders are managers, it is unfrequent they have less than 40 years3
moreover, they are not allowed to enroll in the insurance coverage their children above 25 years
of age. That’s why we observe only a small number of insured between 25 and 40 years. The gen-
der (GE) is rather balanced between the two classes. The permanence (PE) is an integer variable
that reports the years of permanence in the insurance plan, minimum is 0 (for new comers) and
maximum is 41 (for early adopters). Observing the plot in Figure 3, we notice a decreasing trend;
however, there is strong peak around 38 years, probably due to the subscription of the policy by
a consistent number of companies in the industry. For the region (RE), we observe a strong con-
centration in 2 of 21 Italian regions: “Lombardia” and “Lazio”, where most firms have their head
office. Dimension (DM) is the number of managers of the company to which the policyholder
belongs, the value of this variable is the same across all the insured belonging to the same family
and ranges from 1 to 1,500, with a strong concentration below 100, which represents the small to
medium sized firms (that are specific to the Italian economy).

3The Italian labor market is seniority driven, hence it is particularly difficult to become a manager at younger ages.
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Figure 3. Histograms for the covariates and the total claim severity.

In the right bottom panel in Figure 3, we also plot the histogram of the aggregate claim severity
for the 217,006 claimants. We recall that the aggregate claim severity is defined as the sum of the
cost of all claims submitted by a given claimant. As it is common in this field, the distribution
is right-skewed, from the plot we observe the existence of some large claims; however, the tail
doesn’t seem to be particularly fat.

4.2. Evaluate model performance

To assess the general performance of the QR, QRNN, and Quantile-CANN models, we use the
aforementioned dataset at different t* levels. Specifically, the performance of each model is mea-
sured in terms of quantile loss function (see Equation (6)), where the lower the loss the better the
model.

The results reported in Table 3 are obtained by means of five-fold cross validation, where the
dataset is divided in five folds and at each iteration, three of the five folds are used as training
set, one as validation and one as testing set. The network models are trained over 2, 000 epochs
using early stopping on the validation set to avoid overfitting. For the early stopping, we employ
a patience parameter of 200 epochs; hence, the training stops when the validation loss does not
decrease for at least 200 epochs. When training stops, the network weights obtained at the 200th
last epoch are restored and saved as the optimal parameters for the model. Both models adopt

a three hidden layer structure of dimension (20, 15, 10), we consider the hyperbolic tangent4

activation function for QRNN, while we use the ReLu activation function for Quantile-CANN.
As for the variables presented in Table 1: AG, PE, DM are Min-Max scaled, GE is dummy encoded

4The hyperbolic tangent activation function is defined as: ¢(x) = tanh(x).
SThe rectified linear unit (ReLU) activation function is defined as: ¢ (x) = x - I;>o.
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Table 2. Frequency tables for the covariates and the total claim severity.

Absolute Relative Absolute Relative
Variable frequency frequency Variable frequency frequency

AG (age)

[0’10) 19,140005357 ..Lomba.rdi.a.. B 113,552 0377227
[10,20) ................ 36,260 ........ 0120443 ........ La.zio ................... 48’066 ....... 01 59664
[20’30) 13639 0045305Em|[|a Romagna e 30’063 . 0099362
[30, 40) 6,333 0.021037 Piemonte 27,436 0.091136
[40’50) B 37,9970125217v9neto B 22’243 0073886
[50, 6.0.) ................ 52,742 ........ 0175197 ........ TOSC én.a .................. . 2,321 ....... 0042533
[60’70) 46,869 0155688nguna e 12’227 0040615
[70, 80) 56,896 0.188996 Others 34,626 0.11502
[

80, 90) 26,454 0.087874 DM (dimension)

[90, o0) 4,714 0.015659 [0,9) 97,256 0.323062

GE (gender) (10, 19) 10,6676 0354354

F 152,835 0.507683 120, 49) 35,131 0.116697
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Table 3. In-sample and out-of-sample quantile loss function at the different * levels.

