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TAUBERIAN THEOREMS FOR STRONG AND
ABSOLUTE BOREL-TYPE METHODS
OF SUMMABILITY"

BY

D. BORWEIN AND E. SMET

1. Introduction. Suppose throughout that s, a, (n =0, 1,2, ...) are arbitrary
complex numbers, that « >0 and B is real and that N is a non-negative integer
such that aN+B=1. Let

n

Sh = Z a, (nZO)s S_1=0,
v=0
om+ﬁ ~1 an+ﬂ 1
sa.B(Z) ;N Sn T oy r( "+B) aa,B(z) Z a,, +B)
Sap(2)=ae *s,5(2), Anp(z)=ae” aa,B(z)

where z = x +1iy is a complex variable and the power z” is assumed to have its
principal value.

Borel-type methods are defined as follows:

(a) Summability: If S, g(x) exists for all x=0 and tends to s as x =, we
say that s, — s(B, a, B) or Yo a, =s(B, a, B);

(b) Strong summability with index p>0: If S, g_1(x) exists for all x =0 and

J e’ |Sag-1(t)—s|° dt =o(e*),
0

we say that s, — s[B, a, Bl,;

(c) Absolute summability: If s, — s(B, &, B) and S, g(x)€ BV,[0,=),? we
say that s, — s |B, a, B|;

(d) Boundedness: If S,g(x) exists and is bounded on [0, ®), we say that
s, =0(1)(B, a, B);

(e) Strong boundedness with index p>0: If S, g_;(x) exists for all x=0 and

J. e' ISa,g_l(t)lp dt= O(ex),
0
we say that s, = 0(1)[B, a, B],-
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@ f(x)e BV,[0,») means that f(x) is of bounded variation with respect to x on [0, ®).
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The summability method (B, 1, 1) is the Borel exponential method B (see

[7]). The (B, a, B) method is due to Borwein (see [2]) and the [B, a, 8], and
|B, a, B] methods are due to Borwein and Shawyer (see [4], [3] respectively).
Strong Borel-type summability [B, a, 8] (see [3]) is the [B, a, B]; method.

The actual choice of the integer N in the above definitions is clearly
immaterial. We shall therefore tacitly assume whenever a finite number of
methods, with o fixed and 8 = B4, B2, . . ., Bk, are under consideration that N is
such that aN+8,=1 (r=1,2,...,k). '

The following known result establishes a natural scale for these summability
methods. (Theorem A() is [1, (II)]. Theorem A(i) is [3, Theorem 9] when
p=1 and part of [4, Theorem 9*(ii)] when p=1. Theorem A(iii) is [8,
Lemma].)

THEOREM A. Let B> p.

(i) If s,> s(B,a, u), then s, = s(B, a, B).

@) If p=1 and s, — s[B, a, u],, then s, — s[B, a, B],.

(iii) If s, — s|B, a, u|, then s, — s |B, a, B].

In [5] we established a number of tauberian theorems for the (B, a, B)
method. In this paper we investigate all the corresponding results for the
[B, a, B], method with p=1 and either prove them or show, by means of
counterexamples, that they are false. We also examine some of the correspond-
ing results for the |B, a, 8| method.

2. Preliminary results. We first state some known results.

LEMMA 1.

(@) If p=1 and s, — s[B, a, B),, then a, — OB, a, B],.
(ii) If s, — s|B, a, B|, then a, — 0|B, a, B|.

LeEMMA 2.

(@) If p=1 and s, — s[B, a, Bl,, then s, — s(B, a, B).
(ii) If p>0 and s, — s(B, a, B), then s, — s[B, a, B +1],.

Lemma 1(j) is included in [3, Theorem 15] when p=1 and in [4, Theorem
15*] when p>1. Lemma 1(ii) is included in [3, Theorem 14]. Lemma 2(i) is [3,
Theorem 3] when p=1 while Lemma 2(i) follows from [4, Theorem 3*] and
Theorem A(i) when p>1. Lemma 2(ii) is [4, Theorem 5*].

