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TAUBERIAN THEOREMS FOR STRONG AND 
ABSOLUTE BOREL-TYPE METHODS 

OF SUMMABILITY(1) 

BY 
D. BORWEIN AND E. SMET 

1. Introduction. Suppose throughout that s, an (n = 0,1,2, . . .) are arbitrary 
complex numbers, that a > 0 and /3 is real and that JV is a non-negative integer 
such that aN+j3>l. Let 

n 

Sn= X av (l^O), 5-1 = 0, 
i / = 0 

oo an+/3~l oo a n + 0 - l 

SaAZ)= Z Snr, „ , flx> O a ^ U ) = X «n : 

Sa^(z) = ae"2sa)/3(z), A ^ U ) = ae~za«,e(z) 

where z = x + iy is a complex variable and the power z7 is assumed to have its 
principal value. 

Borel-type methods are defined as follows: 
(a) Summability: If Sa^(x) exists for all x > 0 and tends to s as x-*oo5 we 

say that sn -* $(B, a, /3) or £o On = s(B, a, j8); 
(b) Strong summability with index p > 0: If Sa,p-i(x) exists for all x ̂  0 and 

\Xet\Sa,f>-1(t)-s\*dt = o(e*), 
Jo 

we say that sn -» s[B, a, 0]p ; 
(c) Absolute summability: If sn -+ s(B, a, j3) and S«,P(JC)GJBVX[0,<»),(2) we 

say that sn -> s \B, a, /3| ; 
(d) Boundedness: If Sa>|3(x) exists and is bounded on [0, oo), we say that 

sn = 0(l)(B,a,j3); 
(e) Strong boundedness with index p > 0: If Sa,p_i(x) exists for all x > 0 and 

fXer|S^-i(0|p& = 0(«"), 
Jo 

we say that sn = 0(1)[B, a, j3]p. 

Received by the editors January 13, 1976. 
(1)This research has been supported by Grant A2983 of the National Research Council of 

Canada. 
( 2 ) /(x)eBVx[0,°°) means that f(x) is of bounded variation with respect to x on [0,<»). 
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The summability method (B, 1,1) is the Borel exponential method B (see 

[7]). The (B, a, /3) method is due to Borwein (see [2]) and the [B, a, |3]p and 

\B, a, j3| methods are due to Borwein and Shawyer (see [4], [3] respectively). 

Strong Borel-type summability [B, a, j3] (see [3]) is the [B, a, j3]i method. 
The actual choice of the integer N in the above definitions is clearly 

immaterial. We shall therefore tacitly assume whenever a finite number of 
methods, with a fixed and ]8 = |8i, j 3 2 , . . . , j3k, are under consideration that N is 
such that aiV+/3r > 1 (r = 1, 2 , . . . , k). 

The following known result establishes a natural scale for these summability 
methods. (Theorem A(i) is [1, (II)]. Theorem A(ii) is [3, Theorem 9] when 
p = l and part of [4, Theorem 9*(ii)] when p ^ l . Theorem A(iii) is [8, 
Lemma].) 

THEOREM A. Let j8 > JX. 

(i) If sn •> s(B, a, fi), then sn -» s(B, a, j3). 
(ii) If p > 1 and sn -> s[B, a, fx]p, then sn -» s[B, a, /3]p. 

(iii) If sn-> s \B, a, JLL|, then sn -> s \B, a, j8|. 

In [5] we established a number of tauberian theorems for the (B, a, ]8) 
method. In this paper we investigate all the corresponding results for the 
[B, a, j3]p method with p > 1 and either prove them or show, by means of 
counterexamples, that they are false. We also examine some of the correspond­
ing results for the |B, a, |8| method. 

2. Preliminary results. We first state some known results. 

LEMMA 1. 

(i) Ifp^l and sn -* s[B, a, j3]p, then an -* 0[B, a, j3]p. 
(ii) If sn->s |JB, a, j3|, then an -> 0 |B, a, ]8|. 

LEMMA 2. 

(i) If p > 1 and sn -^ s[B, a, j3]p, then sn —> 5(B, a, j3). 
(ii) If p>0 and sn -> s(B, a, j3), rhen sn -» s[B, a, |8 + l ] p . 

Lemma l(i) is included in [3, Theorem 15] when p = 1 and in [4, Theorem 
15*] when p > 1. Lemma l(ii) is included in [3, Theorem 14]. Lemma 2(i) is [3, 
Theorem 3] when p = 1 while Lemma 2(i) follows from [4, Theorem 3*] and 
Theorem A(i) when p > l . Lemma 2(ii) is [4, Theorem 5*]. 

