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Constructing Double Magma on Groups
Using Commutation Operations

Charles C. Edmunds

Abstract. A magma (M, ⋆) is a nonempty set with a binary operation. A double magma (M, ⋆, ●)
is a nonempty set with two binary operations satisfying the interchange law (w ⋆ x)● (y⋆ z) = (w ●
y)⋆(x●z). We call a doublemagma proper if the two operations are distinct, and commutative if the
operations are commutative. A double semigroup, ûrst introduced by Kock, is a double magma for
which both operations are associative. Given a non-trivial groupG we deûne a systemof twomagma
(G, ⋆, ●) using the commutator operations x ⋆ y = [x , y](= x−1 y−1xy) and x ● y = [y, x]. We show
that (G, ⋆, ●) is a double magma if and only if G satisûes the commutator laws [x , y; x , z] = 1 and
[w, x; y, z]2 = 1. We note that the ûrst law deûnes the class of 3-metabelian groups. If both these laws
hold in G, the doublemagma is proper if and only if there exist x0 , y0 ∈ G for which [x0 , y0]2 /= 1.
_is doublemagma is a double semigroup if and only if G is nilpotent of class two. We construct a
speciûc example of a proper double semigroup based on the dihedral group of order 16. In addition,
we comment on a similar construction for rings using Lie commutators.

1 Introduction

Deûnition A double magma, (M , ⋆, ●), is a triple consisting of a non-empty set,
M, and two binary operations, ⋆ and ●, deûned on M satisfying the interchange law:

(w ⋆ x) ● (y ⋆ z) = (w ● y) ⋆ (x ● z),

for all w , x , y, z ∈ M

Wewill call a doublemagma proper if its operations are distinct and improper if its
operations are identical. Our goal here is to construct classes of examples of proper
double magma. We refer to a double magma as commutative, associative, or unitary
when both of its operations are, respectively, commutative, associative, or unitary (i.e.,
have an identity element). A double semigroup is an associative doublemagma.

In [3] Kock introduces the notion of a double semigroup in relation to two-fold
monoidal categories. He proves that both cancellative double semigroups and in-
verse double semigroups must be commutative. In this note we will discuss a natural
construction of doublemagma based on a group with operations deûned in terms of
commutation. Wewill determine (_eorem 3.7) exact conditions on the group so that
our construction yields a proper double magma and a proper double semigroup. It
is hoped that the rich source of examples of doublemagma thus produced will prove
useful to researchers studying these objects.

Received by the editors September 24, 2013.
Published electronically May 21, 2015.
AMS subject classiûcation: 20E10, 20M99.
Keywords: doublemagma, double semigroups, 3-metabelian.

497

https://doi.org/10.4153/CMB-2015-037-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-037-0


498 C. C. Edmunds

In [2] Eckmann andHilton, prove that everyunitarydoublemagma is an improper,
commutative, double semigroup with the same identity element for each operation.
In light of this theorem, if we are to produce proper examples, we must be sure that
not both magma are unitary. It is possible, however, for one of the two magma to
have an identity element and still produce a proper double magma. Let D = {a, b}
and deûne operations on D by the tables below.

⋆ a b
a a a
b a b

● a b
a a a
b b b

It is easy to check that (D, ⋆) is unitary and that (D, ⋆, ●) forms a proper, noncom-
mutative, double semigroup. Probably themost natural example of a doublemagma
in elementary mathematics is the set of integers with addition and subtraction. Note
that since subtraction is not associative, this forms a proper, noncommutative, double
magma but not a double semigroup. Similarly natural is the set of nonzero rationals
with multiplication and division.

_e fundamental idea of our constructions is to begin with any group G and a 2-
variable wordW(a, b) ∈ F2, the free group of rank two freely generated by a and b,
and deûne two binary operations on G,

x ⋆ y =W(x , y) and x ● y =W(y, x),

for each x , y ∈ G. To ensure a double magma, we must impose the interchange law,
(w ⋆ x) ● (y ⋆ z) = (w ● y)⋆ (x ● z) in this context. _us the following lawmust hold
in G,

W(W(y, z),W(w , x)) =W(W(y,w),W(z, x)) .

