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Other applications of the pinch technique

11.1 Introduction

The pinch technique (PT) makes it possible to understand many questions in a
variety of gauge theories gauge invariantly, as we have already seen for QCD in
Chapters 7, 8, and 9 and for the electroweak sector of the standard model (SM)
theory in Chapter 10. This chapter goes into more detail on some physical questions
in electroweak theory and thermal NAGTs1 that were difficult to interpret in the
conventional framework of Feynman graphs and sometimes resulted in unfounded
attempts to find physical properties in gauge-dependent calculations. Different
authors used different gauges and got different results, sometimes not even agreeing
on the sign. The pinch technique has resolved these issues. We also mention
some interesting results for NAGTs embedded in supersymmetric theories, where
the pinch technique confirms a number of supersymmetry nonrenormalization
relations among the contributions of scalars and fermions to the PT three-gluon
vertex, already discussed in Chapter 2. At the level of off-shell Green’s functions,
these relations hold only for the pinch technique and not for the conventional
gauge-dependent Green’s functions.

In this chapter, we cover the following subjects: (1) non-Abelian effective charges,
(2) physical renormalization schemes versus MS, (3) non-Abelian off-shell form
factors, (4) the neutrino charge radius, (5) making gauge-particle resonance widths
gauge invariant, (6) finite-temperature NAGTs, and (7) hints of supersymmetry in
the PT Green’s functions.

11.2 Non-Abelian effective charges

The extension of the concept of the effective charge from QED to non-Abelian
gauge theories is, as the reader has already appreciated in Chapter 6, of

1 The three-dimensional NAGTs of Chapter 9 carry the nonperturbative infrared singularities of finite-temperature
gauge theories in four dimensions.
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fundamental interest. This concept is even more important in theories involv-
ing unstable particles – for example, in the SM electroweak sector or disparate
energy scales (e.g., grand unified theories). In the former, the Dyson summation
of (appropriately defined) self-energies is needed to regulate the kinematic singu-
larities of the corresponding tree-level propagators in the vicinity of resonances.
In the latter, instead, the extraction of accurate low-energy predictions requires an
exact treatment of threshold effects due to heavy particles: the construction of an
effective charge, valid for all momenta and not just the asymptotic regime governed
by the β function, constitutes the natural way to account for such threshold effects.
As we know from Chapter 6, because the pinch technique cures the problem of
the gauge-fixing parameter dependence of the conventionally defined gauge-boson
self-energies, it is an ideal tool for the definition of physical effective charges in
NAGTs.

11.2.1 Electroweak effective charges

In the electroweak sector of the SM, the various PT self-energies organize them-
selves into appropriate renormalization group (RG)-invariant combinations, essen-
tially for the same fundamental reasons as in QCD [1]. The effective weak mixing
angle s̄2

w(q2) corresponds to the RG-invariant combination

s̄2
w(q2) = (s0

w)2

[
1 −

(
c0
w

s0
w

)
�̂0

AZ(q2)

q2 + �̂0
AA(q2)

]
= s2

w

[
1 −

(
cw

sw

)
�̂AZ(q2)

q2 + �̂AA(q2)

]
.

(11.1)

Using the fact that �̂AZ(0) = 0, we may write �̂AZ(q2) = q2�̂AZ(q2); then, at the
one-loop level, s̄2

w(q2) reduces to

s̄2
w(q2) = s2

w

[
1 −

(
cw

sw

)
�̂AZ(q2)

]
. (11.2)

Evidently, s̄2
w(q2) constitutes a universal modification to the effective vertex of the

charged fermion.

Similarly, one may demonstrate that the combinations

g2
ŵWW (q2);

g2
w

c2
w

̂ZZ(q2);
g2
w

M2
W

̂H (q2), (11.3)

are RG-invariant. The analog of Eq. (6.53) may be defined for the first two
combinations. Specifically, retaining only the real parts of the corresponding
self-energies, and casting �e�̂(q2)ii in the form �e�̂ii(q2) = �e�̂ii(M2

i ) +
(q2 − M2

i )�e�̂ii(M2
i ), and then pulling out a common factor (q2 −M2

i ), we
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obtain

αw,eff(q
2) = αw

1 + �e�̂WW (q2)
; αz,eff(q

2) = αz

1 + �e�̂ZZ(q2)
, (11.4)

where, as with �̂AZ, we factor out a mass-shell factor

�̂ii(q
2) = �̂ii(q2) − �̂ii(M2

i )

q2 −M2
i

, i = W,Z, (11.5)

and αw = g2
w/4π and αz = αw/c

2
w.

Interestingly enough, the third RG-invariant combination in Eq. (11.3) leads to the
concept of the Higgs boson effective charge [1]: the SM Higgs boson H couples
universally to matter with an effective charge inversely proportional to its VEV.

11.2.2 Relation to physical cross sections

We consider the QED effective charge introduced in Chapter 6. This quantity
displays a nontrivial dependence on the fermion masses mf , which allows its
reconstruction from physical amplitudes by resorting to the optical theorem and
analyticity (i.e., dispersion relations). Given a particular contribution to the photon
spectral function 
m�(s), the corresponding contribution to �(q2) can be recon-
structed via a once-subtracted dispersion relation (see, e.g., de Rafael [2]). For
example, for the one-loop contribution of the fermion f , choosing the on-shell
renormalization scheme,

�f f̄ (q2) = 1

π
q2

∫ ∞

4m2
f

ds

m�f f̄ (s)

s(s − q2)
. (11.6)

For f = e, 
m�f f̄ (s) is measured directly in the tree-level cross section for
e+e− → f +f −. Forf = e, it is necessary to isolate the self-energy-like component
of the tree-level Bhabha cross section. This is indeed possible because the self-
energy-, vertex, and boxlike components of the Bhabha differential cross section
are linearly independent functions of cos θ ; they may therefore be projected out by
convoluting the differential cross section with appropriately chosen polynomials in
cos θ . Thus, in QED, knowledge of the spectral function 
m�f f̄ (s), determined
from the tree-level e+e− → f +f − cross sections, together with a measurement
of the fine structure constant α, enables the construction of the one-loop effective
charge αeff(q2) for all q2.

Keeping the QED example in mind, let us now turn to the case of the PT electroweak
effective charges and study the procedure that would allow, at least in principle,
the extraction of αz,eff(q2) from experiment [3]. In general, the renormalization of
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Figure 11.1. The relation between the imaginary parts of the subset of the
W -related one-loop corrections to e+e− → e+e− and the tree-level process
e+e− → W+W−.

�̂ZZ requires two subtractions: for mass and field renormalization. If we denote the
subtraction point by s0, then the twice-subtracted dispersion relation corresponding
to the renormalized W+W− contributions reads

�̂
(WW )

ZZ (q2) = 1

π
(q2 − s0)2

∫ ∞

4M2
W

ds

m�̂(WW )

ZZ (s)

(s − q2)(s − s0)2
. (11.7)

The property instrumental for the observability of αz,eff(q2) is that, in contrast to
the conventional gauge-dependent self-energies, the absorptive parts of the PT self-
energies appearing on the right-hand side (rhs) of Eq. (11.7) are directly related to
components of the physical cross section e+e− → W+W− that are experimentally
observable (see Figure 11.1). Indeed, as we have already seen in Chapter 10, the
characteristic s-t cancellation, triggered by the longitudinal momenta of the on-
shell polarization tensors, rearranges the tree-level cross section e+e− → W+W−

into subamplitudes, which, through the use of the optical theorem, can be con-
nected unambiguously with the absorptive parts of the one-loop PT Green’s
functions.
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To simplify the algebra without compromising the principle, let us consider the limit
of e+e− → W+W− when the electroweak mixing angle vanishes: s2

w = 0. In this
limit, all photon-related contributions are switched off, and the two massive gauge
bosons become degenerate (MZ = MW ≡ M). Let us denote by θ the center-of-
mass scattering angle and set x = cos θ , β =

√
1 − 4M2/s, and z = (1 + β2)/2β.