Wherever it occurs in the following lemmas, we suppose that f(x) is bounded 
and Lebesgue measurable on every finite interval [0, X] and we let f8(x) be 
defined by 

fs{x)=W)i (x"')8-V(o<fr 
where 5 > 0 . 
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LEMMA 3. If 8>0 and y > 0 , then 

fô+y(x) = fW)\o {x~ty~1^{î)dt 

LEMMA 4. 

(i) Let f(x) = satp(x) and let ô > 0 . Then sa^+ô(x) = fô(x). 
(ii) Aa^(x) = So,p(x)-Sa,p+a(x)~ae-xsN-1(xaN+ f i-1/r(aN+ j8)). 

Lemma 3 is a well-known result the proof of which is straightforward. 
Lemma 4(i) is [2, Lemma 2]. The proof of Lemma 4(ii) is also straightforward. 

LEMMA 5. If sn = 0(1)(B, a, j3), then sn = 0(1)(B, a, /3 + Ô) for every 8>0. 

Lemma 5 is [3, Theorem 8]. 

LEMMA 6. Let p ^ 1. If sn = 0(1)[B, a, /3]p, then 

(i) sn = 0(l)(B,a,/3), 
(ii) sn = 0(l)[B, a, j3 + S]p where 0 < Ô < 1 , and 

(iii) sn = 0(1)[B, a, J3 + ô] r where r > 0 and Ô > 1. 

Proof, (i) When p = 1 the result is [3, Theorem 4]. Thus we suppose that 
p > l and we let l/p + l/q = l . Using Holder's inequality and Lemma 4(i), we 
have that 

|Sa ,e(x)|<e-*jo e ' |S«*-i(0|df 

<e-x{Kex}l/p{ex}1/q = Kl/p 

for some positive constant K since sn = 0(1 )[B, a, /3]p. 
(ii) When p = 1 the result is included in [3, Theorem 10]. Thus we again 

suppose that p > l and we let l/p + l/q = l. Furthermore, we let 
f(x) = asaS_1(x), L = 2 P / { I W , and M = [ 1 / { I W ] £ e(1~p)< \fô(t)\

p dt Then, 
using Lemma 4(i), Holder's inequality, and part of the proof of (i), we have 
for x > 1 that 

I e' IS^^it^dt^-^—^ £ e(1-p)' | £ (t-M)6-1^") du 

^L^e^JlJ V(")|d"f^ 
+ LJi%

(1-p)j|fi(r-u)s-1|/(ii)lP^} 

x j (t-uf-1 du\P<idt + M 

p 

dt 
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<L["e^'iK^e'Y dt 

+-^[c(1-p)*dr|' (t-uf-iimi'du+M 

s LKe* + ^ i ( ' l/(")|P du J""' c(1-p),(r- u)8-1 df + M 

s L K e * + ^ [ e(1-p)"|/(u)|pdM + M 

= LKex +± £ eu iS^-idOf du + M 

= 0(ex) since sB = 0(1)[B, a, 0]p. 

This establishes the desired result, 
(iii) If 5 as 1, then 

f «'IS^-iMI'*: ;f K'e'dt^K'e 

for some positive constant K by Lemma 6(i) and Lemma 5. 

LEMMA 7. 1/ 

e-*£/(0* = *(D, 
then 

e-*\XMt)dt = o(l) 
Jo 

for every 8 > 0. 

The proof of Lemma 7 is essentially the same as the proof of [3 , L e m m a 5 ] . 

LEMMA 8. Lef p > l . If 

e~x \* e(1-p)t \f(t)\p dt = 0(1) and e~x f* f(t) dt = o ( l ) , 
Jo Jo 

then 

(i) e""fîe ( 1"p ) f | / a ( 0 r * = o ( l ) where 0 < Ô < 1 and 

(ii) e-xJSe(1~r)t|/s(0r^ = o(l) where r>0 and S>1. 

Proof, (i) Let e>0 . By hypothesis, there exists a number Y>0 such that 

f(t) dt\ ee 
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for all x > Y. Let 

Now 

TAUBERIAN THEOREMS 

N(s)= sup /(Odd 
o^x^y Jo I 

<oo. 

limsupe^f e(1~p)t \f8(t)\
p dt 

X—>oo Jo 

= lim sup e~* [ e(1-p)' U - f' (t- u)6"1/^) du 
x-»oo J e |1 {O) Jo 

{' - (T(8)\p i l im SUP J l + l i m SUP J21 ' .}• 
where 

and 
' •" i" „<i-p>' 

, ( i - p > ' 

(t-u)s-1/(H)du 

I (f-u)s~7(u)du 
Jt-e 

dt 

dt 

But, using the Second Mean Value Theorem, 

eu-p), Ls-i f(u)du\ 

< 2pe(s-1)p lim sup e~x \ e(1-p)'{N(e) + ee'}p dt 
x—»oo J e 

< 22pe(8-1)p lim sup e'x | * e(1-p)'{(N(e))p + epept} dt 
x—*•<» J e 

dt 

= 22peSp 

since 

and 

f" m du 
I -WO 

;2 sup M / ( « 
O^yst-e I Jo 

)du >2{N(e) + ee'} 

l i m e - 4 e(1-p),{N(e)}pdf = 0. 