As a simple example of how our construction works, suppose W = ab−1. _e
interchange law becomes yz−1xw−1

= yw−1xz−1. Letting x and y be 1, we obtain
commutativity of G. Note that if G is commutative, the interchange law holds; thus
we conclude that (G , ⋆, ●) is a doublemagma if and only if G is an abelian group. To
determine if this is proper, we must investigate the law W(x , y) = W(y, x). From
xy−1

= yx−1 we deduce that (xy−1)2
= 1, and, letting y = 1, we see that G must be of

exponent two. _uswe have shown thatW = ab−1,(G , ⋆, ●) is a doublemagma if and
only ifG is abelian, and this is proper exactly whenG is not of exponent two. IfG is an
abelian group and not of exponent two, we note that neither operation of the proper
double magma constructed is commutative. _us we have a class of examples, one
for each abelian group not of exponent two, yielding noncommutative proper double
magma. If either operation is associative, then G is of exponent two; therefore this
constructionwill not produce a proper double semigroup. To give a speciûc example,
we can select G to be the cyclic group of order three, C3 = ⟨a; a3

= 1⟩. In this case the
operation tables generated by the construction are as follows.

⋆ 1 a a2

1 1 a2 a
a a 1 a2

a2 a2 a 1

● 1 a a2

1 1 a a2

a a2 1 a
a2 a a2 1
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_e remainder of this notewill be an investigation of the case inwhichW = [a, b],
the commutator of a and b. Herewewill produce inûnitelymany nontrivial examples
of proper doublemagma and proper double semigroups.

2 Preliminaries

Let G be a group. For each x , y ∈ G, we represent the action of y on x by conju-
gation as x y

= y−1xy and we write x−y = (x−1
)
y
= (x y

)
−1. _e commutator of x

and y is deûned as [x , y] = x−1 y−1xy. We abbreviate [[x , y], z] by [x , y, z] and,more
generally, [[x1 , . . . , xn−1], xn] by [x1 , . . . , xn]. Further, we denote the commutator
[[w , x], [y, z]] by [w , x; y, z] and,more generally,

[ [x1 , y1; x2 , y2; . . . ; xn−1 , yn−1], [xn , yn]] = [ [x1 , y1; x2 , y2; . . . ; xn , yn]] .

_e subgroup of G generated by {[x1 , . . . , xn] ∶ x i ∈ G(1 ≤ i ≤ n)} is the n-th term of
the lower central series of G, denoted γn(G) with γ1(G) = G. If γn+1(G) = {1},
we say G is nilpotent of class n. Note that γ2(G) = G′, the derived group of G.
_e second derived group of G, denoted G′′ is the subgroup of G generated by the
set {[w , x; y, z] ∶ w , x , y, z ∈ G}. If [w , x; y, z] = 1, we refer to G as metabelian.
_en G is 3-metabelian if all of its three generator subgroups are metabelian. In [4]
I. D. Macdonald showed that the single law [x , y; x , z] = 1 deûnes the variety (equa-
tional class) of 3-metabelian groups precisely. Bachmuth and Lewin [1] proved that
the law [x , y, z][y, z, x][z, x , y] = 1 also deûnes the variety of 3-metabelian groups.

_e following identities hold for all x , y, z ∈ G:
(Ii) [x , y] = x−1x y

= y−x y,
(Iii) [x , y]−1

= [y, x],
(Iiii) [x−1 , y] = [x , y]−x

−1
and [x , y−1

] = [x , y]−y
−1
,

(Iiv) [xy, z] = [x , z]y[y, z] = [x , z][x , z, y][y, z],
(Iv) [x , yz] = [x , z][x , y]z = [x , z][x , y][x , y, z].

3 Construction

Given a group G, we deûne two binary operations ⋆ and ● on G as follows. For each
x , y ∈ G,

x ⋆ y = [x , y] and x ● y = [y, x].

Proposition 3.1 For any group G the following statements are equivalent.
(i) (G , ⋆) is commutative.
(ii) (G , ●) is commutative.
(iii) For each x , y ∈ G, x ⋆ y = x ● y.
(iv) For each x , y ∈ G, [x , y]2 = 1.