Then it is relatively straightforward to show that the differential tree-level cross
section for e+e− → W+W− can be cast in the form [3]

(z − x)2

(
dσ

dx

)
sw=0

= g4

64π

sβ

(s −M2)2
θ (s − 4M2)

5∑
i=1

Ai(s)Fi(s, x), (11.8)

where the Fi(s, x), i = 1, 2 . . . 5, are linearly independent polynomials in x of
maximum degree 4. The coefficients A1(s) and A2(s) contribute only to the self-
energy-like component of the cross section, being related to 
m�̂

(WW )

ZZ (s) by


m�̂
(WW )

ZZ (s)
∣∣
sw=0 = g2

4π
βs

(
A1(s) + 1

3
A2(s)

)
. (11.9)

To project the functionsAi(s), we construct a further set of five polynomials F̃i(s, x)
satisfying the orthogonality conditions∫ 1

−1
dx Fi(s, x)F̃j (s, x) = δij . (11.10)

The coefficient functions Ai(s) may then be projected from the observable formed
by taking the product of the differential cross section with the kinematic factor
(z − x)2: ∫ 1

−1
dx F̃i(s, x) (z − x)2

(
dσ

dx

)
sw=0

= g4

64π

sβ

(s −M2)2
Ai(s). (11.11)

Thus it is possible to extract 
m�̂
(WW )

ZZ (s)|sw=0 directly from dσ (e+e− →
W+W−)/dx|sw=0.

Of course, to use the dispersion relation of Eq. (11.7) to compute �̂
(WW )

ZZ (q2),
one needs to integrate the spectral density 
m�̂

(WW )

ZZ (s) over a large number of
values of s. This in turn means that one needs experimental data for the process
e+e− → W+W− for a variety of center-of-mass energies s, and for each value of s,
one must repeat the procedure described earlier. Regardless of whatever practical
difficulties this might entail, it does not constitute a problem of principle. Finally,
the general case with s2

w = 0 requires, in addition, the observation of spin density
matrices [4]; though technically more involved, the procedure is in principle the
same.
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11.3 Physical renormalization schemes versus MS

It is no secret that the popular renormalization schemes, such as MS and DR,
convenient as they may be for formal manipulations, are plagued with persistent
threshold and matching errors. The origin of these errors can be understood by
noting that the aforementioned (unphysical) schemes implicitly integrate out all
masses heavier than the physical energy scale until they are crossed, and then they
turn them back on abruptly by means of a step function. Integrating out heavy
fields, however, is only valid for energies well below their masses. This procedure
is conceptually problematic because it does not correctly incorporate the finite
probability that the uncertainty principle gives for a particle to be pair produced
below threshold [5]. In addition, complicated matching conditions must be applied
when crossing thresholds to maintain consistency for such desert scenarios. In
principle, these schemes are only valid for theories in which all particles have zero
or infinite mass or if one knows the full field content of the underlying physical
theory.

Instead, in the physical renormalization scheme defined with the pinch technique,
gauge couplings are defined directly in terms of physical observables, namely, the
effective charges. The latter run smoothly over spacelike momenta and have non-
analytic behavior only at the expected physical thresholds for timelike momenta; as
a result, the thresholds associated with heavy particles are treated with their correct
analytic dependence. In particular, particles will contribute to physical predictions
even at energies below their threshold [5].

Historically, the gauge-invariant parametrization of physics offered by the pinch
technique has been first systematized by Hagiwara et al. [6] and has led to an
alternative framework for confronting the precision electroweak data with theo-
retical predictions. This approach resorts to the pinch technique to separate the
one-loop corrections into gauge-fixing, parameter-independent universal (process
independent) and process-specific pieces; the former are parametrized using the PT
effective charges αeff(q2), s̄2

w(q2), αw,eff(q2), and αz,eff(q2), defined earlier. There
is a total of nine electroweak parameters that must be determined in this approach:
the eight universal parameters MW , MZ, αeff(0), s̄2

w(0), αw,eff(0), αz,eff(0), s̄2
w(M2

Z),
and αz,eff(M2

Z) and one process-dependent parameter δb(M2
Z), related to the form

factor of the Zb̄LbL vertex.

Reference [6] explains in detail the advantage of their approach over the MS
scheme. In particular, they emphasize that the nondecoupling nature of the MS
forces one to adopt an effective field theory approach in which the heavy particles
are integrated out of the action. The couplings of the effective theories are then
related to each other by matching conditions ensuring that all effective theories
give identical results at zero momentum transfer because the effects of heavy
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particles in the effective light field theory must be proportional to q2/M2, where
M is the heavy mass scale. This procedure, however, is not only impractical in the
presence of many quark and lepton mass scales but introduces errors because of the
mistreatment of the threshold effects. In addition, direct use of the MS couplings
leads to expressions in which the masses used for the light quarks are affected by
sizable nonperturbative QCD effects.

The relevance of the effective charges in the quantitative study of threshold correc-
tions due to heavy particles in grand unified theories (GUTs) was already recognized
in [6], but it was not until a decade later that this was actually accomplished by
Binger and Brodsky [5]. As was shown by these authors, the effective charges
defined with the pinch technique furnish a conceptually superior and calculation-
ally more accurate framework for studying the important issue of gauge-coupling
unification. The main advantage of the effective charge formalism is that it pro-
vides a template for calculating all mass threshold effects for any given GUT; such
threshold corrections may be instrumental in making the measured values of the
gauge couplings consistent with unification.

In [5], the effective charges αeff(q2), αs,eff(q2), and the effective mixing angle
s̄2
w(q2) were used to define new effective charges α̃1(q2), α̃2(q2), and α̃3(q2), which

correspond to the standard combinations of gauge couplings used to study gauge-
coupling unification. Specifically,

α̃1(q2) =
(

5

3

)
αeff(q2)

1 − s̄2
w(q2)

; α̃2(q2) = αeff(q2)

s̄2
w(q2)

; α̃3(q2) = αs,eff(q
2).

(11.12)

The preceding couplings were used to obtain novel heavy and light threshold
corrections, and the resulting impact on the unification predictions for a general
GUT model was studied. Notice that even in the absence of new physics, i.e.,
using only the known SM spectrum, there are appreciable numerical discrepancies
between the values of the conventional and PT couplings at MZ (see Table I of
[5]). Given that these values are used as initial conditions for the evolution of
the couplings to the GUT scale, these differences alone may affect the unification
properties of the couplings.

11.4 Gauge-independent off-shell form factors

It is well known that renormalizability and gauge invariance restrict severely
the type of interaction vertices that can appear at the level of the fundamental
Lagrangian. Thus, the tensorial possibilities allowed by Lorentz invariance are
drastically reduced to relatively simple tree-level vertices. Beyond tree level, the
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tensorial structures that have been so excluded appear due to quantum corrections;
that is, they are generated from loops. This fact does not conflict with renormal-
izability and gauge invariance provided that the tensorial structures generated, not
present at the level of the original Lagrangian, are UV finite; that is, no counterterms
need be introduced to the fundamental Lagrangian proportional to the forbidden
structures.

To fix the ideas, let us consider a concrete textbook example. In standard QED,
the tree-level photon-electron vertex is simply proportional to γμ, whereas kine-
matically, one may have, in addition (for massive on-shell electrons, using the
Gordon decomposition), a term proportional to σμνq

ν that would correspond to
a nonrenormalizable interaction. Of course, the one-loop photon-electron vertex
generates such a term: one has

�μ(q) = γμF1(q2) + σμνq
νF2(q2), (11.13)

where the scalar cofactors multiplying the two tensorial structures are the cor-
responding form factors; they are in general nontrivial functions of the photon
momentum transfer. F1(q2) is the electric form factor, whereas F2(q2) is the mag-
netic form factor. F1(q2) is UV divergent and becomes finite after carrying out the
standard vertex renormalization. On the other hand, F2(q2) comes out UV finite, as
it should, given that there is no term proportional to σμνqν (in configuration space)
in the original Lagrangian, where a potential UV divergence could be absorbed.
Of course, in the limit of q2 → 0, the magnetic form factor F2(q2) reduces to the
famous Schwinger anomaly [7].

