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GAUSSIAN MEASURE ON A BANACH SPACE
AND ABSTRACT WINER MEASURE

HIROSHI SATO

In this paper, we shall show that any Gaussian measure on a separable
or reflexive Banach space is an abstract Wiener measure in the sense of L.
Gross [1] and, for the proof of that, establish the Radon extensibility of a
Gaussian measure on such a Banach space. In addition, we shall give
some remarks on the support of an abstract Wiener measure.

An abstract Wiener measure is a s-extension in a Banach space X of
the canonical Gaussian cylinder measure gy of a real separable Hilbert
space ¥ which is contained in X densely. The idea of the abstract Wiener
measure coincides with that of the White Noise (T. Hida [13]) and plays an
important role not only in the theory of probability but in the theory of
functional analysis (T. Hida [13], Y. Umemura [12], I.E. Segal [4,5], L.
Gross [3] and Yu. L. Daletskii [16]).

We shall show first that any Gaussian measure on a separable or
reflexive Banach space can be extended to a Radon measure on the strong
topological ¢-algebra (Theorem 1). With the same idea of the proof of
Theorem 1, we can prove that this result is true for any probability mea-
sure on a Banach space, the finite dimensional distribution of which is
Radon.

Utilizing the above result, we shall restrict the support of a Gaussian
measure to a separable subspace which is explicitly constructed. Further-
more, constructing a suitable Hilbert subspace of the support, we shall show
that any Gaussian measure on such a Banach space is an abstract Wiener
measure (Theorem 2). L. Gross [1] showed that there exists and abstract
Wiener measure on any separable Banach space. Owur result shows that
any given Gaussian measure on a separable or reflexive Banach space is an
abstract Wiener measure. This means that the study of a Gaussian measure
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on such a Banach space can be reduced to that of an abstract Wiener
measure on a separable Banach space, and clears a new way for the in-
vestigation of a Gaussian measure on a Banach space, and makes the study
of an abstract Wiener measure more meaningful.

As a corollary of Theorem 2, we shall show that the canonical Gaussian
cylinder measure of a nonseparable Hilbert space can not be extended to a
s-additive measure in any Banach space.

Before stating the remaining results in this paper, we establish termi-
nology and notation.

Let X be a real Banach space, X* be its topological dual space and

&), (6 e X* =z X), be the natural linear form. A cylinder set in X is
a set of the form

C={veX: (&), ---, &) € D}

where &, &, +++, &, are in X* and D is a Borel set in the n-dimensional
Euclidean space R,. 9y is the family of all cylinder sets in X and Uy is
the minimal ¢-algebra including %y. 7z is the weak topological ¢-algebra
in X and #y is the strong topological ¢-algebra in it. Evidently we have

%chxc‘[xcfx

and if X is separable, then Wy = #, (E. Mourier [8]).
Let X be a real Hilbert space. The canonical Gaussian cylinder measure
pyg of X is a finitely additive nonnegative set function on (%, %y) such that

1 ¢ u?
[lx[x eX: éx)< o] = W S_m eXpl:— TEIZ:‘du, (1. 1)

for any & € #* and real number «, where |£| is the norm in ¥* It is
well-known that Ly does not have ¢-additive extension to (¥, X%), (see Co-

rollary of Lemma 6).

Let |lz|| be a continuous norm on ¥, and X be the Banach space ob-
tained by the completion of ¥ in the norm |z]. Since we may consider
X* as a subspace of ¥* through the natural imbedding, z; induces a Gaus-

sian cylinder measure z# on (X, %Ay) as follows. If &, &, -+, &, are in X*
and D is a Borel set in R,, define

p[m = X; (E;(x)a ) &n(x)) S -D]
= pyle € X; (§4(x), - - -, &i(w)) € DI (1. 2)
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¢ is well-defined. Furthermore, if z has a s-additive extension on (X, Uy),
then we call it the g-extension of py on the Banach space X and the norm |||
admissible on X¥. If a norm on X is induced by an inner product, namely,
a continuous symmetric bilinear form on X, then we call it Hilbertian. A
measurable norm is defined by L. Gross [1,2] as follows. A norm |z|; on
X is a measurable norm if for every positive real number ¢ there exists a finite
dimensional projection P, of X such that for every finite dimensional pro-
jection P orthogonal to P, we have

vgle € X: [|Pll; > el <e.