In-sample Out-of-sample

i QR QRNN Q-CANN QR QRNN Q-CANN
0.7 487.91 485.00 484.32 488.09 485.84 482.58
0.85 441.02 436.11 435.26 441.33 437.04 434.30
0.9 » 382.15 378.30 377.75 382.52 379.40 » 376.82

and RE is treated using a d =1 embedding layer. As for the QR model, we consider a splines
function to model the AG and the PE effects.

For each model, we estimate the conditional quantile of the total claim amount at levels t* =
(0.7,0.75,0.80, 0.85, 0.9) and compute the respective in sample and out of sample quantile loss
function to evaluate their performance.

For our dataset, QRNN and Quantile-CANN exhibit an overall better performance in terms of
the quantile loss function compared to the classical QR for each quantile level t* (see Table 3). It
is interesting to note that Quantile-CANN always yields a lower quantile loss function compared
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to the QRNN, suggesting that building the network around the QR has not only improved the
performance given by the QR model but also beats the QRNN. The results above illustrated seem
to suggest that using a neural network approach can be appealing. However, such models often
face one major drawback: the lack of explainability. Indeed, neural networks have a huge number
of parameters and a complex inner structure made up of several hidden layers, that make make
very difficult for the modeler to understand the results. To overcome such limitations, in recent
years, a wide literature covering the topic of model agnostic tools has flourished, see Friedman &
Popescu (2008a) and for an actuarial case study Lorentzen & Mayer (2020) or Henckaerts et al.
(2021), aiming at providing interpretative tools for machine learning models.

The corresponding literature has a plethora of well established model agnostic techniques. In
this work, we exploit the permutation variable importance of Breiman et al. (1984) to gauge the
relevance of each covariate in the model; the ICE curves and the PD plots to showcase the marginal
effect of a covariate over the prediction produced by the model; the H-squared statistic Friedman
& Popescu (2008a) in order to spot potential interaction effects between the covariates.

4.3 Variable importance

Permutation variable importance of Breiman ef al. (1984) measures the increase in the deviance
of a model after permuting the values of a given covariate. The basic idea is quite simple: the
importance of a covariate is measured by calculating the increase in the model’s deviance after
permuting the covariate. In other terms, the variable importance is the increase in model deviance
when the information provided by an explanatory variable is destroyed. Such variable is deemed
important if randomly shuffling its values increases the model deviance, because in this case the
model relied on the feature for the prediction. While, a covariate is not important if shuffling its
values produces little to no increase in the model’s deviance

In what follows the general framework for the algorithm.

Let f be the generic prediction function given by a model, where x is the feature matrix, y is
the vector of observations and D(y,f) is the model’s deviance. For instance in QR we have f =

exp(¥'B(1*)) and D(y, f) = pr+(y — f).

1. We estimate the original model Deviance Dy = D(y, f(x));
2. For each covariate j=1, ..., p:

e take the covariate matrix x;, that can also be represented as x; = {x. 7 x,,_j}, where x_j is the
column vector belonging to covariate j and x,_; is the matrix for the other covariates. Get
the set of covariates x”"" by permuting the values in x_j;

e estimate model deviance Dyerm = D(y, f(x5°™));

e compute the Permutation Variable Importance for covariate j as I = Dperm — Dy

3. Sort covariates by descending order I; for j =1, ..., p.

Permutation variable importance can be either performed on the training set or the test set.
Performing the analysis on the test set informs the modeler on how much the model counts on
each covariate for the predictions, while using the test set would give a hint on the relevance of the
covariate for the performance of the model on new and unseen data.

In Figure 4, we report the variable importance metric to find the most relevant variables in our
dataset for the quantile models. The variables are ranked from top to bottom, starting with the
most important one as measured by the variable importance. For all models, the most important
variable is the Age (AG) followed by the spatial variable (RE), the other variables are far less rele-
vant; however, they seem to have a somewhat higher importance in network models with respect
to the QR.
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Figure 4. Variable importance for QRNN (left), Quantile-CANN (middle) and QR (right), trained at level t* = 0.8. The results
report are obtained on the first fold of the 5-fold cross validation.