Proof We will establish that each of the ûrst three statements is equivalent to the
fourth. Note ûrst that ⋆ is commutative if and only if [x , y] = [y, x] for each x , y ∈ G.
Applying (Iii) we obtain [x , y] = [y, x] = [x , y]−1, which is equivalent to [x , y]2 = 1
in G. _e other two equivalences are derived similarly.

https://doi.org/10.4153/CMB-2015-037-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-037-0


500 C. C. Edmunds

Note that if (G , ⋆, ●) is a double magma, then the equivalence of statements (iii)
and (iv) in Proposition 3.1 can be interpreted as saying that this double magma is
proper if and only if there are x0 , y0 ∈ G such that [x0 , y0]2 /= 1.

Proposition 3.2 Each of ⋆ and ● is associative on G if and only if [x , y, z][y, z, x] = 1,
for each x , y, z ∈ G.

Proof Associativity of the ûrst operation, (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z), translates into
commutators as [[x , y], z] = [x , [y, z]]. By (Iii) we have [x , [y, z]] = [[y, z], x]−1,
which is equivalent to [x , y, z][y, z, x] = 1. _e result follows in the samemanner for
“●".

Note that in both propositions the conditions being investigated turn out to be
“varietal" in the group G. Something close to this will occur for the interchange law,
which, according to the deûnitions of our operations, translates into the commutator
law

(CI) [w , x; y, z] = [x , y; x , z].

Wewill refer to this law as the commutator interchange law. If this holds for a group
G, its impact on the structure of G is interesting. We will show ûrst that (CI) implies
that G is 3-metabelian. But (CI) is not equivalent to 3-metabelian. We will identify
the class of groups determined by (CI) precisely in _eorem 3.6. _is will be proved
by commutator calculations, for which we will need to establish some preliminary
lemmas.

Lemma 3.3 For any group G, the following laws are equivalent.
(3Mi) [x , y; x , z] = 1.
(3Mii) [x , y; y, z] = 1.
(3Miii) [x , y; z, y] = 1.
(3Miv) [x , y; [x , z]u] = 1.

Proof We will show that (3Mi) is equivalent to (3Mii) and (3Mii) is equivalent to
(3Miii). _en we will show that (3Mi) is equivalent to (3Miv). By identities (Iii) and
(Iiii) we have [x , y; x , z] = [[y, x]−1; x , z] = [y, x; x , z]−[y ,x]

−1
. _us, if either (3Mi)

or (3Mii) holds, it implies the other. Similarly, if we begin with (3Mii) and apply (Iii)
and (Iiii), we obtain [x , y; y, z] = [x , y; [z, y]−1

] = [x , y; z, y]−[z ,y]
−1
. _us, (3Mii)

and (3Miii) are equivalent. To see that (3Mi) is equivalent to (3Miv), note that (3Mi)
follows from (3Miv) letting u = 1. Next suppose that [x , y; x , z] = 1. Substituting zu
for z and applying (Iv) twice, we obtain

1 = [x , y; x , zu] = [x , y; [x , u][x , z]u] = [x , y; [x , z]u] [x , y; x , u][x ,z]
u
.

Note that (3Mi) implies that [x , y; x , u][x ,z]
u
= 1; thus, (3Miv) follows.

_e labels on the laws above are to remind the reader of Macdonald’s result that
each of these laws deûnes the 3-metabelian variety.

Lemma 3.4 If G is 3-metabelian, then the following laws hold in G.
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(L1) [x , y, z; x , u] = 1.
(L2) [x , y; x , u, v] = 1.
(L3) [x , y, z; [x , u]]v = 1.
(L4) [x , y, z; y, u] = 1.
(L5) [x , y, z; x , u, v] = 1.

Proof To establish (L1)we beginwith (3Mi) in the form1 = [x , y; x , u] and substitute
yz for y. Applying (Iiv) twice, we obtain

1 = [x , yz; x , u] = [ [x , z][x , y][x , y, z]; x , u]

= [x , z; x , u][x ,y][x ,y ,z][x , y; x , u][x ,y ,z][x , y, z; x , u].