Also, by hypothesis there is a number K^O such that 

e-*| e(1-p),|/(0|pdt^.K 
Jo 
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for all x > 0 , and therefore, when p = 1, 

[June 

lim sup I2 ^ lim sup e x\ dt\ (t-u)8 1\f(u)\du 
X—>oo x—>oo Je Jt—e 

J
* x Cu+e 

\f(u)\du\ ( f - u ) s _ 1 d t 
0 Ju 

«V-
while, when p > 1, 

l imsup l 2 <l imsupe" x e(1_p),{ ( f - u ) s _ 1 | / (u) |pdul 
x—*oo x—><» Je v Jt — e ) 

x | (r —M)®""1 dw[ dt 
I Jf-e J 

-ffl 
Ô Ï P - 1 

lim sup e ^-p)tdt 

S Ï P - I 

< ] — f lim sup e 

lim sup e x 

O J X-^oo 

(t-uf-'lfiu^du 

\*\f(u)\pdu [M £ {t-u)b-le{l~v)tdt 
'0 Ju 

\%(1-p)u\f(u)\"du^K^jJ. 

Thus for p > 1 we have that 

lim sup e~x 

X-^-oo 

from which it follows that 

e \JaW\ at- { p ( g ) } p 

l i m s u p e - x [ 6 (1"p) r | /«(0|pdt = 0 
X — • < » Jo 

since s is arbitrary. This establishes the desired result. 
(ii) Since e~x/i(x) = o(l) by hypothesis, we have, when 8 = 1 + JX where p > 0, 

that 

e-7i + | 4 ( * ) = e H / |4(r)dr = o(l) , 
Jo 

using Lemma 3 and Lemma 7. Hence, for <5> 1, 

e-"£ e ( 1- r" \U(t)\'dt = e-*£ e< \e-%(t)\' dt 

= e~x\ e'o(l)dt 

= o(l). 

https://doi.org/10.4153/CMB-1977-028-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-028-0


1977] TAUBERIAN THEOREMS 167 

If b is a real number, we let 

Hb={z|Rez>/>}. 

A function g(z) is said to be of exponential type in Hb if g(z) is analytic in Hb 

and if there are positive numbers A, a such that \g(z)\ ^ Aea|z | for all z in Hb. 

LEMMA 9. If g(z) is of exponential type in H0 and if 

J% 00 

|g(x)|pdx<°° (p>0), 
0 

then 

J P 00 

|g'(x)|pdx<*. 
0 

Lemma 9 is due to Gaier [6, Theorem 2]. 

LEMMA 10. If g(z) is of exponential type in Hb and g(x)eBVx[b, <*>), then 

g(kXx)eBVx[b,*) 

for every non-negative integer k. 

Proof. Suppose that g(k)(x)eBVx[b, o°) where k is a non-negative integer. 
Then 

1 |g (k+1)0c + b + l ) | d x < o o 
'0 

and 

|g<k+1)(z + i + l ) | s * ^ f 2 " | g ( z + 6 + ew)|d0 
i i r Jo 

s ( k + l)!Aea(|2|+ib|+1) 

for all z in H0 where A, o are positive constants. Hence, by Lemma 9, 

f°°|g(k+2)(x + è + l) |dx= f" \gik+2Xx)\dx<* 
Jo Jb+i 

i.e. g(k+1)(x) e B Vx[b +1, »). Since g(k+1)(x) G B VX[6, ft 4-1], therefore g(k+1)(x) G 
BVx[b, oo). The desired result now follows by induction. 

3. Tauberian theorems for strong Borel-type summability with index p > l . 
We first show that the scale in Theorem A(ii) us proper. In [5] we showed 
that there is a sequence {sn} which tends to a limit (B, a, |8) but does not tend 
to a limit (JB, a, ]3 -1) . Hence, in view of Lemma 2, there is a sequence {sn} 
which tends to a limit [B, a, j8 + l]p for every p > 0 but does not tend to a limit 
[B,a , ]3- l ] p for any p > l . 
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THEOREM 1. Let p, r > 1. If sn-> s[B, a, [JL]P and an -» 0[B, a, 0] r , then sn -» 

s[B, a, j8]r. 