4.4 Main effects

ICE profiles are a useful tool to study the marginal effect of a covariate over the response provided
by the model. Such a profile, for a given covariate j, shows how the prediction provided by the
model for an observation obs; = x; reacts when the covariate x;; slides over its range of possible
values.

In particular, producing ICE profiles for a set of observations gives a hint on how the response
evolves with respect to the different values of the variable. An ICE plot represents the relationship
between the prediction and a specific covariate for each single observation separately, producing
one profile (or line) per observation. The values for a line of the data matrix is obtained by fixing
the values of all other covariates and creating variants of this observation by replacing the covari-
ate’s value with values coming from a grid and producing predictions with the model for these
new observations. This procedure, for a specific observation, results in a set of points given by the
feature value from the grid and the respective predictions. From an algorithmic standpoint, we
have:

1. take an observation obs; = x; and the corresponding prediction f(x;) given by the model.
2. x; is a p dimensional vector that can also represented as x; = {x;;, xi,_j}, where j is the
covariate we want to study.
3. Consider the grid of V possible values (v, v, . . ., vy) for the selected covariate j.
Then for each v; with k=1, ..., V we repeat:
® Xjj= Vg-
o obsi=x;= {vk, x,-,_j}.
o ICE], =f(obs).
. i 1V . %
Once the process ends, we obtain a curve {I CEiy, }k=1 corresponding to {vk, x,-,,j} k1"

The process is repeated potentially for each observation in the dataset and each variable.
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Figure 5. Partial dependence plot for the age of the insured (AG), years of permanence (PE), gender (GE), and region of the
insured (RE). The models are trained on the first fold of the 5-fold cross validation and fitted at level t* = 0.8. The curves are
obtained averaging ICE profiles plotted using 200 randomly selected observations in the training set.

The ICE profiles are useful to highlight the presence of interactions. Infact, the stronger the
interaction effects associated with the variable j, the greater the differences in shape observed
across ICE profiles. However, this model agnostic tool does not reveal with which other variable
the interaction arises. Note that, by construction, ICE profiles of a given covariate j are parallel as
long as the underlying model does not incorporate interactions (like in a GLM or in a QR on the
log scale transformation).

The partial dependence (PD) profiles of Friedman & Popescu (2008b) are obtained averaging
different ICE profiles of a given variable j. PD profiles can be viewed as the main effect of covariate
jmerged over all observations. In other terms, they represent the average effect of variable jand are
able to display whether the relationship between the response and a covariate is linear, monotonic,
or more complex.

PD marginalises the model’s prediction over the distribution of the covariates in x__j, so that
the profile displays the relationship between variable j and the output produced by the model.

If we consider the ICE profiles obtained for variable j over a set of n observations, I CE;)Vk where
i=1,..,nand k=1,..., V, the PD profile is obtained as
%

ZIC i,k i

k=1

D = (PD’;I, o ,PD{,V> . with PD), = (16)

where, again, V is the grid of possible values for the selected covariate. The PD{,k function, for a
given value v; of variable j, reveals the average marginal effect on the prediction returned by the
model. Note that PD profiles are not restricted to a single variable, it is also possible to consider
multiple variables at the same time in order to study their joint effect on the response.

In Figures 5 and 6, we consider PD plots and individual conditional expectations (ICEs) to
gain an understanding of the main effects of the variables over the conditional quantile of the
total claim severity, for the different models. The different ICE profiles in Figure 6 were coloured
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Figure 6. ICE profiles for the age of the insured (AG), years of permanence (PE), gender (GE), and region of the insured (RE).
The models are trained on the first fold of the 5-fold cross-validation and fitted at level z* = 0.8. The curves are plotted using
200 randomly selected observations in the training set.