At the level of an Abelian theory, such as QED, the preceding discussion exhausts
more or less the theoretical complications associated with the calculation of off-
shell form factors. However, in NAGTs, such as the electroweak sector of the
SM, there is an additional important complication: the off-shell form factors
obtained from the conventional one-loop vertex (and beyond) depend explicitly
on the gauge-fixing parameter. This dependence disappears when going to the
on-shell limit of the incoming gauge boson (q2 → 0 for a photon, q2 → M2

Z

for a Z-boson, etc.) but is present for any other value of q2. This fact becomes
phenomenologically relevant because one often wants to study the various form
factors of particles that are produced in high-energy collisions, where the gauge
boson mediating the interaction is far off shell. In the case of e+e− annihilation into
heavy fermions, the value of q2 must be above the heavy fermion threshold. For
example, top quarks may be pair produced through the reaction e+e− → t t̄ , with
center-of-mass energy s = q2 ≥ 4m2

t . In such a case, the intermediate photon and
Z are far off-shell, and therefore the form factors FV

i , appearing in the standard

https://doi.org/10.1017/9781009402415.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.012


258 Other applications of the pinch technique

e−

t

e+

t

ν

pinch

e−

t

e+

tb b

W+ W−W+ W−

b

e−

t

e+

t

b b

e−

t

e+

t

(a)

(b)

Figure 11.2. (a) The conventional one-loop vertex and (b) the vertexlike piece
extracted from the box for ξ = 1.

decompositions

�V
μ (q2) = γμF

V
1 (q2, ξ ) + σμνq

νFV
2 (q2, ξ ) + γμγ5F

V
3 (q2, ξ )

+ γ5σμνq
νFV

4 (q2, ξ ), (11.14)

depend explicitly on ξ , which stands collectively for ξW , ξZ, ξA, and V = A,Z.

The situation described is rather general and affects most form factors; very often,
the residual gauge dependences have serious physical consequences. For
example, the form factors display unphysical thresholds, have bad high-energy
behavior, and sometimes are UV and IR divergent. The way out is to use the
PT construction and extract the physical, gauge-independent form factors from
the corresponding off-shell one-loop PT vertex (and beyond). Applying the pinch
technique to the case of the form factors amounts to saying that one has to identify
vertexlike contributions (with the appropriate tensorial structure corresponding to
the form factor considered) contained in box diagrams, as shown in Figure 11.2. The
latter, when added to the usual vertex graphs, render all form factors ξ independent
and well behaved in all respects.

A particularly interesting case in which the pinch technique has been successfully
applied is the study of the three-boson vertices AW+W− and ZW+W−, with the
neutral gauge bosons off shell and theW pair on shell, or off shell and subsequently
decaying to on-shell particles. Historically, the main motivation for exploring their
properties was that they were going to be tested at LEP2 by direct W -pair produc-
tion, proceeding through the process e+e− → W+W−; their experimental scrutiny
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could provide invaluable information on the non-Abelian nature of the electroweak
sector of the SM. Particularly appealing in this quest has been the possibility of
measuring anomalous gauge-boson couplings, that is, the appearance of contribu-
tions to AW+W− and ZW+W− not encoded in the fundamental Lagrangian of the
SM. Linear combinations of these form factors are related to the magnetic dipole
and the electric quadrupole moments of the W boson. Such contributions may
originate from two sources: (1) from radiative corrections within the SM, (2) from
physics beyond the SM, or both. Therefore, the first theoretical task is to carry out
the necessary calculations for completing part (1).

Calculating the one-loop expressions for these anomalous form factors is a non-
trivial task, both from technical and conceptual points of view. We focus for
concreteness on the photon case. If one calculates just the Feynman diagrams con-
tributing to the AW+W− vertex and then extracts from them the contributions to
the relevant form factors, one arrives at expressions that are plagued with several
pathologies, gauge-fixing parameter dependence being one of them. Indeed, even
if the twoW s are considered to be on-shell (p2

1 = p2
2 = M2

W ) because the incoming
photon is not, there is no a priori reason why a gauge-fixing parameter-independent
answer need emerge. Indeed, in the context of the renormalizable Rξ gauges, the
final answer depends on the choice of the gauge-fixing parameter ξ , which enters
into the one-loop calculations through the gauge-boson propagators (W , Z, A, and
unphysical would-be Goldstone bosons). In addition, as shown by an explicit cal-
culation performed in the Feynman gauge (ξ = 1), the answer is infrared divergent
and violates perturbative unitarity, that is, it grows monotonically for q2 → ∞ [8].

All the preceding pathologies may be cured if one uses the PT definition of the
relevant (off-shell) gauge-boson vertices [9]. The application of the pinch technique
identifies vertexlike contributions from the box graphs, as shown in Figure 11.3,
which are subsequently distributed, in a unique way, among the various form
factors. Thus one arrives finally at new expressions that are gauge-fixing parameter-
independent, ultraviolet and infrared finite, and monotonically decreasing for large
momentum transfers q2.

11.4.1 Neutrino charge radius

The neutrino electromagnetic form factor and the neutrino charge radius have
constituted an important theoretical puzzle for more than three decades. Since
well before the SM, it has been pointed out that radiative corrections will induce an
effective one-loopA∗(q2)νν vertex, to be denoted by�μ

Aνν̄ , withA∗(q2) an off-shell
photon. Such a vertex would in turn give rise to a small but nonvanishing charge
radius. Traditionally (and, of course, nonrelativistically and rather heuristically),
this charge radius has been interpreted as a measure of the size of the neutrino
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W+ W−
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Figure 11.3. Two of the graphs contributing pinching parts to the gauge indepen-
dent VW+W− vertex.

νi when probed electromagnetically, owing to its classical definition (in the static
limit) as the second moment of the spatial neutrino charge density ρν(r), i.e.,

〈
r2
ν

〉 ∼ ∫
dr r2ρν(r). (11.15)

From the quantum field theory point of view, the neutrino charge radius is defined
as follows. If we write �μ

Aνν̄ in the form

�
μ

Aνν̄(q2) = γμ(1 − γ5)FD(q2), (11.16)

where FD(q2) is the (dimensionless) Dirac electromagnetic form factor, then the
neutrino charge radius is given by

〈
r2
ν

〉 = 6
∂FD(q2)

∂q2

∣∣∣∣
q2=0

. (11.17)

Gauge invariance (if not compromised) requires that in the limit q2 → 0, FD(q2)
must be proportional to q2; that is, it can be cast in the form FD(q2) = q2F (q2),
with the dimensionful form factor F (q2) being regular as q2 → 0. As a result, the
q2 contained in FD(q2) cancels against the (1/q2) coming from the propagator of
the off-shell photon, and one obtains effectively a contact interaction between the
neutrino and the sources of the (background) photon, as would be expected from
classical considerations.
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Figure 11.4. The electroweak diagrams contributing to the entire electron-neutrino
scattering process at one loop. Diagram (j ) (and the corresponding dressing) is
absent when the neutrino species is muonic.