By (3Mi) the ûrst two factors are trivial, therefore our result follows. Given (L1) we
can show (L2) is an equivalent law using (Iii):

1 = [x , y, z; x , u] = [x , u; x , y, z]−1 .

If we begin with (L1) in the form, [x , y, z; x , uv] = 1, and apply (Iv) twice we have,

1 = [x , y, z; x , uv] = [x , y, z; [x , v][x , u]v] = [x , y, z; [x , u]v] [x , y, z; x , v][x ,u]
v
.

Since the second commutator is trivial by (L1), we have established (L3). To establish
(L4) we apply (Ii) and then apply (Iiv) and (Iiii) repeatedly:

[x , y, z; y, u] = [y−x y, z; y, u] = [ [y−x , z]y[y, z]; y, u]

= [ [y−x , z]y ; y, u]
[y ,z]

[y, z; y, u].

_e second commutator is trivial by (3Mi), therefore we have

[x , y, z; y, u] = [ [y−x , z]y ; y, u]
[y ,z]

= [ [yx , z]−y
−x y ; y, u]

[y ,z]

= [ [yx , z]
−[x ,y]

; y, u][y ,z] = [ [y, zx
−1
]
x[x ,y]; y, u]

−c[y ,z]

= [ y, u; [y, zx
−1
]
x[x ,y]

]
c[y ,z]

,

where c = [y, zx
−1
]
−x[x ,y]. Note that this last commutator is a conjugate of an instance

of (3Miv) and is therefore trivial. _is establishes (L4). We derive (L5) from (L1),with
u replaced by uv, applying (Iv) repeatedly.

1 = [x , y, z; x , uv] = [x , y, z; [x , v][x , u][x , u, v]]

= [x , y, z; x , u, v][x , y, z; [x , v][x , u]]
[x ,u ,v]

= [x , y, z; x , u, v][x , y, z; x , u][x ,u ,v][x , y, z; x , v][x ,u][x ,u ,v] .

Since the last two factors are conjugates of instances of (L1), we obtain (L5).

Lemma 3.5 If G is 3-metabelian, then the law [w , x; y, z][w , y; x , z] = 1 holds in G.

Proof Assuming G is 3-metabelian, we start from our variant of Macdonald’s law,
(3Mii) [w , x; x , z] = 1, and substitute xy for x. _us by identities (Iiv) and (Iv),

1 = [w , xy; xy, z] = [ [w , y][w , x][w , x , y]; [x , z][x , z, y][y, z]] .
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To make the calculation easier to view, we let X = [x , z][x , z, y][y, z] and apply (Iiv)
and (Iv), to obtain

1 = [ [w , y][w , x][w , x , y];X] = [w , y;X]
[w ,x][w ,x ,y]

[ [w , x][w , x , y];X]

= [w , y;X]
[w ,x][w ,x ,y]

[w , x;X]
[w ,x ,y]

[w , x , y;X].

We will consider each of these three factors separately, calling them A, B, and C, re-
spectively. To complete the proof, we will show that A = [w , x; y, z], B = [w , y; x , z],
and C = 1.

Consideration of A. Reintroducing X and applying (Iv) repeatedly, we obtain

A = [w , y;X]
[w ,x][w ,x ,y]

= [w , y; [x , z][x , z, y][y, z]]
[w ,x][w ,x ,y]

= [w , y; y, z][w ,x][w ,x ,y][w , y; [x , z][x , z, y]]
[y ,z][w ,x][w ,x ,y]

.

_e ûrst factor is trivial by (3Mii); therefore, applying (Iv) to the second factor, we get

A = [w , y; x , z, y][y ,z][w ,x][w ,x ,y][w , y; x , z][x ,z ,y][y ,z][w ,x][w ,x ,y] .

_e ûrst factor is trivial by (3Miii), thus

A = [w , y; x , z][x ,z ,y][y ,z][w ,x][w ,x ,y] .

We will now argue that each of these four conjugating elements commutes with
[w , y; x , z] and, therefore has trivial action. By identities (Iii) and (Iiii),

[ [w , y; x , z]; [x , z, y]] = [ [x , z;w , y]−1; [x , z, y]]

= [ [x , z;w , y]; [x , z, y]]
−[x ,z;w ,y]−1

= 1.