Proof. By Lemma 2(i), 5n -» s(B, a, fx). The result now follows by [9, 
Theorem 3] and the note following [9, Theorem 3]. 

THEOREM 2. Let p>l. If s n -* s[B, a, /3 + e]p for some e>0 and sn = 
0(1)[B, a, j3]p, then sn -» s[B, a, J3 4- 8]p /or euery 6 > 0. 

Proof. We can suppose without loss of generality that 5 = 0. Then 
sn -» 0(B, a, j8 + s) and sn = 0(1)(B, a, /3) by Lemma 2(i) and Lemma 6(i). Hence 
sn -» 0(B, a, /3 + 8) by [5, Theorem 2] for 6 > 0. Also sn = 0(1)[B, a, |3 + 8]p by 
Lemma 6(ii) or (iii). Therefore, letting f(x) = as a^+ ô_i(x), we have that 

e~x\ f(t)dt = Sa^8(x) = o(l) 
Jo 

and 

c - . [X
 ea-P>. | / ( 0 | P d r = e-» [X

 e< | s ^ + a - i ( 0 | p * = 0(1) 
Jo Jo 

using Lemma 4(i), and consequently, 

e~x \X e' |Sa.p+28_1(0|p dt = e-*[ e'1^' \fs(t)f dt = o(l) 
Jo Jo 

using Lemma 4(i) and Lemma 8, i.e. sn -» 0[B, a, ]8 + 2ô]p. This establishes the 
desired result. 

THEOREM 2*. Let p > l . / / £o an = 5[B, a, ]8 + e]p /or some e > 0 and 
an = 0(1)[B, a, |3]p, tfierc l o an = s[B, a, p + 5]p /or euery 8 > 0. 

Proof. By Lemma l(i), a„ —> 0[B, a, j3 4- e]p and thus, by Theorem 2, an —> 
0[B, a, j8 + ô]p for every 6 > 0 . The result now follows by Theorem 1. 

A real-valued function g(x), with domain [0, °°), is slowly decreasing if for 
every e>0 there exist positive numbers X, 8 such that g(x)-g(y)>-e 
whenever x>y>X and x - y < 6 . The following result is |_5, Theorem 3]: 
/ / sn-^>s(B, a, j3 + e) /or some £ > 0 and Safi(x) is slowly decreasing, then 
sn-^s(B,a, p). We now show that there is no analogue to this result for the 
[B, a, p\ method. 

Let {sn} be the sequence defined by YZ=o sn(x
nln\) = ex sin ex (cf. [7, 

p. 183]). Then SU(JC) = sin ex where we choose N = 0. Thus, using Lemma 4(i), 

Si f 2(*)= e~x e% s i n e ' àt = e~x(cos 1 - cos ex) = o(l) 
Jo 
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and therefore sn -* 0(B, 1,2). (In fact, by [5, Theorem 2], sn -> 0(B, 1,1 + 5) 
for every 8>0.) Hence, by Lemma 2(ii), sn-> 0[B, l ,3] r , for every r > 0 . 
Furthermore, 

e " x | c l | S M ( 0 - 0 r d r = e" x | e ' | s i n e T * 
Jo Jo 

= e-x[ | s i n u | r d u ^ ^ 
J l TT 

as x -> oo where L(r) = Jo |sin w|r du. Therefore 5n-^ 0[£, 1,2]r, sn -» 0[J3,1, 3]r 

and both e~xJo e'Si,i(f) df and e_xJ5 e* \S\,\(t)\ àt are slowly decreasing (since 
they both tend to a limit as x -» oo). 

THEOREM 3. Lef p > 1. 7/ sn -» s[B, a, /x,]p and 

(i) 5n > -K for all n > 0, or 
(ii) an > -K for all n > 0, or 

(iii) S a ^ z ) is of exponential type in H8, or 
(iv) Aa>/Lt(z) is o/ exponential type in Hs, or 
(v) \an\<Knforalln>0, 

where K, 8 are positive constants, then 

sn -> s[B, a, p]r 

for every r > 0. 

Proof. By Lemma 2(i), sn -> s(B, a, /LL). Hence, by [5, Theorem 5, 5*, 6, 6*, 
or 7], sn -> s(£, a, /3 - 1 ) . The result now follows by Lemma 2(ii). 

4. Tauberian theorems for absolute Borel-type summability. We first show 
that the scale in Theorem A(iii) is proper in the sense that for each /3 there is a 
sequence {sn} which is summable |J3, a, ]8| but is not summable |B, a, j8 - 1 | . 

