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Abstract

The max-plus algebra is well known and has useful applications in the investigation of discrete event
systems and affine equations. Structural matrix rings have been considered by many authors too. This
article introduces more general structural matrix semirings, which include all matrix semirings over the
max-plus algebra. We investigate properties of ideals in this construction motivated by applications to the
design of centroid-based classification systems, or classifiers, as well as multiple classifiers combining
several initial classifiers. The first main theorem of this paper shows that structural matrix semirings
possess convenient visible generating sets for ideals. Our second main theorem uses two special sets to
determine the weights of all ideals and describe all matrix ideals with the largest possible weight, which
are optimal for the design of classification systems.
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1. Introduction

The max-plus algebra is well known and has useful applications in the investigation
of discrete event systems and affine equations (see [4, 13, 14]). On the other hand,
structural matrix rings have also been considered by many authors (see, for example,
[7, 15, 28] and [17, Section 3.14]). The present article introduces more general
structural matrix semirings, incorporating all matrix semirings over the max-plus
algebra.

We investigate properties of ideals in this construction motivated by applications
to the design of centroid-based classification systems, or classifiers, as well as for
multiple classifiers combining several initial classifiers (see the monograph [27], recent
articles [24, 25] and Section 2 below). The concept of an ideal is very important
and has been considered in various branches of mathematics (see, for example
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[1–3, 8, 9, 15, 16, 20, 23, 25, 26, 31–33]). In particular, visible generating sets
have been found for certain ideals of group rings in [8] and polynomial quotient rings
in [25].

Our first main theorem shows that every structural matrix semiring possesses a
convenient visible generating set V for matrix ideals; see Theorem 3.2 in Section 3.
Our second main theorem demonstrates that every structural matrix semiring has
two special sets, G and Gmax, such that the weight of each nonzero matrix ideal I
(respectively, each matrix ideal I of largest possible weight) is equal to the minimum
of the weights of the elements in I ∩ G (respectively, I ∩ Gmax); see Theorem 3.3 in
Section 3. This means that the set G can be used to determine the weights of all ideals
in this construction, and the set Gmax gives us a description of all matrix ideals with
largest possible weight, which are optimal for the design of classification systems.

2. Motivation and preliminaries

Semirings and matrix constructions over them can be used to generate convenient
sets of centroids for centroid-based classification systems, or classifiers, and to design
combined multiple classifiers capable of correcting the errors of individual initial
classifiers. We include concise preliminaries in this section and refer the reader
to [13, 17–19, 21, 22, 27, 29] for more detailed discussions.

The classification process begins with a representation of data in a standard vector
space Fn, where F can be regarded as a semifield. A semifield is a semiring, where the
set of all nonzero elements forms a group with respect to multiplication. Recall that a
semiring is a set F with two binary operations, addition + and multiplication ·, such
that the following conditions are satisfied:

(S1) (F, +) is a commutative semigroup with zero 0;
(S2) (F, ·) is a semigroup;
(S3) multiplication distributes over addition;
(S4) zero 0 annihilates F, that is, 0 · F = F · 0 = 0.

It is also often assumed that every semiring satisfies the following additional property:

(S5) (F, ·) has an identity element 1.

Here we look at more general semirings, which do not have to satisfy (S5), because
such more general terminology adds the convenience of allowing us to consider
more general subsets as subsemirings without assuming that all subsemirings contain
the identity element. By analogy with a similar situation in ring theory, we call
every semiring satisfying (S5) a semiring with identity element. Both terminologies
are essentially equivalent, since it is always easy to adjoin an identity element to
every semiring that does not have one. Semirings have been used in broad areas
(see [4, 13, 14]). Originally, our investigation of semirings was motivated by the
development of methods useful for duality theory (see [6, 10–12]).

Every centroid-based classification system, or classifier, selects special elements
c1, . . . , ck in Fn, called centroids (see [5, 27]). For i = 1, . . . , k, each centroid ci
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defines its class N(ci) consisting of all vectors v such that ci is the nearest centroid
of v. Then every vector in Fn, representing the attributes of features of an instance, is
assigned to the class of its nearest centroid.

On the other hand, multiple classifiers are often used in analysis of data to combine
individual initial classifiers (see, for example, [30]). A well-known method for the
design of multiple classifiers consists in designing several simpler initial or individual
classifiers, and then combining them into one multiple classification scheme with
several classes. This method is very effective, and it is often recommended for various
applications (see [27, Section 7.5]).