Even though, in the SM, the one-loop computation of the entire S-matrix element
describing the electron-neutrino scattering, shown in Figure 11.4, is conceptu-
ally straightforward, the identification of a subamplitude that would serve as the
effective�μ

Aνν̄ has been faced with serious complications, associated with the simul-
taneous reconciliation of crucial requirements such as gauge invariance, finiteness,
and target independence. Various attempts to define the value of the neutrino charge
radius within the SM from the one-loop �

μ

Aνν̄ vertex calculated in the renormaliz-
able (Rξ ) gauges reveal that the corresponding electromagnetic form factor depends
explicitly on the gauge-fixing parameter ξ . In particular, even though in the static
limit of zero momentum transfer, q2 → 0, the Dirac form factor vanishes and there-
fore is independent of ξ , its first derivative with respect to q2 (which corresponds
to the definition of the neutrino charge radius) continues to depend on it. Similar
(and sometimes worse) problems occur in the context of other gauges (e.g., the
unitary gauge). These complications have obscured the entire concept of a charge
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radius for the neutrino and have cast serious doubt on whether it can be regarded
as a genuine physical observable.

Of course, if a quantity is gauge dependent, it is not physical. But that the off-
shell vertex is gauge dependent only means that it does not serve as a physical
definition of the neutrino charge radius; it does not mean that an effective charge
radius cannot be encountered that satisfies all necessary physical properties, gauge
independence being one of them. Indeed, several authors have attempted to find
a modified vertexlike amplitude that would lead to a consistent definition of the
electromagnetic neutrino charge radius. The common underlying idea in all these
works is to rearrange somehow the Feynman graphs contributing to the scattering
amplitude of neutrinos with charged particles in an attempt to find a vertexlike
combination that would satisfy all desirable properties. What makes this exercise
so difficult is that in addition to gauge independence, a multitude of other crucial
physical requirements need to be satisfied as well. For example, one should not
enforce gauge independence at the expense of introducing target dependence.
Therefore, a definite guiding principle is needed, allowing for the construction
of physical subamplitudes with definite kinematic structure (i.e., self-energies,
vertices, boxes).

The guiding principle in question has been provided by the pinch technique. As was
shown in [10], the rearrangement of the physical amplitude f ±ν → f ±ν, where
f ± are the target fermions, into PT self-energies, vertices, and boxes conclusively
settles the issue: the proper PT vertex with an off-shell photon and two on-shell
neutrinos, denoted by �̂

μ

Aνi ν̄i
, furnishes unambiguously and uniquely the physical

neutrino charge radius.

Most recently, the issue of the neutrino charge radius was revisited in a series of
papers [11, 12, 13]. There three important conceptual points have been conclusively
settled:

1. As explained in [10], the box diagrams furnish gauge-dependent (propagator-
like) contributions that are crucial for the gauge cancellations, but once these
contributions have been identified and extracted, the remaining pure box can-
not form part of the neutrino charge radius because it would introduce pro-
cess dependence (in view of its nontrivial dependence on the target fermion
masses, for one thing). The most convincing way to understand why the
pure box could not possibly enter into the neutrino charge radius definition
is to consider the case of right-handed polarized target fermions that do not
couple to the W s: in that case, the box diagram is not even there. The gauge
cancellations proceed differently because the coupling of the Z-boson to the
target fermions is also modified [11, 12, 13].
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2. The mixing self-energy �̂AZ(q2) should not be included in the definition of
the neutrino charge radius either. The reason for this is more subtle: �̂AZ(q2)
is not an RG-invariant quantity; adding it to the finite contribution coming
from the proper vertex would convert the resulting neutrino charge radius
into a μ-dependent, and therefore unphysical, quantity. Instead, �̂AZ(q2)
must be combined with the appropriate Z-mediated tree-level contributions
(which evidently do not enter into the definition of the charge radius) to
form with them the RG-invariant combination s̄2

w(q2) of Eq. (11.2), whereas
the ultraviolet-finite neutrino charge radius will be determined from the
proper vertex only. Writing �̂

μ

Aνi ν̄i
= q2F̂i(q2)γμ(1 − γ5), the physical neu-

trino charge radius is then defined as
〈
r2
νi

〉 = 6F̂i(0), and the explicit calcula-
tion yields

〈
r2
νi

〉 = GF

4
√

2π2

[
3 − 2 log

(
m2
i

M2
W

)]
, (11.18)

where i = e, μ, τ , mi denotes the mass of the charged isodoublet partner of
the neutrino under consideration and GF is the Fermi constant.

3. The neutrino charge radius defined through the pinch technique may be
extracted from experiment, at least in principle. One may express a set of
experimental electron-neutrino cross sections in terms of the finite neutrino
charge radius and the two additional gauge- and RG-invariant quantities,
corresponding to the electroweak effective charge αz,eff(q2) and mixing angle
s̄2
w(q2), defined earlier.

11.5 Resummation formalism for resonant transition amplitudes

The physics of unstable particles and the computation of resonant transition ampli-
tudes have attracted significant attention in recent years because they are both
phenomenologically relevant and theoretically challenging. The practical interest
in the problem is related to the resonant production of various particles in all sorts
of accelerators, most notably LEP1 and LEP2, the TEVATRON, and the LHC.
From the theoretical point of view, the issue comes up every time fundamental
resonances, i.e., unstable particles that appear as basic degrees of freedom in the
original Lagrangian of the theory (as opposed to composite bound states), can
be produced resonantly. The presence of such fundamental resonances makes it
impossible to compute physical amplitudes for arbitrary values of the kinematic
parameters, unless a resummation has taken place first. Simply stated, perturbation
theory breaks down in the vicinity of resonances, and information about the dynam-
ics to all orders needs to be encoded already at the level of Born amplitudes. The
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difficulty arises that in the context of NAGTs, the standard Breit–Wigner resumma-
tion used for regulating physical amplitudes near resonances is at odds with gauge
invariance, unitarity, and the equivalence theorem [14]. Consequently, the result-
ing Born-improved amplitudes in general fail to capture faithfully the underlying
dynamics. It is therefore important to devise a self-consistent calculational scheme
that manifestly preserves all relevant field-theoretic properties [1, 15, 16, 17, 18].

The mathematical expressions for computing transition amplitudes are ill defined
in the vicinity of resonances because the tree-level propagator of the particle
mediating the interaction (i.e., = (s −M2)−1) becomes singular as the center-of-
mass energy approaches the mass of the resonance (i.e., as

√
s ∼ M). The standard

way to regulate this physical kinematic singularity is to use a Breit–Wigner type of
propagator; this amounts essentially to the replacement (near the resonance) (s −
M2)−1 → (s −M2 + iM�)−1, where � is the width of the unstable (resonating)
particle. The presence of iM� in the denominator prevents the amplitude from
being divergent, even at physical resonance (i.e., when s = M2).

The actual field-theoretic mechanism that justifies the apperance of the width is the
Dyson resummation of the self-energy�(s) of the unstable particle, which amounts
to the rigorous substitution (s −M2)−1 → (s −M2 +�(s))−1 . The running width
of the particle is then defined as M�(s) = 
m�(s), whereas the usual (on shell)
width (see earlier) is simply its value at s = M2.

It is relatively easy to realize that the Breit–Wigner procedure, as described ear-
lier, is tantamount to a reorganization of the perturbative series. Resumming the
self-energy �(s) amounts to removing a particular piece from each order of the
perturbative expansion because from all the Feynman graphs contributing to a
given order n, we only pick the part that contains the corresponding string of
self-energy bubbles �(s) and then take n → ∞. Notice, however, that the off-
shell Green’s functions contributing to a physical quantity, at any finite order of
the conventional perturbative expansion, participate in a subtle cancellation that
eliminates all unphysical terms. Therefore the act of resummation, which treats
unequally the various Green’s functions, is in general liable to distort these can-
cellations. To put it differently, if �(s) contains unphysical contributions (which
would eventually cancel against other terms within a given order), resumming it
naively would mean that these unphysical contributions would also undergo infi-
nite summation (they now appear in the denominator of the propagator (s)). To
remove them, one would have to add the remaining perturbative pieces to an infi-
nite order, clearly an impossible task because the latter (boxes and vertices) do not
constitute a resummable set. Thus, if the resummed �(s) contains such unphysical
terms, one arrives at predictions plagued with unphysical artifacts. The crucial
novelty introduced by the pinch technique is that the resummation of the (physical)
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Figure 11.5. The amplitude for the process f f̄ → ZZ. The s-channel graph (a)
may become resonant and must be regulated by appropriate resummation of the
Higgs propagator and dressing of the HZZ vertex.

self-energy graphs must take place only after the amplitude of interest has been
cast via the PT algorithm into manifestly physical subamplitudes, with distinct
kinematic properties, order by order in perturbation theory. Put in the language
employed earlier, the PT ensures that all unphysical contributions contained
inside �(s) have been identified and properly discarded before �(s) undergoes
resummation.