to report the amount of the observed claim (the darker the colour the higher the amount) to
detect possible peculiar profiles. The top-left plot in Figure 5 compares the PD plots for the AG
variable produced by the different models. At first glance, the curves look quite similar, however
taking a closer look we notice an important difference in the leftmost part of the plot, for the
values below 25 years of age. More specifically, for both QRNN and Quantile-CANN, we observe
an upward trend in the riskiness of the insured, starting from 500 euros and peaking at 1, 500
euros at around 15 years of age, then the curve falls off down to 700 euros at 25 years. While the
QR shows a flat trend kicking off at around 1, 000 euro and slowly increasing after 25 years of
age. The behaviour displayed by network models seems to be more reasonable, since it captures
the cost for dental treatment in younger ages, as it is usually low for children below 10 years,
while it raises significantly for teenagers often associated with the use of dental braces. The ICE
curves associated with the PD plot displayed in the top-left plot of Figure 6 do not seem to reveal
specific interactions within the neural network models, since all the profiles look almost parallel
in the plot, which is the case when the variable has little to no interactions with other variables.
Of course, the ICE profiles for the QR are always parallel (on a log scale), since the variables are
always modelled additively.

The permanence (PE) PD plots display a similar evolution but at different levels (top-right
pane in Figure 5). Furthermore, for this variable, we observe some wild ICE profiles (top-right
pane in Figure 6), that may signal the presence of interactions with other variables. The Gender
(GE) variable does not seem to have a particular behaviour, in fact, the range for the y-axis is
pretty narrow. As for the regional variable (RE), the PD plots show almost identical profiles, with
a particularly riskiness associated with insured living in Lazio and Valle d’Aosta.

4.5 Interaction effects

After having a look at main effects and at some clues on possible interactions in Section 4.4, here
we closely study possible interaction effects between covariates captured by the network models.
When a given model incorporates an interaction effect, its predictions cannot be expressed as
the sum of its variables’ main effects, because the effect of one variable depends on the value of
another variable. To assess the presence of interaction effects, we adopt the H-statistic introduced
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Figure 7. H-statistic of the possible two-way interactions for the different quantile models, fitted at level t* = 0.8 and trained
on the first fold of the 5-fold cross-validation.

by Friedman & Popescu (2008b), which estimates the interaction strength between two covariates
by measuring how much of the prediction variance originates from their interaction. To measure
pairwise interaction strength between covariates j and k, H-statistic is defined as follows:

H2 = Xn: [P‘ka _pD — P‘D"]2 / Xn: (PD*y? 17)
i=1

J
i=1

. sk . 6
where the sums run over a subset of n randomly selected observations, PD" is the centered version

of the PD profile for variable k, and PD" is the centered two-way PD for variable j and k. In other
words, Hj, measures the proportion of variability in the joint effect of x ; and x ; unexplained
by their main effects. A value close to zero indicates almost no pairwise interaction, while a value
close to one means that most effects come from the pairwise interaction. The H-statistic can also
be larger than 1, this can happen when the variance of the joint interaction is larger than the
variance of the 2-dimensional PD plot. Hence, the interaction strength is measured as the share of
variance explained by the interaction.

In Figure 7, we plot the values of the H-statistic for each model and each possible pairwise inter-
action. As discussed above, the QR model does not display any interaction between covariates,
since it is not designed to do so. While, both QRNN and Quantile-CANN display some specific
interactions. The strongest common interaction between the two models is the one between the
firm’s dimension (DM) and the gender of the insured (GE), followed by the one between the
Permanence (PE) and, again, the Gender (GE). To gain insight on the behaviour of the interac-
tion effects, in Figures 8 and 9, we report PD plots for Dimension (DM) and Permanence (PE),
grouped with respect to Gender (GE). The interaction appears to be relevant if the curves display
a different behaviour when conditioned to the different values of the gender variable.

The centered version for the partial dependence profile is obtained via Equation (16) where instead of using the ICE
profiles discussed in Section 4.4 we consider a set of ICE profiles that are centered around zero.

https://doi.org/10.1017/51748499523000106 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499523000106