Denote the number of initial classifiers being combined by n. If o1, . . . , on are the
outputs of the initial classifiers, then the sequence (o1, . . . , on) is called a vector of
outputs of the initial classifiers. In order to define the multiple classifier and enable
correction of errors of the initial classifiers, a set of centroids c1, . . . , ck is again
selected in Fn. For i = 1, . . . , k, the class N(ci) of the centroid ci is again defined
as the set of all observations with the vector outputs of the initial classifiers having ci

as its nearest centroid.
The design of multiple classifiers by combining individual classifiers is quite

common in the literature. We refer to [24, 25, 27] for a list of properties required
of the sets of centroids. In particular, it is essential to find sets of centroids with large
weights and small numbers of generators. The weight wt(v) of v ∈ Fn is the number of
nonzero components or coordinates in v. The weight of a set C ⊆ Fn is the minimum
weight of a nonzero element in C. For more information we refer the reader to [24, 25].

The information rate of a class set C in Fn can be defined as log|F|(|C|)/n. It
reflects the proportion of output of the individual initial classifiers used to produce
the outcomes of the multiple classification, as opposed to additional efforts spent on
increasing reliability and correcting classification errors.

All sequences of the centroid set C can be written down in a matrix M to discuss
their properties. If M has two identical columns, this means that two initial classifiers
produce identical outputs. This duplication is very inefficient, even though it could
help to correct classification errors. Therefore, in a situation like this, one of these
classifiers can be removed and a better scheme can be devised. Likewise, it is
undesirable to have strong correlation or functional dependencies between very small
sets of columns in M or between the initial classifiers.

According to [27, Section 7.5], for a classifier with a class set C to be efficient, the
class C must satisfy the following most essential basic properties.

(1) The set C must have a large weight.
(2) The information rate of C must be large.
(3) A small set of generators for the set C is essential in order to simplify computer

storage and manipulation of the set.
(4) If all vectors of C are recorded in a matrix M, then there should not be strong

correlation or functional dependencies between small sets of columns of M. In
particular, the matrix M should not have duplicate columns.
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Thus, in particular, it is essential to find sets of centroids with large weights and
small numbers of generators. For additional references and discussion of experimental
research related to these properties we refer the reader to [24, 25, 29, 30].

Let F be a semifield, and let Mm(F) be the semiring of all m × m matrices over F.
Let % be a binary relation on the set [1 : m] = {1, . . . , m}. For i, j ∈ [1 : m], denote
by ei, j the standard elementary matrix in Mm(F) with 1 in the intersection of ith row
and jth column and zeros in all other cells or entries. It is well known and easy to
verify that the set M%(F) =

⊕
(i, j)∈% Fei, j is a subsemiring of Mm(F) if and only if the

relation % is transitive. In this case M%(F) is called a structural matrix semiring. Many
interesting results on structural matrix rings have been obtained in the literature (see,
for example, [7, 15, 28]). Known facts and references concerning structural matrix
rings can also be found in [17]—see Section 3.14 and the bibliography.

If |%| = n, then the additive semigroup of M%(F) is isomorphic to Fn and we can
introduce multiplication in Fn by identifying it with M%(F). Further, we are going to
look at the sets of centroids generated in M%(F) as ideals.

Denote the set of all positive integers by N and put N0 = N ∪{0}. Every set of
elements g1, . . . , gk ∈ M%(F) generates an ideal id(g1, . . . , gk) in M%(F), namely, the
set of all sums of these elements and their multiples, that is, the set of all sums of the
form

m1∑
j=1

`1, jg1r1, j + · · · +

mk∑
j=1

`k, jgkrk, j, (2.1)

where k ∈ N and `i, j, ri, j ∈ M%(F) ∪ {1}, for i = 1, . . . , k.

3. Main results

D 3.1. A set U in a semiring Q is called a visible generating set or a visible
set of generators if, for any subset V of U, the weight of the ideal id(V) in Q is equal
to the minimum of the weights of the generators v ∈ V .