Wherever it occurs in the following lemmas, we suppose that f(x) is bounded
and Lebesgue measurable on every finite interval [0, X] and we let fs(x) be
defined by

1

0= [ 0P 0 e

where §>0.
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Lemma 3. If §>0 and y>0, then
1

() L (x=0)""fs(2) dt.

f8+‘y (x) =
LemMA 4.
(i) Let f(x)=sqp(x) and let 8>0. Then s, g+5(x) = fs(x).
(i) Aap(x)=Sap(x)— Sup+a(x)—ae *sn_1(x*N"BYT'(aN +B)).
Lemma 3 is a well-known result the proof of which is straightforward.
Lemma 4(i) is [2, Lemma 2]. The proof of Lemma 4(ii) is also straightforward.
LemMA 5. If s, =0(1)(B, a, B), then s, =0(1)(B, a, B+ &) for every §>0.

Lemma 5 is [3, Theorem 8].

LeEmMMA 6. Let p=1. If 5, =0(1)[B, a, B],, then
() s =0(1)(B, o, B),
(ii) s, =0(1)[B, a, B+8], where 0<8<1, and
(iii) s, =0(1)[B, a, B+ 8], where r>0 and 6=1.
Proof. (i) When p=1 the result is [3, Theorem 4]. Thus we suppose that
p>1 and we let 1/p+1/q=1. Using Holder’s inequality and Lemma 4(i), we
have that

[Se(x)|= e"‘J; e' |Sap-1(t)| dt

x 1p( > 1/q
= e_x{‘[ et |Sa,a-1(t)|P dt} {J; e' dt}
0

< e—x{Kex}l/p{ex}llq = KWVp

for some positive constant K since s, =0(1)[B, a, B],.

(i) When p=1 the result is included in [3, Theorem 10]. Thus we again
suppose that p>1 and we let 1/p+1/q=1. Furthermore, we let
f(x)=as,g_1(x), L=2°AT(8)}", and M =[1AT(8)}*]f; e" ™" |f;(t)|" dt. Then,
using Lemma 4(i), Holder’s inequality, and part of the proof of (i), we have
for x =1 that

* t P _ 1 * (1-p)t ' _ 8—1
Le |Supss-a(1) dr—{m)}pL e L(r u)* " f(u) du

= LJ;x e““’)'“:_1 |f(u)| du}P dt

+Lf e“"’)'“:l(t-— w7 f)lP du}

P
dt

t p/q
x{[ (t—u)®! du} dt+M
t—1
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- LLx e(l—p)t{KI/pet}p dt
L (* '
+ 5 J e dtJ (t—up " |f(w)P du+M
1 t—1

L

=LKe*+ 571

x u+1
L [f(w)P duj e (t—u)P dt+ M

L X
=LKe" +—87 L e |f(u)|P du+M
= < L[ u p
=LKe +-8—,; e" |Sap-1(W)P du+M
=0(e*) since s,=0(1)[B, a, B,
This establishes the desired result.
(iii) If §=1, then

L e IS,,,ﬁ+5_1(t)|'dtSL K'e'dt=K'e*

for some positive constant K by Lemma 6(i) and Lemma 5.

Lemma 7. If
e L f(t) dt=0(1),

then
e_xj fs(t) dt=0(1)
0

for every 6>0.
The proof of Lemma 7 is essentially the same as the proof of [3, Lemma 5].
LEmMa 8. Letp=1. If
e"‘Jx e P f(D)P dt=0(1) and e‘*jx f()ydt=o(1),
then ’ ’
() e™*f5 e |f5(t)F dt =0(1) where 0<8<1 and
(i) e f5e" " |fs (1) dt=0(1) where r>0 and §=1.