_e last equality follows follows from (3Mi) by replacing x by [x , z], y by [w , y], and
z by y. _us, [x , z, y] commutes with [w , y; x , z] and the ûrst conjugation is trivial
(i.e., [w , y; x , z][x ,z ,y] = [w , y; x , z]). Next we consider [[w , y; x , z]; [y, z]]. _is is
trivial, since it is an instance of (L4) with x, y, z, and u replaced by w, y, [x , z], and
z, respectively. _us the second conjugate also has trivial action. _e third conjugate
has trivial action, since [w , y; x , z;w , x] = 1 by (L1). Similarly, [w , y; x , z;w , y, x] = 1
by (L5). _us, all four conjugates have been shown to commute with [w , y; x , z], and
it follows that A = [w , y; x , z].

Consideration of B. Applying arguments similar to those used for A, we have,

B = [w , x;X]
[w ,x ,y]

= [w , x; [x , z][x , z, y][y, z]]
[w ,x ,y]

= [w , x; y, z][w ,x ,y][w , x; [x , z][x , z, y]]
[y ,z][w ,x ,y]

= [w , x; y, z][w ,x ,y][w , x; x , z, y][y ,z][w ,x ,y][w , x; x , z][x ,z ,y][y ,z][w ,x ,y] .

_e last factor is trivial by (3Mii). _emiddle factor is trivial by applying (Iii) to [w , x]
andmoving the inverse to the outside of the commutator using (Iiii), thus obtaining
an instance of (L2). Addressing the ûrst factor, note that [[x , y;w , z], [x , y,w]] = 1 by
(L5); therefore, we have shown that B = [x , y;w , z].
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Consideration of C. First note that

C = [x , y,w;X] = [x , y,w; [y, z][y, z,w][w , z]]

= [x , y,w;w , z][x , y,w; [y, z][y, z,w]]
[w ,z]

.

By (3Mii) we see that the ûrst factor is trivial. _erefore,

C = [x , y,w; [y, z][y, z,w]]
[w ,z]

= [x , y,w; y, z,w]
[w ,z]

[x , y,w; y, z][y ,z ,w][w ,z] .

_e ûrst factor is trivial by (3Miii); thus, applying (Iii) and (Iiii),

C = [w , x , y;X] = [w , x , y; [x , z][x , z, y][y, z]]

= [w , x , y; y, z][w , x , y; [x , z][x , z, y]]
[y ,z]

.

By (3Mii) the ûrst commutator is trivial. Applying (Iv) we obtain,

C = [w , x , y; [x , z][x , z, y]]
[y ,z]

= [w , x , y; x , z, y][y ,z][w , x , y; x , z][x ,z ,y][y ,z] .

Note that the ûrst commutator is trivial by (3Miii). We claim that the second com-
mutator is also trivial. Applying (Iii) and (Iiii) repeatedly, we have

[w , x , y; x , z] = [ [x ,w]
−1 , y; x , z] = [ [x ,w , y]−[x ,w]

−1
; x , z]

= [ [x ,w , y]−1; [x , z][x ,w]]
[x ,w]−1

= [x ,w , y; [x , z][x ,w]]
−[x ,w ,y]−1[x ,w]−1

.

Since [x ,w , y; [x , z][x ,w]] is an instance of (L4), thus we have shown that C = 1.
In summary, we have shown that 1 = AB = [w , x; y, z][w , y; x , z], as required.

We now collect our preliminary results together to derive the following theorem.

_eorem 3.6 _e commutator interchange law, [w , x; y, z] = [w , y; x , z], holds
in a group if and only if the group is 3-metabelian with every commutator of the
form [w , x; y, z] either trivial or of order two. _at is, in varieties of groups, the law
[w , x; y, z] = [w , y; x , z] is logically equivalent to the union of the laws [x , y; x , z] = 1
and [w , x; y, z]2 = 1.