This notion was introduced in [8] and was also studied in [25]. It is related to the
concept of a visible basis, investigated by many authors (see [17, 25] for additional
references). Let % be a binary relation on the set [1 : m]. We define two sets

L = {i | ∃k : (k, i) ∈ %},

R = { j | ∃k : ( j, k) ∈ %}

and the relations

%` = {(i, j) ∈ % | i ∈ L},

%r = {(i, j) ∈ % | j ∈ R}.

For any i ∈ [1 : m], we introduce notation for the sets

%(i) = { j | (i, j) ∈ %},

%−1(i) = { j | ( j, i) ∈ %}.
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For any d ∈ N, let PL(d) be the set of all pairs (S , i) such that i ∈ [1 : m], S ⊆
%−1(i) \ L and |S | = d. Denote by ML the largest positive integer such that the set
PL(ML) is not empty, or zero if such integers do not exist.

Similarly, for any d ∈ N, let PR(d) stand for the set of all pairs (i, S ) such that
i ∈ [1 : m], S ⊆ %(i) \ R and |S | = d. Denote by MR the largest positive integer such that
the set PR(MR) is not empty, or zero if such integers do not exist.

Put MZ = |% \ (%r ∪ %`)|, and let

M = max{1, MZ , ML, MR}.

Next, we put
gZ =

∑
(i, j)∈%\(%r∪%`)

ei, j =
∑

(i, j)∈%,i<L, j<R

ei, j,

and introduce the following subsets of M%(F):

VH =

{
{ei, j | (i, j) ∈ %} if M = 1
∅ otherwise;

VZ =

{
{gZ} if M = |% \ (%r ∪ %`)|
∅ otherwise;

VL =

{∑
j∈S

e j,i

∣∣∣∣∣ (S , i) ∈ PL(M)
}
;

VR =

{∑
j∈S

ei, j

∣∣∣∣∣ (i, S ) ∈ PR(M)
}
.

Finally, put
V =V(F, %) =VH ∪VZ ∪VL ∪VR.

T 3.2. Let F be a semifield, and let M%(F) be a structural matrix semiring over
F, where % is a transitive relation. Then the setV(F, %) is a visible generating set for
ideals in M%(F).

Denote by GZ the set of all nonzero elements

g =
∑

(i, j)∈%\(%r∪%`)

fi, jei, j ∈ M%(F),

where fi, j ∈ F. Let

GL =

{∑
j∈S

f je j,i ∈ M%(F)
∣∣∣∣∣ (S , i) ∈

∞⋃
d=1

PL(d), 0 , f j ∈ F
}
,

GR =

{∑
j∈S

f jei, j ∈ M%(F)
∣∣∣∣∣ (i, S ) ∈

∞⋃
d=1

PR(d), 0 , f j ∈ F
}
.
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Put GH = { f ei, j | (i, j) ∈ %, 0 , f ∈ F} and

G = GH ∪ GZ ∪ GL ∪ GR.

For any d ∈ N, let PZ(d) be the set of all subsets S of % \ (%r ∪ %`) such that
|S | = d. Denote by GZ

max the set of all nonzero elements g =
∑

(i, j)∈S fi, jei, j ∈ M%(F),
for all S ∈ PZ(M), where 0 , fi, j ∈ F. Let GL

max be the set of all nonzero elements
g =

∑
j∈S f je j,i ∈ M%(F), for all pairs (S , i) ∈ PL(M) and all 0 , f j ∈ F. Denote by GR

max
the set of all nonzero elements g =

∑
j∈S f jei, j ∈ M%(F), for all pairs (i, S ) ∈ PR(M) and

all 0 , f j ∈ F. Set

GH
max =

{
GH if M = 1
∅ otherwise.

Finally, put
Gmax = GH

max ∪ G
Z
max ∪ G

L
max ∪ G

R
max.

T 3.3. Let F be a semifield, and let M%(F) be a structural matrix semiring over
F, where % is a transitive relation. Then the following conditions hold:

(i) for every nonzero ideal I of M%(F), the weight of I is equal to the minimum of
the weights of the generators in I ∩ G;

(ii) for every nonzero ideal I of the largest possible weight in M%(F), the weight of I
is equal to the minimum of the weights of the generators in I ∩ Gmax.

4. Proofs

For any x =
∑

(i, j)∈% fi, jei, j ∈ M%(F), the support of x is the set

supp(x) = {(i, j) ∈ % | fi, j , 0}.