Proof. (i) Let ¢ >0. By hypothesis, there exists a number Y =0 such that

Lx f(t) dt

=ege”*
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for all x=Y. Let

N(e)= sup

O=x=sY

J.x f(®) dt| <o,
Now

lim sup e"‘J' e f5 (P dt
0

X—>00

* p
=lim sup e"‘J el P dt
€

X—>0

I‘(a)J; (t=u)*" f(u) du

2P
SW {lim sup I; +lim sup Iz} :

where

x 1 p
Li=e™| 4" dt
(-3

L (1= w)*f(u) du
and

x 14
L=e" J' el P dt
(-3

j (6= > f(u) du

But, using the Second Mean Value Theorem,

p
dt

g1 jt—s f(u) du

x
lim sup I, = lim sup e"‘J e P
e (1)

x—>% x—>

X—>0

=<2°£®"P lim sup e"‘j e PYN(e)+ee'}P dt

=2%®VP [im sup e"‘J e PY(N(g))P + ePe™} dt

X—>00

=%
since

=2 sup =2{N(g)+¢ee'}

O=sy=t—¢

JH f(u) du J: f(u) du

n(t)

and

lim e"‘J’ ePHUN(e)P dt=0.

Also, by hypothesis there is a number K =0 such that

e“"J e f(Pdt=K
0
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for all x=0, and therefore, when p=1,

lim sup I, <lim sup e""J dtJ (t—u)® " |f(u)| du

xX—> X—>0

ute

<lim sup e"‘Ju |f(w)) duj (t—u)® ' dt

xX—>00 u
€

=K—,
1

while, when p>1,

lim sup I, <lim sup e"‘j e(l_p)'{‘[ (t—u)® ' f(u)P du}

X—> x—>

8\p—1 x !
J%} limsupe"‘j e‘“”"d‘J (t=w)* 7 |fW) du

Xx—>% t—e

) p—1 x u+e
< {%} lim sup e"‘J [f(W)? du J (t—u)® e P gy
x—>c© 0 u
88 p x 88 p
= ——} lim sup e_"J' e | f(w)P du sK{—} .
6 X—>00 0 8
Thus for p=1 we have that

2P +K87") 4

lim su e"‘J P (P di <

from which it follows that

lim sup e_"J- e fs(tP dt=0
0

x—>®

since ¢ is arbitrary. This establishes the desired result.
(ii) Since e *f;(x) =o0(1) by hypothesis, we have, when § = 1+ u where u >0,
that

e fir (x)= e_xjx fu(t) dt=0(1),

using Lemma 3 and Lemma 7. Hence, for §=1,
e"‘L e [fa(t)|'dt=e_"J’ e' le”fs (1) dt
0

= e”"J’ eo(1) dt
0

=0(1).
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If b is a real number, we let
H,={z|Re z=b}.

A function g(z) is said to be of exponential type in H, if g(z) is analytic in H,
and if there are positive numbers A, a such that |g(z)| < Ae®”! for all z in H,.

Lemma 9. If g(z) is of exponential type in H, and if

L g dx < (p>0),

then

[ lgop dr<e

Lemma 9 is due to Gaier [6, Theorem 2].
Lemma 10. If g(z) is of exponential type in H, and g(x) € BV,[b, ), then
g*“(x)€ BV,[b, »)
for every non-negative integer k.
Proof. Suppose that g*’(x)e BV,[b,®) where k is a non-negative integer.
Then
J: |g* P(x+b+1)| dx <

and

+ ! 2 )
Ig(k+1)(2+b+1)lsuj 'g(z+b+eto)| do
2@ Jo

= (k+1)! Ae®dl+ol+D

for all z in H, where A, a are positive constants. Hence, by Lemma 9,

o

J lg* P (x+b+1)| dx=J |g**?(x)| dx <o
0

b+1

i.e. g**V(x)e BV,[b+1, ). Since g**"(x) e BV,[b, b+ 1], therefore g**"(x)e
BV,[b, ). The desired result now follows by induction.

3. Tauberian theorems for strong Borel-type summability with index p=1.
We first show that the scale in Theorem A(ii) us proper. In [5] we showed
that there is a sequence {s,} which tends to a limit (B, a, 8) but does not tend
to a limit (B, a, B —1). Hence, in view of Lemma 2, there is a sequence {s,}
which tends to a limit [B, a, B + 1], for every p>0 but does not tend to a limit
[B,a, B—1], for any p=1.
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Tueorem 1. Let p,r=1. If s, = s[B, &, n], and a, — 0[B, , B],, then s, —
s[B’ a, B]"

Proof. By Lemma 2(i), s, — s(B,a, ). The result now follows by [9,
Theorem 3] and the note following [9, Theorem 3].