Proof Suppose ûrst that [w , x; y, z] = [w , y; x , z] holds in a group G. Replacing w
by x we obtain 1 = [x , x; y, z] = [x , y; x , z], thus we conclude that G is 3-metabelian.
Knowing this, it follows by Lemma 3.5 that [w , x; y, z][w , y; x , z] = 1 holds in G.
Combining this with the interchange law, we have

1 = [w , x; y, z][w , y; x , z] = [w , x; y, z]2 .

We conclude that the interchange law implies both laws stated in the theorem.
Conversely, if G is assumed to be 3-metabelian, then, by Lemma 3.5, we have
[w , x; y, z][w , y; x , z] = 1 in G. _us we have [w , x; y, z] = [w , y; x , z]−1. Since our
hypothesis states that [w , x; y, z]2 = 1 in G, we conclude that [w , x; y, z] = [w , y; x , z]
in G. _us the interchange laws holds in G.

We can now combine the information we have gathered to re�ect on what kinds
of examples of double objects we can construct from groups using the operations of
le� and right commutation.

https://doi.org/10.4153/CMB-2015-037-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-037-0


504 C. C. Edmunds

_eorem 3.7 _e following statements are true for any group G.
(i) (G , ⋆, ●) is a double magma if and only if G satisûes the laws [x , y; x , z] = 1 and

[w , x; y, z]2 = 1.
(ii) (G , ⋆, ●) is a double semigroup if and only if G is nilpotent of class two (i.e., sat-

isûes the law [x , y, z] = 1).
(iii) A doublemagma or double semigroup,(G , ⋆, ●), is proper if and only if there exist

x0 , y0 ∈ G such that [x0 , y0]2 /= 1.

Proof Part (i) follows immediately from _eorem 3.6. Part (iii) follows from the
equivalence of (iii) and (iv) in Proposition 3.1 (see the comment following the proof
of Proposition 3.1). We will now establish part (ii).

Suppose ûrst that (G , ⋆, ●) is a double semigroup. Since G satisûes (CI),_eorem
3.6 implies thatG must be 3-metabelian and satisfy the law [w , x; y, z]2 = 1. Recall that
Bachmuth and Lewin [1] prove that the Jacobi identity, [x , y, z][y, z, x][z, x , y] = 1,
deûnes the variety of 3-metabelian groups. _us we know that the Jacobi identity
holds in G. Proposition 3.2 states that for (G , ⋆, ●) to be associative, it is necessary
and suõcient that the law [x , y, z][y, z, x] = 1 hold in G. Combining this with the
Jacobi identity, it follows that [x , y, z] = 1 holds in G and, hence, G is nilpotent of
class two. Conversely, if G is of class two, then all commutators of weights three and
higher are trivial. _erefore, (CI) holds in G and it follows that (G , ⋆, ●) is a double
magma. Since all weight three commutators are trivial, the law [x , y, z][y, z, x] = 1
holds in G, and, by Proposition 3.2, both “⋆ " and “ ● " are associative. _us, (G , ⋆, ●)
is a double semigroup.

We should note that the double systems constructed here all have a zero element,
the identity element ofG,whichwe denote “1". Since [x , 1] = [1, x] = 1 for each x ∈ G,
“1" acts as an annihilator for both operations, that is, 1⋆x = x⋆1 = 1 and 1●x = x ●1 = 1
for each x ∈ G

_emost general example of a proper doublemagma constructed in this manner
would be based on the relatively free group of the subvariety of 3-metabelian groups
determined by the law [w , x; y, z]2 = 1. B. H. Neumann [5] gives an example of a
3-metabelian that is not metabelian. His group is of order 214 and is 3-metabelian but
not metabelian. Its derived group is not of exponent two, and satisûes the identity
[w , x; y, z]2 = 1. _us, if a nonmetabelian example were desirable, Neumann’s group
could be used to construct a proper doublemagma on a group of the solvability length
three. _is complexity might prove useful in some contexts.