11.5.1 An example

To get a flavor of the subtle interplay between the various physical constraints [1, 15,
16, 17, 18], we consider a concrete example. We study the process f (p1)f̄ (p2) →
Z(k1)Z(k2), shown in Figure 11.5, and s = (p1 + p2)2 = (k1 + k2)2 is the center
of mass energy squared. The tree-level amplitude of this process is the sum of an
s- and t-channel contribution, denoted by Ts and Tt , respectively, given by

T μν
s = �

μν

HZZH (s) v̄(p2)�Hf f̄ u(p1)

T μν
t = v̄(p2)

[
�ν
Zf f̄

S(0)(p1 + k1)�μ

Zf f̄
+ �

μ

Zf f̄
S(0)(p1 + k2)�ν

Zf f̄

]
u(p1),

(11.19)

where

�
μν

HZZ = igw
M2

Z

MW

gμν ; �Hf f̄ = −igw
mf

2MW

�
μ

Zf f̄
= −i

gw

cw
γμ (T f

z PL −Qf s
2
w), (11.20)

are the tree-level HZZ, Hf f̄ , and Zf f̄ couplings, respectively.

The s-channel contribution is mediated by the Higgs boson of mass MH and
becomes resonant if the kinematics are such that

√
s lies in the vicinity of MH ;
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in that case, the resonant amplitude must be properly regulated. The simplest
way to accomplish this is to (1) Dyson-resum the one-loop PT self-energy of the
(resonating) Higgs boson and (2) appropriately dress the tree-level vertex �

μν

HZZ,
that is, by replacing in the amplitude the vertex �μν

HZZ with the one-loop PT vertex
�̂
μν

HZZ.

We first see what happens if one attempts to regulate the resonant amplitude
by means of the conventional one-loop Higgs self-energy in the Rξ gauges. A
straightforward calculation yields (tadpole and seagull terms omitted) [1, 18]

�
(WW )

HH (s, ξW ) = αw

4π

(
s2

4M2
W

− s + 3M2
W

)
B0(s,M2

W,M
2
W )

+ αw

4π

(
M4

H − s2

4M2
W

)
B0(s, ξWM

2
W, ξWM

2
W ). (11.21)

We see that for ξW = 1, the term growing as s2 survives and is proportional to the
differenceB0(s,M2

W,M
2
W ) − B0(s, ξWM2

W, ξWM
2
W ). For any finite value of ξW , this

term vanishes for sufficiently large s, that is, s � M2
W and s � ξWM

2
W . Therefore

the quantity in Eq. (11.21) displays good high-energy behavior in compliance
with high-energy unitarity. Notice, however, that the onset of this good behavior
depends crucially on the choice of ξW . Because ξW is a free parameter and may
be chosen to be arbitrarily large, but finite, the restoration of unitarity may be
arbitrarily delayed as well. This fact poses no problem as long as one is restricted
to the computation of physical amplitudes at a finite order in perturbation theory.
However, if the preceding self-energy were to be resummed to regulate resonant
transition amplitudes, it would lead to an artificial delay of unitarity restoration,
which becomes numerically significant for large values of ξW . In addition, a serious
pathology occurs for any value of ξW = 1, namely, the appearance of unphysical
thresholds [15, 16, 17]. Such thresholds may be particularly misleading if ξW is
chosen in the vicinity of unity, giving rise to distortions in the line shape of the
unstable particle.

How does the situation change if, instead, we compute the corresponding part of
the Higgs-boson self-energy in the BFM for an arbitrary value of ξQ? Denoting it
by �̃(WW )

HH (s, ξQ), and using the appropriate set of Feynman rules [19], we obtain

�̃
(WW )

HH (s, ξQ) = �HH (s, ξW → ξQ) − αw

4π
ξQ(s −M2

H )B0(s, ξQM
2
W, ξQM

2
W ).

(11.22)

Evidently, away from ξQ = 1, �̃(WW )

HH (s, ξQ) displays the same unphysical char-
acteristics mentioned earlier for �(WW )

HH (s, ξW ). Therefore, when it comes to the
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study of resonant amplitudes, calculating in the BFM for general ξQ is as patho-
logical as calculating in the conventional Rξ gauges.

To solve these problems, one has simply to follow the PT procedure, within either
gauge-fixing scheme Rξ or background field method; identify the corresponding
Higgs-boson-related pinch parts from the vertex and box diagrams; and add them
to Eq. (11.21) or Eq. (11.22). Then a unique answer emerges, the PT one-loop
Higgs boson self-energy, given by �̂HH (q2)

�̂
(WW )

HH (s) = αw

16π

M4
H

M2
W

[
1 + 4

M2
W

M2
H

− 4
M2

W

M4
H

(2s − 3M2
W )

]
B0(s,M2

W,M
2
W ).

(11.23)

Setting ξQ = 1 in the expression of Eq. (11.22), we recover the full PT answer of
Eq. (11.23), as expected. Clearly �̂

(WW )

HH (s) has none of the pathologies observed
earlier.

We now turn to the way the PT-regulated amplitude satisfies the equivalence theo-
rem [14]. This theorem states that at very high energies (s � M2

Z), the amplitude
for emission or absorption of a longitudinally polarized gauge boson becomes equal
to the amplitude in which the gauge boson is replaced by the corresponding would-
be Goldstone boson. The preceding statement is a consequence of the underlying
local gauge invariance of the SM and holds to all orders in perturbation theory for
multiple absorptions and emissions of massive vector bosons. Compliance with this
theorem is a necessary requirement for any resummation algorithm because any
Born-improved amplitude that fails to satisfy it is bound to be missing important
physical information. The reason why most resummation methods are at odds with
the equivalence theorem is that in the usual diagrammatic analysis, the underly-
ing symmetry of the amplitudes is not manifest. Just as happens in the case of
the optical theorem, the conventional subamplitudes, defined in terms of Feynman
diagrams, do not satisfy the equivalence theorem individually. The resummation
of such a subamplitude will in turn distort several subtle cancellations, thus giving
rise to artifacts and unphysical effects. Instead, the PT subamplitudes satisfy the
equivalence theorem individually; as usual, the only nontrivial step for establishing
this is the proper exploitation of elementary Ward identities.

Turning to our explicit process f (p1)f̄ (p2) → Z(k1)Z(k2), the equivalence theo-
rem states that the full amplitude T = Ts + Tt satisfies

T (ZLZL) = −T (χχ ) − iT (χz) − iT (zχ ) + T (χχ ), (11.24)

where ZL is the longitudinal component of the Z-boson, χ is its associated would-
be Goldstone boson, and zμ(k) = εLμ(k) − kμ/MZ is the energetically suppressed
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Figure 11.6. The Higgs-boson-related contribution extracted from the boxes
through pinching; to get it, we must contract with both momenta.

part of the longitudinal polarization vector εLμ . It is crucial to observe, however,
that already at tree level, the conventional s- and t-channel subamplitudes Ts and
Tt fail to satisfy the equivalence theorem individually [1, 18].