L. Gross [1] showed that the measurable norm is admissible.

In the last section, we shall give some remarks on the admissible norm.
We shall give a necessary and sufficient condition for a Hilbertian norm to
be admissible (Theorem 3) and show that there exists a measurable norm
such that there is no Hilbertian admissible norm stronger than it (Example
2). This means that as a support of an abstract Wiener measure we can
choose a Banach subspace which includes no Hilbert subspace of full mea-
sure. We shall also show that there exists an admissible norm which is not
a measurable norm. This means that for a norm to be an admissible norm
it is not necessary to be a measurable norm.

2. Gaussian measure and Radon measure.

Let X be a Banach space with norm |z and X* be the topological
dual for X with norm [|¢]]. A probability measure g on (X, %) is Gaussian
if for every & € X*, &(x) is a Gaussian random variable with mean zero on

the probability space (X, Uy, g). In other words, for every ¢ e X* and
real number a,

ue e X: &) < o] = 1/27:;—0@“) [ exp[— %]du, @. 1)

where »(&) is the variance of &(x).

Theorem 1. Every Gaussian measure p on a separable or seflexive Banach
space (X, W) can be extended to a Radon measure on (X, #x).

Proof. 1f X is separable, Uy = ¢y and the proof is trivial. Let X be a
reflexive Banach space and let X** be the topological dual space of X*.
Let ¥* be the minimal g-algebra of subsets of X** with respect to which
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all the functions &(x), ¢ € X*, are measurable, where &(x) (¢ € X*, x & X**)
denotes the continuous linear form and <* is the topological s-algebra with
respect to X*-topology in X** (W. Dunford and J.T. Schwartz [15], p. 419).
Define a measure p* on (X**, A*) as follows:

ple e X**: (&), + -+, &4(x)) € D]
=plz € X: (&(z), + -« +, &u(®)) € DL (2. 2)

where &, &, +++, &, are in X* and D is a Borel set in R,. The measure
¢* is well defined and is Gaussian. Since all the open sets in %* form an
open basis which determines X*-topology and since X** is the topological
dual for the Banach space X*, p* can be extended to a Radon measure
Z2* on (X**, *) uniquely (Yu. V. Prohorov [10], Theorem 1, Lemma 3 and
Example 1). Since X is reflexive, we have X = X** and <* =c;. There-
fore #* is a Gaussian Radon measure on (X, #x). Since X is a Banach
space, the weak Radon measure #Z* can be extended to a strong Radon
measure £ on (X,?¢x) and, it is easy to see from (2. 2), that # is an exten-
sion of p. Thus we have proved the theorem.

Remark. Without any change in the proof, we can prove Theorem 1
not only for a Gaussian measure but for any probability measure on a
Banach space, the finite dimensional distribution of which is Radon.

We can therefore consider a Gaussian measure on a Banach space X
as a Radon measure on (X, #x).

3. Gaussian measure and abstract Wiener measure.

Let p be a Gaussian measure on a separable or reflexive Banach space
X. We use the same notations used in Section 2. Choose the maximal
subset {&,; @ € 4} of X* such that

g,eX* and &)l=1, aec4
3. 1)
[ c@ies@)dn@) =0 if arp, a ped

LEmMMA 1. Let A, = {as4; v(E,)) #= 0}, then A, is an at most countable subset

of A.
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Proof. Let {a,}n=12..., be an arbitrary countable subset of 4.

it holds that

suplEa,,(x)l suplE( z)| = |lz|| < + o=, for every z € X,

éeX‘
we can choose a positive number M such that

vl e X: sgpléa,,(x)[ < M]>-%—.

On the other hand, we have
plz € X5 sup|éa,(2)] < M]

=1lim ple € X: sup [&a,(z)] < M]
N-+oo 1<nN

=lim ¢z N {zeX: |&.(x)] < M}
No+too  1<nN

69

Since

(3. 2)

(3. 3)

Since the collection {&.,(x)} is Gaussian, from (3. 1), &.,(x) and &..(x) are

mutually independent if # #=m. Therefore,
ulz € X: supléa.(2)| < M]

= lim I plz € X; |&a,(2)] < M]

N-o+oo 1KnN

1 M W
—zlvl—>+°° 1<72N V2rv(Ee,) S-M expl: 20(q,) :Idu

M
=fim I exp - A
}/—(5?

Together with (3. 3), we have

}\17r_r)1+oov($a,.) = 0.