THeoREM 2. Let p=1. If s,— s[B,a, B+e], for some ¢>0 and s,=
0(1)[B, , B1,, then s, — s[B, a, B+ 8], for every §>0.

Proof. We can suppose without loss of generality that s=0. Then
s, = 0(B, a, B +¢) and s, = 0(1)(B, a, B) by Lemma 2(i) and Lemma 6(i). Hence
s, = 0(B, a, B+ 8) by [5, Theorem 2] for §>0. Also s, =0(1)[B, a, B +8], by
Lemma 6(ii) or (iii). Therefore, letting f(x) = as,g+s-1(x), we have that

eJ (1) dt = Suprs(x) = 0(1)

and

X

e"‘j P f(DP dt = e_’J e' |Sap+s—1(1)|F dt =0(1)
0 0

using Lemma 4(i), and consequently,

e—xJ e’ |Sa,3+25_1(t)!p dt= e—xj e(l—p)t |f5(t)‘p dt= 0(1)
0

0

using Lemma 4(i) and Lemma 8, i.e. s, — O[B, a, B +28],. This establishes the
desired result.

TueorREM 2*. Let p=1. If Y5 a,=s[B,a,B+e], for some £>0 and
a, =0(1)[B, a, B],, then 5 a, = s[B, a, B+ 8], for every 6> 0.

Proof. By Lemma 1(i), a, — O[B, &, B +¢], and thus, by Theorem 2, a, —
0[B, a, B+ 8], for every >0. The result now follows by Theorem 1.

A real-valued function g(x), with domain [0, ®), is slowly decreasing if for
every ¢>0 there exist positive numbers X, § such that g(x)—g(y)>—c¢
whenever x=y=X and x—y=4. The following result is |5, Theorem 3]:
If s,—>s(B,a,B+¢) for some ¢>0 and S,z(x) is slowly decreasing, then
s,—s(B, a, B). We now show that there is no analogue to this result for the
[B, a, B], method.

Let {s,} be the sequence defined by Y=_,s,.(x"/n!)=e*sine* (cf. [7,
p. 183]). Then S, ;(x) =sin e* where we choose N =0. Thus, using Lemma 4(i),

x

Si2(x)= e_"J. e'sine' dt=e *(cos 1 —cos e*)=0(1)
(]
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and therefore s, — 0(B, 1,2). (In fact, by [5, Theorem 2], s, — 0(B, 1, 1+8)
for every 6>0.) Hence, by Lemma 2(ii), s, — 0[B, 1, 3],, for every r>0.
Furthermore,

X X
e_"J' e'[S1,1()—0|" dt= e_xJ e' |sin e'|" dt
0 0

ex L
= e"‘I |sin u|" du — L
1 o

as x — « where L(r)=[g |sin u|" du. Therefore s, 0[B, 1, 2],, s, = 0[B, 1, 3],
and both e ™[5 €Sy 1(t) dt and e ™[5 e' |S11(¢)| dt are slowly decreasing (since
they both tend to a limit as x — ).

THEOREM 3. Let p=1. If s, > s[B, o, n], and

(i) s,=—K for alln=0, or

(ii) a,=—-K for all n=0, or
(iii) Sa,.(2) is of exponential type in Hj, or
(iv) A.,.(2) is of exponential type in Hjs, or
(v) |a.|=K" for all n=0,

where K, 8 are positive constants, then
s” d S[B’ a’ B]f
for every r>0.

Proof. By Lemma 2(i), s, — s(B, a, ). Hence, by [5, Theorem 5, 5%, 6, 6%,
or 7], s, = s(B, a, B —1). The result now follows by Lemma 2(ii).

4. Tauberian theorems for absolute Borel-type summability. We first show
that the scale in Theorem A(iii) is proper in the sense that for each B there is a
sequence {s,} which is summable |B, a, 8| but is not summable |B, a, 8 —1|.