For any semiring Q, the left annihilator of Q is the set

Ann`(Q) = {x ∈ Q | xQ = 0},

and the right annihilator of Q is the set

Annr(Q) = {x ∈ Q | Qx = 0}.

L 4.1. For any semifield F and any structural matrix semiring M%(F), where % is
a transitive relation, the following equalities hold:

Annr(M%(F)) = M%\%` (F), (4.1)

Ann`(M%(F)) = M%\%r (F). (4.2)

P. Take any element r in Annr(M%(F)). It can be recorded as r =
∑

(i, j)∈% fi, jei, j,
where fi, j ∈ F. Pick any pair (i, j) in %`. There exists k ∈ [1 : m] such that (k, i),
(k, j) ∈ %. Hence ek,i ∈ M%(F) and fi, jek,iei, j is a summand of the product ek,ir in M%(F).
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Since r ∈ Annr(M%(F)), we get fi, j = 0. It follows that r belongs to M%\%` (F), and so
Annr(M%(F)) ⊆ M%\%` (F).

To prove the reverse inclusion, let us pick any element r in M%\%` (F). It can be
written down as r =

∑
(i, j)∈%\%` fi, jei, j, where fi, j ∈ F. In order to verify that M%(F)r = 0,

it suffices to show that ea,br = 0 for all (a, b) ∈ %. Suppose to the contrary that ea,br , 0
for some (a, b) ∈ %. Then it is clear that at least one of the summands ea,b fi, jei, j is
nonzero for some (i, j) ∈ % \ %`. The definition of a structural matrix semiring implies
that fi, j , 0, b = i, (a, i) = (a, b) ∈ % and (a, j) ∈ %. Hence (i, j) ∈ %`. This contradicts
the choice of (i, j) in % \ %` and shows that ea,br = 0 for all (a, b) ∈ %. Therefore
M%(F)r = 0, which means that r ∈ Annr(M%(F)). Thus Annr(M%(F)) ⊇ M%\%` (F).

These two inclusions show that equality (4.1) always holds. The proof of
equality (4.2) is dual and we omit it. �

L 4.2. Let M%(F) be a structural matrix semiring over a semifield F, where % is
a transitive relation, and let g ∈ GZ . Then id(g) = {cg | c ∈ N0} and wt(id(g)) = wt(g).

P. By the definition of GZ , we get

g =
∑

(i, j)∈%\(%r∪%`)

fi, jei, j ∈ M%(F),

where fi, j ∈ F. It follows from (2.1) that

id(g) =

{ k∑
i=1

`igri

∣∣∣∣∣ k ∈ N; `i, ri ∈ M%(F) ∪ {1}
}
.

Since supp(g) ∩ %` = ∅, equality (4.1) in Lemma 4.1 shows that `ig = 0 for every
`i ∈ M%(F). Equality (4.2) in Lemma 4.1 shows that gri = 0 for every ri ∈ M%(F),
because supp(g) ∩ %r = ∅. Hence we may assume that `i = ri = 1, for i = 1, . . . , k.
Therefore `igri = g, for all i = 1, . . . , k, and we get

id(g) = {cg | c ∈ N0},

as required. It follows that wt(id(g)) = wt(g), which completes the proof. �

L 4.3. Let M%(F) be a structural matrix semiring over a semifield F, where % is
a transitive relation, and let g =

∑
s∈S fses,i ∈ GL, where i ∈ [1 : m], (S , i) ∈ PL(d) for

some d ∈ N, and 0 , fs ∈ F. Then

id(g) =

{
cg +

∑
(i,b)∈%

hbgei,b

∣∣∣∣∣ c ∈ N0, hb ∈ F
}

(4.3)

and wt(id(g)) = wt(g).
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P. It follows from (2.1) that id(g) contains the set in the right-hand side of (4.3).
To prove the reverse inclusion, choose any element x in id(g). By (2.1),

x =

k∑
j=1

` jgr j, (4.4)

for some ` j, r j ∈ M%(F) ∪ {1}. We may assume that only nonzero summands ` jr j are
included in the sum (4.4).