Practically speaking, to construct a proper doublemagma in our manner, G could
be chosen to be any metabelian group, or a group that is nilpotent of class three, as
long as the square of some commutator is nontrivial. _is could be realized, among
other ways, by letting G be a ûnite metacyclic group of odd order. Alternately, one
could select any dihedral group of order not equal to 1, 2, 4, or 8. For example if we
were to select the dihedral group of order six,

D3 = ⟨a, b; a3
= 1, b2

= 1, ab = a2
⟩,

the group is metabelian and [a, b]2 = a2
/= 1. _us (D3 , ⋆, ●) is a proper, noncommu-

tative doublemagma.
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To construct a proper double semigroup, we require that G be a nonabelian class
two groupwith some commutator not of order two. In themost general case,we could
take G to be the relatively free group of class two. A simpler example would be any
nonabelian group of order p3,with p an odd prime. _ese groups are of class two and
have no elements of even order. For a group containing 2-elements we could select
D8 = ⟨a, b; a8 , b2 , ba = a7b⟩, the dihedral group of order 16. _is is a metabelian
group and [a, b]2 = a4

/= 1. _us, (D8 , ⋆, ●) is a proper noncommutative double
semigroup. To be completely explicit, we give the Cayley table for (D8 , ⋆) below. _e
table for (D8 , ●) results by replacing each entry in the table below by its inverse in D8.

⋆ 1 a a2 a3 a4 a5 a6 a7 b ab a2b a3b a4b a5b a6b a7b
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a 1 1 1 1 1 1 1 1 a6 a6 a6 a6 a6 a6 a6 a6

a2 1 1 1 1 1 1 1 1 a4 a4 a4 a4 a4 a4 a4 a4

a3 1 1 1 1 1 1 1 1 a2 a2 a2 a2 a2 a2 a2 a2

a4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a5 1 1 1 1 1 1 1 1 a6 a6 a6 a6 a6 a6 a6 a6

a6 1 1 1 1 1 1 1 1 a4 a4 a4 a4 a4 a4 a4 a4

a7 1 1 1 1 1 1 1 1 a2 a2 a2 a2 a2 a2 a2 a2

b 1 a2 a4 a6 1 a2 a4 a6 1 a6 a4 a2 1 a6 a4 a2

ab 1 a2 a4 a6 1 a2 a4 a6 a2 1 a6 a4 a2 1 a6 a4

a2b 1 a2 a4 a6 1 a2 a4 a6 a4 a2 1 a6 a4 a2 1 a6

a3b 1 a2 a4 a6 1 a2 a4 a6 a6 a4 a2 1 a6 a4 a2 1
a4b 1 a2 a4 a6 1 a2 a4 a6 1 a6 a4 a2 1 a6 a4 a2

a5b 1 a2 a4 a6 1 a2 a4 a6 a2 1 a6 a4 a2 1 a6 a4

a6b 1 a2 a4 a6 1 a2 a4 a6 a4 a2 1 a6 a4 a2 1 a6

a7b 1 a2 a4 a6 1 a2 a4 a6 a6 a4 a2 1 a6 a4 a2 1

4 A Note on Ring Constructions

If (R,+, ⋅ ) is a ring, then we deûne the ring commutator (or Lie commutator) for
each x , y ∈ R as ⟨x , y⟩ = x ⋅ y− y ⋅x. We can then construct double systems from rings
aswe did from groups by deûning two binary operations on the ring R as follows. For
each x , y ∈ R, let x ⋆ y = ⟨x , y⟩ and let x ● y = ⟨y, x⟩. _e ring commutator interchange
law takes the form

(RCI) ⟨w , x; y, z⟩ = ⟨w , y; x , z⟩.

Calculations, much simpler than those for groups, show that (R,+, ⋅ ) is a proper
magma precisely when (RCI) holds in R and there exist x0 , y0 ∈ R such that 2⟨x , y⟩ /=

0. Analogous to the group case, it is true that (RCI) is equivalent to the laws

⟨x , y; x , z⟩ = 0 and 2⟨w , x; y, z⟩ = 0

in equational classes of rings. To obtain a proper double semigroup, the commutator
identity ⟨x , y, z⟩ = 0must hold in R and theremust exist x0 , y0 ∈ R such that 2⟨x , y⟩ /=

0. _e law (RCI) is a polynomial identity holding on R, and this fact has a signiûcant
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impact on the structure of R. We ask if there is a nice, structural characterization of
those rings in which (RCI) holds?
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