To verify this, one has to calculate Ts(ZLZL), using explicit expressions for the
longitudinal polarization vectors, and check if the answer obtained is equal to
the Higgs-boson-mediated s-channel part of the left-hand side of Eq. (11.24). In
particular, in the center-of-mass system, we have

zμ(k1) = εLμ(k1) − k1μ

MZ

= −2MZ

k2μ

s
+ O

(
M4

Z

s2

)
(11.25)

and an exactly analogous expression for zμ(k2). The residual vector zμ(k) has the
properties kμzμ = −MZ and z2 = 0. After a straightforward calculation, we obtain
a new term T P

s ∼ (igw/2MW )v̄(p2)�Hf f̄ u(p1) not found in Eq. (11.24)

Ts(ZLZL) = −Ts(χχ ) − iTs(zχ ) − iTs(χz) + Ts(zz) − T P
s , (11.26)

where

Ts(χχ ) = �HχχH (s)v̄(p2)�(0)
Hf f̄

u(p1)

Ts(zχ ) + Ts(χz) = [zμ(k1)�μ

HZχ + zν(k2)�ν
HχZ]H (s)v̄(p2)�Hf f̄ u(p1)

Ts(zz) = zμ(k1)zν(k2)T μν
s (ZZ), (11.27)

with �Hχχ = −igwM2
H/(2MW ) and �

μ

HZχ = −gw(k1 + 2k2)μ/(2cw). Evidently
the presence of the term T P

s prevents T H
s (ZLZL) from satisfying the equivalence

theorem. This is, of course, not surprising given that an important Higgs-boson-
mediated s-channel part has been omitted. The momenta kμ1 and kν2 , stemming from
the leading parts of the longitudinal polarization vectors εμL(k1) and ενL(k2), extract
such a term from Tt (ZLZL) (see Figure 11.6); this term is precisely T P

s and must
be added to Ts(ZLZL) to form a well-behaved amplitude at high energies. In other
words, the amplitude

T̂s(ZLZL) = Ts(ZLZL) + T P
s (11.28)

satisfies the equivalence theorem by itself (see Eq. (11.24)).
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In fact, this crucial property persists after resummation – thanks to the Ward identi-
ties satisfied by the PT vertices. As shown in Figure 11.5(a), the resummed ampli-
tude, to be denoted by T s(ZLZL), is constructed from Ts(ZLZL) in Eq. (11.19)
by replacing H (s) with the resummed Higgs-boson propagator ̂H (s) and �μν

HZZ

with the expression �
μν

HZZ + �̂
μν

HZZ, where �̂
μν

HZZ is the one-loop HZZ vertex
calculated within the pinch technique. It is then straightforward to show that the
Higgs-mediated amplitude T̃s(ZLZL) = T s(ZLZL) + T P

s respects the equivalence
theorem individually; to that end, we only need to employ PT Ward identities such
as

k2ν�̂
μν

HZZ(q, k1, k2) + iMZ�̂
μ

HZχ (q, k1, k2) = − gw

2cw
�̂

μ

Zχ (k1)

k1μ�̂
μ

HZχ (q, k1, k2) + iMZ�̂Hχχ (q, k1, k2) = − gw

2cw

[
�̂HH (q2) + �̂χχ (k2

2)
]
.

(11.29)

In addition to the preceding issues, scattering amplitudes ought to be RG invariant;
that is, they should not depend on the renormalization point μ chosen to carry
out the subtractions nor on the renormalization scheme (MS, on-shell scheme,
momentum subtraction, etc.). This property must remain true in the vicinity of
resonances, i.e., after resummation. To see how this happens for the process at
hand, note that after the PT rearrangement, the resulting amplitude is decomposed
into three individually RG-invariant parts:

1. A universal (process-independent) part, corresponding to the Higgs-boson
effective charge, namely, the RG-invariant combination (g2

w/M
2
W

)̂H , defined
in Eq. (11.3); the line shape of the Higgs boson, being a universal quantity,
must be obtained precisely from this part.

2. A process-dependent part, composed of the vertex corrections and the wave
function renormalization of the external particles, which is RG invariant
because of Abelian Ward identities.

3. A process-dependent part, coming from ultraviolet finite boxes; this is
trivially RG invariant because it is ultraviolet finite and does not get
renormalized.

Finally, on physical grounds, one expects that, far from the resonance, the Born-
improved amplitude must behave exactly as its tree-level counterpart. In fact, a
self-consistent resummation formalism should have this property built in; that is,
far from resonance, one should recover the correct high-energy behavior with-
out having to reexpand the Born-improved amplitude perturbatively. Recovering
the correct asymptotic behavior is particularly tricky, however, when the final
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particles are gauge bosons. The exact mechanism that enforces the correct high-
energy behavior of the Born-improved amplitude, when the PT width and vertex
are used, has been studied in detail in [20] for the specific process considered
here.

11.6 The pinch technique at finite temperature

Finite-temperature gauge theories are a large and complicated subject (see, e.g.,
Gross et al. [21]) for which the pinch technique is useful. In Chapter 9 we men-
tioned the relationship of d = 3 gauge theories to d = 4 gauge theories at very high
temperature, where a hierarchy of scales, based on the smallness of the coupling,
made it possible to ignore chromoelectric fields and other phenomena. There are, in
principle, three scales (besides momenta) in a thermal SU (N) NAGT: the temper-
ature T itself, (Ng2)1/2T , and Ng2T . (We ignore factors such as 1/4π that may or
may not occur in particular applications, although these can be very important.) By
g we mean the four-dimensional coupling as a function of T (and other variables,
if needed). The so-called magnetic mass of a thermal NAGT scales with Ng2T ,2

and the scale (Ng2)1/2T appears as the scale of mass of the longitudinal electric
degrees of freedom (the Debye or plasmon mass). In QCD, where the coupling
decreases as T increases, or in EW theory, with its small coupling, these three
scales should obey T > (Ng2)1/2T > Ng2T , although this is not necessarily the
case in any particular real-world application. Clearly the smallest scale,Ng2T , sets
the scale for infrared-dominated phenomena. Nonperturbative infrared phenomena
at high T occur even for gauge theories normally thought of as weakly coupled
such as the electroweak part of the standard model. Indeed, this theory is weakly
coupled at low temperatures because of Higgs mass generation but strongly cou-
pled at large T , where the Higgs VEV vanishes and the electroweak gauge bosons
are perturbatively massless.

In the period 1980–1995, there were many attempts at calculating such quantities as
the thermal β function and thermal plasmon3 damping rate with standard Feynman-
graph techniques, nearly all of which were plagued with gauge dependence. In an
attempt to resolve this and other problems, some people argued for using the
Batalin–Vilkovisky approach – in the Landau gauge – and others argued for using
the background field method – in an arbitrary covariant gauge (see Elmfors and
Kobes [22] for such calculations and references to other authors). But because PT
principles were not invoked, the methods used were dependent on gauge, just as

2 Just as in d = 4, the mass runs and decreases at large momentum, as signaled by a magnetic condensate 〈TrG2
ij 〉.

Recall that in Chapter 9 we proved that such a condensate exists in three dimensions.
3 The plasmon is essentially the longitudinal electric degree of freedom with its Debye mass.

https://doi.org/10.1017/9781009402415.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.012


11.7 Basic principles of thermal field theory 271

were the usual Feynman-gauge approaches. One notable exception is the work of
Braaten and Pisarski [23, 24, 25] on hard thermal loops, which we discuss briefly
later on.