Since (S , i) ∈ PL(d), we get (s, i) ∈ % \ %`, for all s ∈ S . The equality (4.1) of
Lemma 4.1 tells us that g ∈ Annr(M%(F)); whence ` jg = 0 for every ` j ∈ M%(F). Hence
we may assume that all the ` j in (4.4) are equal to 1. Therefore, we can rewrite (4.4) as

x = cg +

k∑
j=1

gr j, (4.5)

for some c ∈ N0, r j ∈ M%(F). Keeping in mind that M%(F) =
⊕

(a,b)∈% Fea,b, without
loss of generality the distributive law allows us to assume that every element r j ∈

M%(F) in (4.5) is homogeneous, that is, r j = h′ea,b for some h′ ∈ F, (a, b) ∈ %. Then
it follows that r j = hbei,b, for some hb ∈ F, because gr j , 0. Therefore, we can rewrite
(4.5) in the required form as in the right-hand side of (4.3). This shows that (4.3)
always holds.

In order to prove that wt(id(g)) = wt(g), let us take any nonzero element x in id(g)
and represent it as a sum in the right-hand side of (4.3).

Since F is a semifield, we get wt(hg) = wt(g) = |S |, if h , 0. The transitivity of %
implies that %(i) ⊆ %(s), for all s in S . Likewise, since F is a semifield, it follows that

wt(hbgei,b) = wt(g) = |S |,

whenever hb , 0. Since hbgei,b =
∑

s∈S (hb fs)es,b, it follows from (4.3) that wt(x) ≥
wt(g) for each nonzero element x in id(g). Therefore wt(x) ≥ wt(g). The reverse
inequality is obvious, and so we get wt(id(g)) = wt(g) = |S |. This completes the
proof. �

L 4.4. Let M%(F) be a structural matrix semiring over a semifield F, where % is
a transitive relation, and let g =

∑
s∈S fsei,s ∈ GR, where i ∈ [1 : m], (i, S ) ∈ PR(d) for

some d ∈ N, and 0 , fs ∈ F. Then

id(g) =

{
cg +

∑
(a,i)∈%

haea,ig
∣∣∣∣∣ c ∈ N0, ha ∈ F

}
and wt(id(g)) = wt(g).

P. The proof is omitted, since it is dual to the proof of Lemma 4.3. �
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P  T 3.2. If M = 1, then V =VH and it is clear that this set is a visible
generating set. Further, we assume that M > 1. ThenVH = ∅.

Take any subset V in V =V(F, %) and consider the ideal I = id(V) in M%(F). Let
x be a nonzero element of minimal weight in I, so that wt(x) = wt(I). The weight of
each element in V is equal to M. Consequently, in order to prove that V is a visible
generating set, it suffices to show that wt(x) = M. Since V ⊆ id(V), the minimality of
wt(x) shows that wt(x) ≤ M. Therefore it remains to verify that wt(x) ≥ M.

By (2.1), we get

x =

k∑
i=1

xi, (4.6)

where xi ∈ id(gi), for some gi ∈ V . Without loss of generality we may assume that
the positive integer k has a minimum value in (4.6). Lemmas 4.2, 4.3 and 4.4 imply
that wt(xi) ≥ wt(gi), for all i = 1, . . . , k. Therefore, if k = 1, then the desired inequality
wt(x) ≥ M follows.

In the rest of the proof, we assume that k > 1. We are going to show that this
assumption always leads to a contradiction with the minimality of k. This will mean
that k = 1, which will complete the proof.

If supp(xi) ∩ supp(x j) = ∅, for all 1 ≤ i, j ≤ k, i , j, then wt(x) =
∑k

i=1 wt(xi) ≥ M,
and so we are done in this case. Further, we assume that the supports of some
of the summands in the right-hand side of (4.6) intersect. To simplify notation
we may assume that supp(x1) ∩ supp(x2) , ∅. Then there exists (a, b) ∈ % such that
(a, b) ∈ supp(x1) ∩ supp(x2). There are several cases to consider.

Case 1. g1, g2 ∈ VZ . Since VZ = {gZ}, we see that g1 = g2 = gZ , and so we can
replace two summands x1 and x2 in (4.6) by just one summand x1 + x2, because
x1 + x2 ∈ id(gZ). This contradicts the minimality of k, and shows that Case 1 is
impossible.

Case 2. At least one of the elements g1, g2 belongs toVL. Without loss of generality
we may assume that g1 ∈ VL. Then it follows that g1 =

∑
s∈S e j,b, for some (S , b) ∈

PL(M), where a ∈ S and |S | = M. There are three subcases to consider.