Since the choice of the countable subset {a,} is arbitrary, the set

ty={ae 45 oe) > 1|
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must be a finite subset of A for every positive integer N. Otherwise we
have a contradiction to (3. 4). Therefore,

must be a countable subset of 4.
Lemma 2. Define X,, a < 4, by
X,={reX; &x)=0}, aec4,
and se¢ X= 0 X,. Then we have

asd—4
UXl1=1. (3. 5)

Proof. Let [ be the family of all finite subsets of 4— 4, and define
X; = n]X“; JeTI'. Obviously X, is a strongly closed linear subspace of X

and the family {X,;: J eI} is directed. Since »(¢,) =0, &,(z) is a Dirac
measure for every e« € 4— 4,, we have

X,1=1 for every Je I
Therefore,
plX1=pl ]QPXJ]
(L. Schwartz [11]). Thus we have proved the lemma.
This lemma means that the measure g is concentrated in some closed
linear subspace X. X is also a Banach space with the norm [z|l. Let €
be the closed linear manifold spanned by {&,; a € 4 — 4,}. Then the

topological dual X* for X is isomorphic to X*/G.
It is easy to see that in X*

v(€) =0 implies & =0. (3. 6)

Let jj¢] be the norm in X* again.

Hereafter, we restrict the measure p to X. For every &, e X* define

&) = | t@m@due), 3. 7)

[€] =V(§,8) =v/v(8) (3. 8)
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Then, according to (3. 6),
€] =0 if and only if [&f =0, (3. 9)

in X*,  Therefore the bilinear form (&%) is an inner product and |£] is
a norm on X*. Next we shall show that the norm || is continuous.

Lemma 3. There exists a positive constant C such that
lel < Cliglh - for every & € X*. (3. 10)
Proof. It is sufficient to show

C = sup [&| <+ oo,
1§11=1
feX*

Suppose not, then there exists a sequence {£,} in X* such that

l€al =1, m=1,2,3, -+
lim lsnl = + oo,

n—-+4o0o
By choosing a sufficiently large number M, we have
plo € X: sup|éan)| < M1> % (3. 11)
(see the proof of Lemma 1). On the other hand,
da e X: sup [€,(x)] < M]
=lim gz e X: sup |&,(2)] < M]
n—r+4oco 1vn
< lin}r vle € X: [§.(2)] < M]
=1 -1 SM expl:— _w ]du
" note V21 |€4] J-u 2607

TTE

This contradicts (3. 11) and concludes the proof.

Let ¥* be the Hilbert space obtained by the completion of X* with
respect to the inner product (£,9), and let ¥ be its topological dual space.
By the definition (3. 8) of the norm |£|, the relation (1.2) is valid for g
and the canonical Gaussian cylinder measure gy of the Hilbert space X.
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This means that g is a o-extension of gy in X. On the other hand, it
is easy to see that the system {&/|&,]: @ € 4,} is a C.O.N.S. (complete
orthonormal system) in %*  Since 4, is at most countable, ¥ is a separable
Hilbert space.

LeEMMA 4. X is a subspace of X.

Proof. The measure p extends to a Gaussian measure g#* on X** by
(2. 2), where X** is the topological dual for X*. Then X is a measurable
subset of X** and p*(X*) = p*X) =1 is true (see the proof of Theorem 1).
Since X* is included in ¥* its dual ¥ is included in (X**= X**. The
relation (1. 2) is also valid for p* and py. Therefore, by identifying ¥* and

X, for every z,s X (= X%
pX + w] = X1 =1, (3. 12)
due to the fact that g* is quasi-invariant. (Y. Umemura [12]). On the

other hand, if ¥ is not a subspace of X, namely, if there exists z, in %
which is not in X, then we have

[X+ 2] N X=g. (3. 13)

For, if there exists ¥ in [X+ 2,] N X, then there exists ¥’ in X such that
y=19y"+2x, Since X is a linear space, x,=y—y’ is in X. This is a
contradiction to the assumption on %, and (3. 13) is true. Thus we have

1= pX*] > X+ 2, U X]=2.
This contradicts (3. 12), which proves the lemma.

LEMMA 5. % is dense in X.

Proof. Let X be the closure of ¥ in X, If there exists x, in X— &,
then, by the Hahn-Banach theorem, there exists £+ 0 in X* such that

&wx)=0 on ¥. On the other hand, let |x], be the norm on ¥. Then we
have

€] = sup [€()] =o.
»eX

According to (3.9), this means £ =0 in X* and contradicts the choice of
¢,  Therefore X =¥, that is, ¥ is dense in X.
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CoroLrARY. X is separable.

Proof. 'The space X is a separable Hilbert space and, by Lemma 5, is
dense in X. Furthermore, the norm [x], on ¥ is stronger than that on
X. Therefore X is separable.

Summing up these results, we can derive the following theorem.