Annals of Actuarial Science 45

QRNN QCANN
{ /“
[ \
[ 1700 \ :
/ \\ /
1800~ f \ y
S | \ /
\\ fl \i. /’l
! \ .,‘
{ \ ’:
| \ /
/ \ /
/ 1600- N~
g \ f.’ Gender 2 \ Gender
/ - 3 \ , =
el | \ M
\ \ /,/
s \ i
\-‘, _// \\.
\/
1500- /
1600-
‘ | | | | 1400 I ; f ;
0 10 20 30 40 0 10 20 30 40
PE PE
Figure 8. Grouped partial dependence plots for the permanence variable with respect to gender.
QRNN QCANN
e 1700- A
7z s N\
1700- 7 =
4 ™
\ /
/
/
\ 1650- .
/ \ /
1650- \ /
.\‘ ’,’ \\
\ / \
\ f “.‘
N 1600- / \
2 1800- \ Gender / \‘ crvier
= \ F = \ F
g \ g / \
\ M | M
\ / \
/ \
L 1550- / \
¥ § \
1550- . \
Noili -
1500-
1500-
‘ | | | 1450- ‘ } I
0 500 1000 1500 0 500 1000 1500
DM DM

Figure 9. Grouped partial dependence plots for the dimension variable with respect to gender.

For the first interaction, in Figure 8, we notice that both network models recognise higher
riskiness to male insured, indeed in the two panels, the blue line (in Figure 8) lies always above
the red curve. However, there are some relevant differences between QRNN and Quantile-CANN
that are worthy of discussion. In particular, in the QRNN plot, the two curves display a downward
parabolic trend which is rather steep for male insured and far flatter for females. Both curves
reach their minimum at around 25 years of permanence and then they start increasing again,
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reaching 1, 900 euro for males and 1, 700 euros for females, the difference between the two curves
is rather stable across the plot (though not constant). For Quantile-CANN, we observe a somewhat
different behaviour, in fact, the two curves display a large distance for the insured with less than 10
years of permanence, while in the right part of the plot the distance in terms of potential riskiness
between males and females is almost negligible.

Also for the interaction between dimension (DM) and gender (GE), the grouped PD plots
(Figure 9) report an higher riskiness associated with male insured. Both panels show an upward
parabolic trend with a maximum at around 500 for both plots for the PD plots associated with
males insured. In the QRNN panel, we notice a quasi-sinusoidal trend for the females grouped
PD plot, with a very low variability for the values in the y-axis. In other terms, for the QRNN, the
dimension variable only has some sort of significant effect for males, while for females the effect
of this variable seems negligible. As for the Quantile-CANN female plot, we have first had a sub-
stantially stable trend, then followed by a downward parabolic trend, with a good variability for
the insured potential riskiness.

Thus, even though the gender variable did not appear to be significant in Figures 4 and 7, it has
some relevance when interacting with other covariates. As shown above, network models have
proven to be good at detecting such interactions.

4.6 Ratemaking

In Section 4.2, we have investigated models’ behaviours evaluated at different quantile levels. We
are now interested in evaluating models’ performances when the focus is estimating the quantile
premium principle introduced by Heras et al. (2018), where the premium paid by the insured
is loaded according to its potential riskiness. In particular, we consider the convex combination
of the quantile claim severity Qgi(ri*|x,-) and the conditional expected value of the total claim
amount S;:

Pi=y Qg (t}1x) + (1 — ) - E(Silx), (18)

where 0 < y < 1 is the loading factor and E(S;|x;) the conditional expected value of the total claim
amount that can be decomposed as E(S;|x;) = Pr(N; > 0]x;) - E(S;|x;). Note that Pr(N; > O|x;) =
1 — p; can be obtained from Equation (1), while E(Si|x;) is estimated using a Gamma regression
model as in Frees (2010). In order to compute (18), we need to obtain (A)gi (7;|x;) using the two-part
model discussed in Section 2.

The two-part model is estimated in taking the first fold in the 5-fold cross-validation, where
we consider a 60-20-20 split between learning, validation, and testing set. The first step of the
two-part model consists in estimating the no claim probability p; for each insured using logistic
regression. Then as discussed in Section 2, the estimated p; is employed to compute the 7;* level
as in Equation (2) for each insured setting T = 0.95. As a result of this first step, we obtain 47,120
unique values for 7} ranging between 0.799 and 0.896. Following the two-part approach designed
by Heras et al. (2018) would involve fitting a regression model for each different quantile level ;.
Doing this would be rather time-consuming. Thus, to avoid that, we approximate the 7;* values
up to the second digit, where the second digit is rounded to the closest even digit7 we perform
the second step of the two-part model by computing the conditional quantile of the claim severity
Qg{(rﬂxi) using QR, QRNN, and Quantile-CANN.