Subcase 2.1. g2 ∈ VZ . Since (a, b) ∈ supp(x2), it follows from Lemma 4.2 that b < R.
Besides, it follows from (S , b) ∈ PL(M) that S ∩ L = ∅. Therefore (s, b) ∈ % \ (%` ∪ %r),
for all s ∈ S . However, the definition of M shows that M = |S | = |% \ (%` ∪ %r)|. Hence

% \ (%` ∪ %r) = {(s, b) | s ∈ S }.

Therefore g1 = gZ . This means that Subcase 2.1 coincides with Case 1, and so it is
impossible.

Subcase 2.2. g2 ∈ VL. Then g2 =
∑

s∈S 2
e j,b, for some (S 2, b) ∈ PL(M), where a ∈ S

and |S | = M. It follows from the maximality of M and Lemma 4.3 that

S = %−1(b) \ L = S 2.
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Hence g1 = g2. Therefore we can replace two summands x1 and x2 in (4.6) by just one
summand x1 + x2, because x1 + x2 ∈ id(g1). This contradicts the minimality of k, and
shows that Subcase 2.2 is impossible.

Subcase 2.3. g2 ∈ VR. Then it follows from (a, b) ∈ supp(x2) and Lemma 4.4 that
b < R. As in Subcase 2.1, this yields g1 = gZ again. Thus, Subcase 2.3 is impossible.

Case 3. At least one of the elements g1, g2 belongs toVR. This case is dual to Case 2
above, and so a dual proof shows that it is also impossible. This completes the proof. �

P  T 3.3. The proof of condition (ii) is similar to that of (i), the only
difference being that a few small clarifications have to be inserted in the proof of (i) to
prove (ii). In order to avoid unnecessary duplication we will give a complete proof for
condition (i), and in parentheses will indicate small additions required for the proof
of (ii).

Let us start by choosing a nonzero ideal I of M%(F). (For the proof of (ii) in addition
here we assume that I has the largest possible weight in M%(F).)

Clearly, wt(I) = 1 if and only if I ∩ GH , ∅. Therefore in the case where wt(I) = 1
the theorem is straightforward, and so in the rest of the proof we assume that wt(I) > 1.
Choose a nonzero element g of minimal weight in I so that wt(g) = wt(I). There are
several cases to consider.

Case 1. g ∈ Ann`(M%(F)) ∩ Annr(M%(F)). Lemma 4.1 shows that r ∈ M%\%` (F) ∩
M%\%` (F). Hence g ∈ GZ . This means that in this case wt(I) is equal to the weight
of the element g from I ∩ GZ , and so condition (i) holds.

(For the proof of (ii) here we add that it follows from the maximality of wt(I) and
Lemma 4.2 that wt(g) = MZ . Therefore g ∈ GZ

max, as required for (ii).)

Case 2. g ∈ Annr(M%(F)) \ Ann`(M%(F)). Then gei,t , 0 for some (i, t) ∈ %. Obvi-
ously, wt(gei,t) ≤ wt(g). By the minimality of the weight wt(g), we get wt(gei,t) =

wt(g), because gei,t ∈ I. Therefore there exists a subset S ⊆ % such that g =
∑

j∈S f je j,i,
where 0 , f j ∈ F. Clearly, |S | = wt(g). It follows that g ∈ GL. Therefore in this case I
has an element of weight wt(I) belonging to GL, and so condition (i) holds.

(For the proof of (ii) here we add that the maximality of wt(I) and Lemma 4.3 imply
that |S | = ML = M. Therefore (S , i) ∈ P|M| and wt(g) = M, as required for (ii).)

Case 3. g ∈ Ann`(M%(F)) \ Annr(M%(F)). The proof in this case is dual to that for
Case 2, and so we omit it.

Case 4. g < Annr(M%(F)) ∪ Ann`(M%(F)). By Lemma 4.1, we get g < M%\%` (F) ∪
M%\%r (F). Hence there exist (a, b), (c, d) ∈ % such that ea,bgec,d , 0. However,
ea,bgec,d ∈ I and wt(ea,bgec,d) = 1. This contradicts the assumption that wt(I) > 1 and
completes the proof. �
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