In Section 11.7, we briefly review the Matsubara decomposition of a thermal field
theory into an infinite set of coupled d = 3 field theories labeled by an integer K
for bosons or K + 1/2 for fermions. In each d = 3 theory, the corresponding fields
have mass 2πT |K| (bosons) or 2πT |K + 1/2| (fermions). It follows that for all
except the K = 0 bosonic sector, the basic scale of these field theories is T itself;
all infrared nonperturbative phenomena come from the K = 0 sector of an NAGT.
Moreover, as we will see, the coupling of any of these theories is g2T . In particular,
the K = 0 sector is just the d = 3 NAGT of Chapter 9, with the replacement of the
coupling g2

3 by g2T , the lowest available scale. The characteristic dimensionless
parameter of any of these field theories is Ng2T/k at momentum scale k. Because
the minimum momentum scale is a particle mass, it follows that theK = 0 sector is
strongly coupled (dimensionless parameter of O(1)), but this parameter is O(Ng2)
for all other sectors, possibly allowing for a perturbative expansion.4

11.7 Basic principles of thermal field theory

Consider the partition function of a bosonic quantum theory:

Z = Tr e−βH =
∫

[dφ(�x)]〈φ(�x)|e−βH |φ(�x)〉, (11.30)

where β = 1/T , and write this as a path integral for a generic field theory over
field coordinates at zero time. The matrix element has a standard path integral
representation:

〈φ(�x)|e−βH |φ(�x)〉 =
∫

[d
] exp

[
−
∫

LE

]
, (11.31)

where LE is the Euclidean Lagrangian corresponding to the Hamiltonian H , and
the integral sign means ∫

→
∫

d3x

∫ β

0
dτ (11.32)

for Euclidean time τ . Because the trace sums diagonal matrix elements, the bound-
ary conditions on the 
 path integral are


(�x, τ = 0) = φ(�x) = 
(�x, τ = β). (11.33)

4 Except for strong effects coming from the coupling of a massive theory to the K = 0 sector, including effects
from the Debye mass scale.
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(For fermions, there is an extra minus sign.) So the quantum fields 
 are periodic
(or antiperiodic, for fermions) in the time coordinate τ with period β. We can
therefore write 
 as a Fourier sum,


(�x, τ ) =
∞∑

−∞
φK(�x)e−iωKτ , (11.34)

with frequencies (called Matsubara frequencies) ωK = 2πKT . All Green’s func-
tions of 
 are similarly periodic. Inserting this periodic decomposition into LE

exposes it as the sum over Euclidean field theories with K-dependent masses, as
we said earlier. Moreover, the τ integral introduces a Kronecker delta function that
conserves frequencies and an overall factor of β. When combined with the 1/g2

factor in LE, the d = 3 coupling becomes g2T .

The well-known Feynman rules for a thermal field theory differ in the treatment of
the energy component of momentum, with the replacement

i

2π

∫
dk0 → T

∑
K

(11.35)

2πδ
(∑

k0(j )
)

→ 1

T
δ0,

∑
ωj
.

The free-field thermal propagator for a massless scalar field is (aside from an
irrelevant constant factor)

(�x, τ ) = T

(2π )3

∫
d3p

∑
K

ei �p·�x−iωkτ
1

−(iωK )2 + ω2
p

, (11.36)

with ωp = +
√

| �p|2 +m2; this is a sum of Euclidean propagators with masses
ωK = 2πKT . The sum over Matsubara frequencies yields

(�x, τ ) = 1

(2π )3

∫
d3p

2ωp

ei �p·�x{e−ωpτ [1 + n( �p)] + eωpτn( �p)}, (11.37)

where

n( �p) = 1

eβωp − 1
(11.38)

is the Bose–Einstein occupation number. Similar formulas hold for fermions; we
need not record them here.

11.7.1 The pinch technique in the zero-Matsubara-frequency sector

The first PT calculations for thermal field theory were done, as reported in Chapter 9,
for d = 3 gauge theory or, in other words, the zero-Matsubara-frequency sector
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[26, 27]. Note that when the Matsubara frequency is fixed, there is no question of
the dependence of the result on τ , which can only be reliably estimated by a sum
over all frequencies. In any case, the zero-frequency sector gives no τ dependence
to the periodic thermal fields.

The computations were actually done in the light-cone gauge, which causes no
problems because all dependence on the gauge-fixing vector nμ cancels out before
any integrations or sums are done. We translate the one-loop PT propagator of
Eq. (9.1) to the thermal regime, with the result:

d̂(q, T ) = 1

q2 − πb3g2T q
b3 = 15N

32π
. (11.39)

In later years, a number of people attempted to extract a running charge from their
calculations, as we describe in the next section. The usual procedure is to choose
a definition (which is not necessarily unambiguous) for a thermal running charge
gT (q, T ) and to define a beta function by

βT = T
dgT (q, T )

dT
. (11.40)

From Eq. (11.39), we extract a zero-Matsubara-frequency running charge in one-
loop perturbation theory as

g2
T
(q, T ) = q2g2d̂(q, T ) = g2

1 − 15g2T/(32q)
. (11.41)

This yields

T
dgT (q, T )

dT
= +15NTg3

T

64q
. (11.42)

The derivative is positive because the running charge depends on T/q and the q
derivative has the negative sign associated with infrared slavery. This means that
the coupling constant runs away as T increases. Of course, this is equivalent to the
infrared limit q → 0, where we expect infrared-slavery diseases to arise.

This thermal β function, based as it is on one-loop perturbation theory in the zero-
Matsubara-frequency sector, does not account for many important phenomena that
are beyond the scope of this book. In particular, accounting for gluon electric
masses in resummed internal propagators could, in principle, give rise to a term of
O(g4T 2/q2), which is of higher order in the infrared limit T � q. Other corrections
come from including a magnetic mass. These have been discussed by Elmfors and
Kobes [22] using a general covariant background-field gauge; one important result
of this work is that for any gauge parameter ξ , the O(g4T 2/q2) term vanishes.
Although these authors did not realize that to find a gauge-invariant result, all we
need to do is choose the Feynman background-field gauge ξ = 1, we do realize it.
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When this is done and corrections from the magnetic mass are omitted, exactly the
result of our Eq. (11.42) is found.

11.7.2 Developments in the full thermal field theory

Reference [28] gave the first PT calculation of the full thermal NAGT propagator
at one-loop order. Again, the computations were done in the light-cone gauge. The
result for the PT proper self-energy is (omitting the seagull graph that vanishes by
dimensional integration)

�̂μν = 1

2
g2NT

∑
K

∫
d3k

(2π )3

1

k2(q + k)2

× [
8(q2δμν − qμqν) + 2(2k + q)μ(2k + q)ν

]
. (11.43)

The time component of the Euclidean four-vector k is k4 = 2πTK . This self-
energy is conserved and has two independent scalar pieces multiplying two tensorial
structures; these are equivalent to calculating �̂44 and �̂ij . Most authors give results
only for q4 = 0, and we do the same; in the following results, q is a three-vector.
After doing the integrals, one finds the renormalized propagator

(g2̂)−1
44 = bq2 ln

(
q2

�2

)
+ NT 2

π2
P (ε) (11.44)

(g2̂)−1
ij =

(
δij − qiqj

q2

)[
bq2 ln

(
q2

�2

)
+ NT 2

π2
Q(ε)

]
,

where

b = 11N

48π2
; ε = q

2T
, (11.45)

and

P (ε) = π2

3
+ 1

2ε

∫ ∞

0

dy

ey − 1

[
(y2 − 4ε2) ln

∣∣∣∣y + ε

y − ε

∣∣∣∣ − 2yε

]
(11.46)

Q(ε) = 1

2

∫ ∞

0

dy

ey − 1

[
y − y2 + 7ε2

2ε
ln

∣∣∣∣y + ε

y − ε

∣∣∣∣] .
In the infrared limit q = 0 (or T = ∞), we have P (0) = π2/3 and Q(0) = 0.
These correspond to the often-quoted perturbative values m2

e = Ng2T 2/3 for the
electric mass and zero for the magnetic mass mm, respectively. However, the
kinetic term q2 ln(q2/�2) is not well behaved at small q at the one-loop level, and
the interpretation of the electric mass requires resummations that replace ln q2 by
something like ln(q2 + 4m2), which accounts for masses on the internal lines. We
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will not discuss that interesting problem any further. In any event, as is well known,
an electric mass arises at the one-loop level, but the magnetic mass vanishes to all
orders in perturbation theory, despite thatm2

m ∼ (Ng2)2T 2 looks like a fourth-order
effect. Of course, the magnetic mass is nothing but the d = 3 dynamical gluon mass
for which we argued in Chapter 9.