In order to test the ability of the different models to accurately estimate the desired quantile
level of S;, we use the backtest criteria approach. More specifically, the models are backtested using
the unconditional coverage (UC) test proposed by Kupiec (1995), which is a widespread testing
technique generally employed to validate VaR models in the financial literature. This technique

"For instance: 7 = 0.815 is rounded up to 0.82, while 7} = 0.805 is rounded down to 0.80. This approximation results
in six different quantile levels 7;* for the testing set.
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Table 4. For the different models we report the values for the LR, statistic and its cor-
responding p-values. The critical values of the LR, statistic is 3.84, denoting that the null
hypothesis is rejected at the 5% significance level. The asterisk indicates that the model
passes the test.

LRyc P-values
7 QR QRNN Q-CANN QR QRNN Q-CANN
0.8 0.02 9.19 5.51 0.86% 0.00 0.01
0.82 v 3.94 v0.02 v 1.19 v 0.04 0.v86* v 0.27;¢<
0.9 0.09 0.31 0.37 0.76x 0.57x% 0.54%

consists in a binomial test checking if the proportion of insured with a claim severity above the
conditional quantile is consistent with the predefined quantile level 7*. The UC test performs a
likelihood ratio test, where the null hypothesis of the test states that the probability of a violation’
isequaltor, = (1 — t*).

More formally, given a generic insured i, we can define the violation function as
1if &> Qq(z)1x)
Ii(t") = .. (19)

0 if S =Qg(r/|x)

Hence, given a portfolio composed of I insured, we define the total amount of the violations

occurred in the portfolio as I(7*) = Zle I;(t*), and the ratio of occurred violations as

, 1)
Tc= 7 (20)
It is now possible to define the UC test statistic as
1—1, I-I(t) 7, I(1)
LR, = —2lo = 21
uc g (1 — fc) fc (21)
The null and the alternative hypothesis for the UC test are defined as
Hy:t. =1, Hy:T. #1. (22)

In other terms, considering a portfolio of I insured, if the number of occurred violations . - I is
close enough to 7. - I, the test statistic LR, is low, and the null hypothesis is not rejected. There
is no evidence of any inadequacy for the tested quantile estimate. While, if the number of viola-
tions strongly differs from 7, - I, the test statistic increases indicating growing evidence that the
proposed quantile either systematically understates or overstates the portfolio’s potential riski-
ness, and thus the null hypothesis is rejected. In Table 4, we report the backtesting results for
QR, QRNN, and Quantile-CANN. In the left part of the table, we report the unconditional cover-
age test statistic LR, while on the right side of the table, we display the corresponding p-values,
keeping in mind that the null hypothesis is not rejected when the p-value is larger than 0.05.
From Table 4, we observe that QRNN and Quantile-CANN pass the backtest at almost all quan-
tile levels since the null hypothesis of unconditional coverage is not rejected. More specifically,
the QRNN and Quantile-CANN pass the test at all quantile levels, with the sole exception of the

8We have a violation when we observe an insured submitting a larger total claim severity w.r.t. the estimated conditional
quantile at level t,
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Table 5. Two-way comparison of Gini Indices for the models.

Competing model

Base model QR QRNN Q-CANN
QR = 4.47 5.83
QRNN 0.31 - 2.83

7% = 0.8 level, while QR fails the backtest at two quantile levels: 0.86 and 0.82. Therefore, QRNN
and Quantile-CANN seem more able to accurately estimate the quantile of the total claim severity
Qg, (t]|x4).