Choose an integer m such that am >1 and let P be the smallest integer such
that mP=N. Let

oo
xFe *sin e* = Z bax"
n=P
and let

{I‘(an +B) by if n=mk,
S, =
0 otherwise.

Then

Sap(x)=ax*"F B e ™ ™* " sin ¥ = 0(1)
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and

S, p(x) = a(amP+B—1)x*mFE 2 xe X" gin ™"

amP+p—1 X

—ax e *e ™ sin e

_ a(am)xamP+am+B—Ze—-xe—x“'" sin ex‘""

+a(am)x*mPremTB2e7% cos ™

so that S, g(x)=0(1) and S, g(x)€ L,[0,») since amP+B—-2=aN+B-2=0
by our choice of N. Hence s, — 0|B, a, B|. However

St p(x) = f(x)— a(am)®x*mF2emTB=3 675X sin *7"

where f(x) € L4[0, ») and therefore S,/ g(x) € L4[0, ) since am > 1. Thus, since

Sap-1(x) = Sap(x) + S5 s(x)
and

Sep-1(x) =S¢ p(x)+ S g(x),

we have that
$a = 0(B,a,—1) but s, 0|B,a, —1|.

TueoreM 4. If s, — s |B, a, u| and a, — 0|B, a, B|, then s, —> s |B, &, B].

Proof. By [5, Theorem 1], s, — s(B, a, B). Thus it remains only to show that
Ses(x)e BV,[0,). Let k be a positive integer. Then, in view of Theorem
Aii), Ay psx-na(x)€ BV,[0, ). Moreover, by Lemma 4(ii),

aN+B~1

Sap+k-1alX) = A grk—1)a(X) + Sa prka(X) + e “sn_1 m .

Therefore S, p+x—1ya(x)€ BV,[0,®) if S, g+ka(x)€ BV,[0,®). Since, in view of
Theorem A(iii), Sapg+ka(X)€ BV,[0, ®) when B+ ka = pu, it readily follows that
Sap(x)€ BV,[0, x).

If {s,} is the sequence described in the paragraph preceding Theorem 3,
then, using Lemma 4(i),

x

S1s(x)= e_"J (cos 1—cos e’) dt

0

and thus it is readily seen that s, — 0|B, 1, 3| and 5,40 |B, 1, 2|. Hence there
is also no immediate absolute summability analogue to [5, Theorem 3].
Our final results are extensions of a result due to Gaier (see [6]).

THEOREM 5. If s, — s |B, a, u| and S, (z) is of exponential type in Hs for
some 8>0, then s, — s |B, a, B|.
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Proof. Let k be a positive integer such that u — k < . By [5, Theorem 6] we
have that s, — s(B, a, u— k). Furthermore, since ‘

Sa,y,—l(z) = Sa,p. (Z) + SS,L(Z),

it is readily seen that

k
St (2) = Su(2)+ (;‘)ss,w).

i=1

Since S,,.(z) is of exponential type in Hs and since S,,.(x)e BV,[0,x) by
hypothesis, we have, by Lemma 10, that S, (x)e BV,[§,®) for j=1,...,k;
also, since we choose N so that aN+u—k=1, we have that
S® (x)e BV,[0, 8]forj=1,..., k.Therefore, S¥,(x) e BV, [0, ®)forj=1,...,k
and, consequently, S, ,_.(x)e BV,[0,«). Hence s,—s|B,a, u—k| and, by
Theorem A(iii), s, — s |B, a, B|.

THEOREM 5*. If s, — s |B, a, u| and A, ,.(z) is of exponential type in Hs for
some >0, then s, — s |B, a, B|.

Proof. By Lemma 1(ii), a,—0|B,a, u| and thus, by Theorem 35,
a,—0|B, a, B|. The result now follows by Theorem 4.

THEOREM 6. If 5, — s |B, a, | and |a,|=K" for all n=0 where K is a
positive constant, then s, — s |B, a, B|.

Proof. Since |a,|=K" for all n=0, we have that
IAQ,,_,,(Z)ISAEK”“IZ'

for some positive constant A. The desired result now follows by Theorem 5*.
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