Choose an integer m such that am > 1 and let P be the smallest integer such 
that mP>N. Let 

00 

xpe~xsinex = £ bnXn 

and let 

fr(an + j3)fck if n = mk, 

10 otherwise. 

Then 

Sa.fi(x) = a x a m P + * - V \ r x ~ sin ex"m = o(l) 

2 
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and 

S'a,p(x) = a(amP + p - l)x a m P + p-2e- J ce_ x"" sin ex"m 

-axamP+p-1e-xe-x"m sine*""* 
/ \ amP+am+B — 2 „— x „ — xam „• „xanx 

— a(am)x p e e sine 
+ a(am)x H e cose 

so that S^ (x ) = o(l) and S ^ ( X ) G L I [ 0 , O O ) since amP + j3 - 2 > « N + j3 - 2 > 0 
by our choice of N. Hence sn —» 0 |B, a, |3|. However 

S£p(x) = /(JC) - a ( a m f x a m P + 2 a m + p - 3 e - ^ x a m sin e*™ 

where f(x)e Li[0, °°) and therefore S£p(x)éLi[0, oo) since am > 1. Thus, since 

Sa,0-l(x) = Sa,B\X) + Soc,B\X) 

and 

we have that 

sn -> 0(B, a, p - 1) but snV^0|B, a, j 3 - l | . 

THEOREM 4. If sn~* s \B, a, JJL\ and an —> 0 |B, a, j3|, fhen sn —» s |B, a, j3|. 

Proof. By [5, Theorem 1], sn -> s(B, a, j3). Thus it remains only to show that 
Sa,p(x)eBVx[0, oo). Let k be a positive integer. Then, in view of Theorem 
A(iii), A^ + ( k - i ) a (x)eBV x [0 ,oo) . Moreover, by Lemma 4(ii), 

x<xN+B-l 

Sa,0+(k-i)a(x)= Aafj3+(fc_i)a(x) + Sa,p+kaW + ae xsN-i — . 
1 (aN + j3) 

Therefore Sa,/3+(k-i)a(x)GBVx[0,oo) if Sa,0+ka(x)eBVx[O,oo). Since, in view of 
Theorem A(iii), Saf0+ka(x)e BVx[0, oo) when j8 + ka > /i, it readily follows that 
S^(x)eBVx[0,oo).' 

If {sn} is the sequence described in the paragraph preceding Theorem 3, 
then, using Lemma 4(i), 

Ji.3(x) = e-xfX 

Jo 
(cos 1-cos ef) dt 

and thus it is readily seen that sn —» 0 \B, 1, 3| and sn -A0 \B, 1, 2|. Hence there 
is also no immediate absolute summability analogue to [5, Theorem 3]. 

Our final results are extensions of a result due to Gaier (see [6]). 

THEOREM 5. If sn —> s \B, a, ix\ and SajtJL(z) is of exponential type in Hs for 
some 8>0, then sn-+ s \B, a, |3|. 
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Proof. Let k be a positive integer such that JJL - k < j3. By [5, Theorem 6] we 
have that sn —» s(B, a, /LL - k). Furthermore, since 

Sa,fA-1(z) = Sa,AA(z) + S ^ ( z ) , 

it is readily seen that 

j - i V ' 

Since Sa^(z) is of exponential type in H8 and since Sa^(x)e JBVx[0, °°) by 
hypothesis, we have, by Lemma 10, that S^ix)e BVX[8, o°) for j = 1 , . . . , k; 
also, since we choose JV so that aN+ fi-k>l, we have that 
S^Jx)G 5Vx[0, 8]for / = 1 , . . . , k.Therefore, S ^ ( x ) e 5Vx[0, oo)for/ = 1 , . . . , k 
and, consequently, Sa^_k(x)eBVx[0, <*>). Hence sn->s |J3, a , /x-fc | and, by 
Theorem A(iii), sn -> s \B, a, j8|. 

THEOREM 5*. If sn —> s |B, a, JLL| and Aa><x(z) is of exponential type in Hs for 
some 8>0, then sn —> 5 \B, a, j8|. 

Proof. By Lemma l(ii), a n -»0 \B, a, jtx| and thus, by Theorem 5, 
a n -*0 |£, a, j8||. The result now follows by Theorem 4. 

THEOREM 6. 1/ sn —» s \B, a, /LL| and | a n | < K n for all n>0 where K is a 

positive constant, then sn —» s \B, a, |3|. 

Proof. Since | a n | < X n for all n > 0 , we have that 

|Att>(1(z)|<AeK1'" |z| 

for some positive constant A. The desired result now follows by Theorem 5*. 
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