The next work that explicitly invoked the pinch technique to achieve gauge invari-
ance in a thermal NAGT was an attempt to calculate the plasmon damping rate
gauge invariantly [29]. Earlier gauge-dependent calculations gave a negative damp-
ing rate, which is a physical impossibility in any covariant gauge. Other calcula-
tions with other methods and in other gauges gave a positive damping coeffi-
cient. Finally, Nadkarni [29], using the results of Cornwall et al. [28], as stated
in Eq. (11.43), found a one-loop PT damping rate that was unambiguously gauge
invariant and also unambiguously negative. It was clear that this negative sign was
precisely that arising from asymptotic freedom and that – as Nadkarni suggested –
other, possibly nonperturbative effects needed to be included to get a positive rate.
In an independent development, Braaten and Pisarski [23, 24, 25] developed an
algorithm for resumming so-called hard thermal loops and using it to find a positive
and gauge-invariant plasmon damping rate. An amplitude with external lines whose
momenta p are soft (of order of the electric mass O(gT )), coupled to a loop with
hard loop momenta (of order O(T )), has terms characterized by a dimensionless
parameter O(g2T 2/p2) that is of order unity and contributes at the same order
as the soft tree-level amplitude. Here a factor g2T comes from the coupling, and
another power of T in the numerator comes from hard loop momenta. It is perhaps
not surprising that the sum of all such hard loops is gauge invariant, as Braaten
and Pisarksi proved, because they are all of the same order in the coupling. With
this process of resummation, these authors found a positive and gauge-invariant
plasmon damping rate.

Braaten and Pisarski made no reference to the pinch technique, although their
arguments would strongly suggest PT principles to those familiar with them. A few
years later, Sasaki [30, 31, 32] made this connection. First, he calculated [30, 31]
a thermal β function using the pinch technique, checking that he found the same
result in four distinct gauge families, including the background-field gauges. Then
he [32] showed that using the one-loop PT propagator with resummed internal
propagator lines also coming from the PT actually yielded precisely Braaten and
Pisarski’s result for the plasmon damping rate.

We quote here Sasaki’s result for the thermal β function, as defined through the
running charge gT of Eq. (11.41). He finds that

T
dgT S
dT

= +14NTg3

64q
, (11.47)
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which is hardly different from what was found from the d = 3 PT propagator, as
shown in Eq. (11.42), which has 15 rather than 14 in the numerator. This perhaps
surprisingly small difference may arise because Sasaki used the full thermal PT
propagator rather than just its zero-frequency part, as we did in Eq. (11.42). (But
remember that this β function is infrared dominated, and so the zero-frequency sec-
tor should give the largest contribution.) The development of the plasmon damping
rate would take us too far afield here, and we refer the reader to Sasaki’s papers.

In thermal NAGTs, just as in NAGTs at zero temperature, the pinch technique
does not solve difficult physics problems, but it does make it possible to separate
true physics issues from gauge artifacts. No one should be surprised that mere use
of the pinch technique itself at some low order of perturbation theory [29] does
not give physical results in an asymptotically free theory; it is this unphysicality
that ultimately drives the formation of a dynamical gluon mass and requires a
self-consistent formulation of these gauge theories, such as we have argued for
throughout this book. The demonstration that the resummation of hard thermal
loops is equivalent to a PT resummation should not be a surprise either. The fact
that Braaten and Pisarski did not recognize the connection of their earlier work
to the pinch technique should not lull the reader into thinking that there is no
connection to the pinch technique, as Sasaki showed.

11.8 Hints of supersymmetry in the pinch technique Green’s functions

Let us now focus on a very interesting property of the one-loop PT three-gluon
vertex discovered recently by Binger and Brodsky [33]. These authors first added
quark and scalar loops to �̂amn

αμν (q1, q2, q3); this is straightforward from the point
of view of gauge independence and gauge invariance because these loops are
automatically gauge-fixing parameter independent and satisfy the Ward identity
(Eq. (1.92)). All resulting one-loop integrals, including those of Eqs. (1.85) and
(1.86), were evaluated for the first time, thus determining the precise tensorial
decomposition of �̂amn

αμν (q1, q2, q3). Then, after choosing a convenient tensor basis,
�̂amn
αμν (q1, q2, q3) was expressed as a linear combination of 14 independent tensors,

each multiplied by its own scalar form factor. Every form factor receives, in general,
contributions from gluons (G), quarks (Q), and scalars (S). It turns out that these
three types of contributions satisfy very characteristic relations that are closely
linked to supersymmetry and conformal symmetry and, in particular, the N = 4
nonrenormalization theorems. For all form factors F (in d-dimensions), it was
shown that

FG + 4FQ + (10 − d)FS = 0, (11.48)
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11.8 Hints of supersymmetry in the pinch technique Green’s functions 277

which encodes the vanishing contribution of the N = 4 supermultiplet in d = 4.
Similar relations have been found in the context of supersymmetric scattering
amplitudes [34, 35].

It should be emphasized that relations such as Eq. (11.48) do not exist for the
gauge-dependent three-gluon vertex (see, e.g., Davydychev et al. [36]) because the
gluon contributions depend on the gauge-fixing parameter, whereas the quarks and
scalars do not. Indeed, it is uniquely the PT (or, equivalently, in the background
Feynman gauge, ξQ = 1) Green’s function that satisfies this homogeneous sum
rule. Most important, calculating in the background field method with ξQ = 1
leads to a nonzero rhs of Eq. (11.48).

As was explained in detail by Binger and Brodsky, this type of relation hints at
supersymmetry. To appreciate this point, it is useful to consider various super-
symmetries in d = 4, as was done in [33]. Specifically, one may distinguish the
following three cases, depending on the number N of supersymmetries:

1. N = 1: From the preceding definitions, it is clear that a vector superplet V1

(gluons plus gluinos) contributes ig2Nc(FG + FQ) ≡ ig2NcFV1 to a generic
form factor F , whereasN
 chiral superplets contribute ig2N
( 1

2FQ + FS) ≡
ig2N
F
. By the sum rule Eq. (11.48) in d = 4, we have FV1 + 6F
 = 0.
Thus, any form factor can be written as

F = ig2(NcFV1 +N
F
) = ig2

3
β

(N=1)
0 FV1, (11.49)

where β (N=1)
0 = 3Nc − 1/2N
 is the first coefficient of the β function. Hence

the contributions of vector and chiral superplets have precisely the same
functional form for each form factor. Furthermore, every form factor is pro-
portional to β0, even though all but one of them are ultraviolet finite.

2. N = 2: In this case, the vector superplet gives ig2Nc(FG + 2FQ + 2FS) ≡
ig2NcFV2 , whereas Nh hyperplets (a Weyl fermion of each helicity plus a
doublet of complex scalars) yield ig2Nh(FQ + 2FS) ≡ ig2NhFh. The sum
rule of Eq. (11.48) can be written as FV2 + 2Fh = 0, and thus

F = ig2(NcFV2 +NhFh) = ig2

2
β

(N=2)
0 FV2, (11.50)

where β (N=2)
0 = 2Nc −Nh.

3. N = 4: Now the vector superplet (the only multiplet allowed) contributes
2ig2Nc(FG + 4FQ + 6FS) ≡ NcFV4 , which is identically zero by the sum
rule, which, of course, is a consequence of β (N=4)

0 = 0.
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Thus, the similarities between form factors in d = 4 are related to supersymmetric
nonrenormalization theorems. In particular, the exact conformal invariance of
N = 4 implies that the gauge-invariant, three-gluon Green’s function is not renor-
malized at any order in perturbation theory. In fact, at one-loop order, there are not
even finite corrections, as reflected in Eq. (11.48).
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