THEOREM 2. (A). Let p be a Gaussian measure on a separable or reflexive
Banach space.  Then there exists a separable closed linear subspace X such that
[ X1=1 and (3.6) s valid in X*.

(B). Let p be a Gaussian measure on a separable Banach space X, and assume
that (3. 6) is valid in X*.  Then there exists a dense Hilbert subspace ¥ of X
such that p is an abstract Wiener measure, that is, p is a c-extension in X of the
canomical Gaussian cylinder measure py of X.  The norm ||x|| is admissible on X.

CoRrOLLARY. There is no admissible norm on a nonseparable Hilbert space X.

Proof. Suppose that a norm |z|] on ¥ is admissible, X be the com-
pletion of ¥ in the norm ||z|, and let z be the ¢-extension in X of the
canonical Gaussian cylinder measure gy of . Since X is dense in X and
llz|l =0 implies z =0 in X, we can show that X* is a dense subspace of
¥* and (3. 6) is valid in X* in the manner similar to that used in the proof
of Lemma 5. Therefore, we can choose a C.O.N.S. {£2: a« € 4} of ¥* from
X* A is an uncountable set since X* is nonseparable. Let &, = £3/l1€3;
ac A, Then (3. 1) is valid for {&,: a € 4}. On the other hand, consider-
ing (3. 6), w(&,)= HIE##:O for every a € 4. This contradicts Lemma 1.

4. Admissible norm.

Let ¥ be a separable Hilbert space with norm |2| and inner product
(#,%). We study the condition under which a Hilbertian norm on X is
admissible.

Lemma 6%, Let H be a separable Hilbert space and let p be a Gaussian
cylinder measure on (H, Ay), that is, for every & € H*, &(x) is a Gaussian random
variable on (H, Ny, p) with mean m(&) and variance v(&). (In this lemma, we do
not assume zero mean.)

® This lemma was suggested by Prof. K. Ito.
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Then p has a g-additive extension to (H, Uy) if and only if the characteristic
Sunctional of p is of the form

|, et@apa) = exp[ice,my— TSl | e e a, (4. 1)

where m is an element of H, S is a nonnegative self-adjoint Hilbert-Schmidt operator
and ||&|| is the norm on H*,

Proof. The sufficiency is derived from V.V. Sazonav [6].

We have only to prove the necessity. Assume that there exists a o-
additive extension to (H, ) and denote it by g again. Identify H* and
H and let <-, > be its inner product and | -|| be its norm. Then <§, x);
¢ e H¥= H), x € H denotes the natural linear form.

Let {£,} be a sequence in H convergent to zero. Then <&,,z> conver-
ges to zero for all # in H. Since {<&,,2>} is a Gaussian random sequence

on (I{: SXH’ /l)’

m(,) = SH (En @) dp) 4. 2)

converges to zero (§33, Lemma 1 of K. Ito [14]). Therefore m(&) is a
continuous linear functional on H* and there exists m € H such that
m(§) = <&,my for any ée H. (4. 3)
Next, let {¢;} be a C.O.N.S. in H, and, for m and for every & z in
H, set
my = {Pjmp,
x; = x5(x) = {Pjs Xy J=1,23 +-, (4. 4)
&5 =E48) = <o, &.
Then obviously
0o
plx € H: El 2i(x): < 4 oo] = p[H] = 1. (4. 5)
On the other hand, let
N
V= _Z‘Al §ivp N=1,2,3, «
=
vy = | (@@) = m) (2.(2) — m)dp(a),

i, §=1,2,3, ++-. (4. 6)
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Then
SH exp [i<&¥, 2] dp(x)

gHexp[ijg &24(x) |dp(a)

. N 1 N
= expl[i B mts— 5 3 vutds | (4.7
Averaging both sides of (4. 7) with respect to the measure
N 1 X
(2z)" 2 exp [—7,‘:‘"1 53] déde, - « - dey,
we have
N
SHexp[— % 5 x,(x){'d,u(x) <—21 . (4. 8)
j=1 «/1'}‘ 2 Vjj
j=1
If E‘.:v,, is divergent, then from (4. 8) we have
£
1t
| exp[ = 53] wita)] duta) =
and
1% -
eXPI: 2 El x,(x)2:| =0, a.e..
Therefore
+oo . -1
)2 j§1xj(x) =+ ‘V-’:I =1
This contradicts (4. 5) and we have,
+
2 Vjj < + ©o, (4. 9)
=1
Define a linear operator V on H by
(4. 10)

<V§Du 50j> = Uijs 19.7 =1,2,3, ¢+~

Then V is a nonnegative self-adjoint operator on H and further, it is nuc-

lear, since
+o +oo )
]_‘;1 Vo0 = JZ_}IUJJ <+ oo,
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Let S be y¥ . Then it is easy to see that S is the required Hilbert-
Schmidt operator. Thus we have proved the lemma.