Once the models are estimated, we are able to calculate tariffs P; as in Equation (18) and eval-
uate them using the ordered Lorenz curve introduced by Frees et al. (2014). This tool is a twist on
the classical Lorenz curve usually employed in welfare economics to represent social inequality via
the Gini index, see Farris (2010). In insurance literature, the ordered Lorenz curve is employed to
compare different tariff structures issued by a set of competing models. Given a base tariff struc-
ture Pf"”e and a competing tariff Pgomp the Lorenz curve proposed by Frees et al. (2014) is ordered
with respect to the relativity r;:

P;omp

L 1
ri= szase (23)

A relativity r; consistently below 1 reveals a largely profitable policy for the company, that is likely
to be lost to a competing insurance company proposing a cheaper premium. Instead a relativity
r; greater than 1 signals an underpriced policy. Of course these statement hold true only if we
assume PfomP to give a sharper representation of the real risk compared to Pf’“se.

Given r;, the ordered Lorenz curve can be defined as follows:

S ST{Fu(ri) <sb Yo P {Fy(ri) < s}
YL S ’ S| phase ‘

for s € [0, 1] where F,(r;) is the empirical cumulative distribution function of the relativities r;.
The idea behind the ordered Lorenz curve is that a model producing tariffs with a greater Gini
index produces a stronger separation among premiums paid by the insured, signaling that such
model is more capable to distinguish good risks from bad risks. Hence, a tariff structure P;omp that
yields a larger Gini index is likely to result in a more profitable portfolio because of a better risk
differentiation.

Table 5 displays the two-way comparison of Gini indices for the network models and the QR.
The rows report the model generating the base tariff structure Pf’“se whereas the column stores

(24)

the model from which the competing tariff structure PfomP is generated. The approach we use for
selecting a tariff based on the Gini index is the “mini-max” strategy designed by Frees et al. (2014),
which consists of selecting the model that provides the minimum Gini index among the maximal
Gini indices taken over the competing models. The strategy is rather intuitive: if we have to choose
a base premium we chose the one that has the minimal maximum improvement when compared
to other models, meaning that the selected base premium is the least vulnerable to alternatives. In
practice, we look for the base model with the lowest value in bold in Table 5. The Quantile-CANN
appears as a clear winner since the other models are not able to achieve an high Gini index when
considered as an alternative (see the last row), signaling that this model leads to a tariff structure
that is the least likely to incur in adverse selection. The QRNN tariff structure achieves second
place, followed by QR.
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5. Conclusions

In the domain of insurance ratemaking, neural networks may be considered a tool to perform
high-dimensional nonlinear regressions. Following this line, in this paper, we extend such tech-
niques in order to estimate the conditional quantile of the total claim amount in the context of a
two-part model devoted to the definition of a loaded premium. To fulfill the quantile estimation
task, we propose two models. First, we use QRNN of Taylor (2000), which is a particular neural
network specification that has never been applied before in actuarial sciences. Next, we generalise
the CANN approach of Schelldorfer & Wiithrich (2019) introducing the Quantile-CANN, a flex-
ible tool that merges the classical QR with a QRNN allowing to improve the results given by the
QR model and the QRNN.

In the first part of the empirical application, Section 4.2, we test the performance of the pro-
posed network models against the traditional QR model over a health insurance claim dataset.
The results show that our models outperform QR in terms of quantile loss function. Furthermore,
for QRNN and Quantile-CANN, we apply the set of model agnostic tools discussed in Lorentzen
& Mayer (2020) to gain additional insight in the dataset.

In the second part of the empirical application, Section 4.6, we compute the Quantile Premium
Principle introduced by Heras et al. (2018) using the different models discussed in the paper
(QRNN, Quantile-CANN, and QR). To compare the tariff structures issued by the models,
we adopt the ordered Lorenz designed by Frees et al. (2014). According to this technique, the
proposed network models exhibit a better tariff structure w.r.t QR since they provide a better
risk differentiation for the portfolio. This feature is paramount for the insurer since a better
differentiation between good and bad risks is likely to increase profits.

This work focuses on the comparison between the neural network-based models and the quan-
tile regression, further research could explore different network configurations, i.e., increasing
the number of dimensions for the embedding layer used for the regional variable or even different
machine learning models, such as tree-based models or gradient boosting machines. Another pos-
sible development of this work could consider a multivariate QRNN or Quantile-CANN approach
in order to jointly model the conditional quantile of the total claim severity for different and
possibly correlated claim types.
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