Cororrary 1. The canonical Gaussian cylinder measure py on a Hilbert
space X does not have a s-additive extension to (¥, ﬁx).

Proof. The characteristic functional of gy is
LE exp [ (x)]dpy(z) = eXp[—é— lélﬂ
= exp| — +1 G (4. 11)

where [£]| is the norm on %* and I is the identity. But I is not of Hilbert-
Schmidt type. Therefore, by Lemma 6, pp does not have a s-additive ex-
tension to (%, Ay).

CorOLLARY 2. In Lemma 6, if p has a o-additive extension to (H, Uy) and
mean zero, then for every &9 H*(= H)

[, @m@rdute) = <s¢, sp, (4. 12)

where S is the Hilbert-Schmidt operator determined by (4. 1).
Utilizing Lemma 6, we have the following theorem.

TueoreM 3. A Hilbertian norm ||zl on a separable Hilbert space ¥ is ad-
missible if and only if there exists a one to one Hilbert-Schmidt operator S, such that

lzll = |Sexl, 2€&, (4. 13)

where |x| is the initial norm on X.

Proof. The sufficiency is well-known (for example, see Y. Umemura
[121).

We prove the necessity. Let |«|| be a Hilbertian admissible norm in-
duced by an inner product <z,y> on ¥ and let H be the completion of %
in the norm |z, Then H is also a Hilbert space with the inner product
{x,y>. Let g be the o-extension in H of the canocial Gaussian cylinder
measure gy of ¥, Then p is a Gaussian measure on the Hilbert space H.
Therefore, by Lemma 6, there exists a nonnegative Hilbert-Schmidt opera-
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tor S on H* determined by (4.1). Since we are assuming mean zero,
(4. 12) is also valid (Corollary 2 of Lemma 6).
Identifying ¥ and ¥*, and remembering H* is a subspace of X*(= %),

we have
sl = | e(@rdp(s)
= & ordpyla) = 1617 (4. 14)

for every & in H* where || is the norm on H*. Consequently,
IISEll = |1, for every & € H*. (4. 15)
Since |||l =0 implies 2 =0 in X and so |§] =0 implies £ =0 in H*

Therefore, by (4.15), S¢é=0 implies é=0 in H* and S is a one to one

operator.
Let {2;} and {¢;} be eigenvalues and eigenvectors_ of S, respectively.

=00
Then 2;>0, j=1,2, -+, and _21212<+m because S is a one to one
]=

Hilbert-Schmidt operator.
Further, since g is the g-extension of the canonical Gaussian cylinder

measure gy, we have

(90 23) = | oi@)0u(@)dpyla)

= SH«%, x> ;s x> dp(x)
= <8¢ SP;> = 2;250:5,
1,7=1,2,3, ¢+« .
Let ¢;=23'¢;, =1,2,3, - ++. Then {¢,} is a C.O.N.S. in ¥ and

o0

=0 +o0
,-=21 [S¢s1* = ;Z_I‘llllszqijlllz =,~Z‘i [12,0,0

00
=122 < + oo,
j=1

Therefore S can be extended to a Hilbert-Schmidt operator on ¥*(= %) and
we denote it by S again. Let S, be the dual operator of S in ¥, Then
S, is the required operator. In fact, since SH* is dense in H* and H* is
dense in ¥*(=¥), for every z in ¥(c H),
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llzll = sup |&(x)| = oup [(S&)(2)]

lI§M=1
s§eH* eeﬁﬁ
= sup [(S§ )| = sup [(§,S*x)]
[§]=1 1&1=1
§cH* fesH*

= sup [(&, Spx)| = [Spx].
1§]1=1
tex*

The proof is now complete.

CoroLLARY. Let ||x|| be an admissible norm on ¥.  If there exists a Hil-
bertian admissible norm stronger than ||x|| then for any C.O.N.S. {¢;} in X we have

:é lloslI2 < + oo, (4. 16)

Proof. Suppose that ||z||’ is a Hilbertian admissible norm stronger than
{lzl, say, ll#] <|lzl'. By Theorem 3, there exists a Hilbert-Schmidt ope-
rator S such that |||/ = |Sxz|, x €%. Then for any C.O.N.S. {¢;} in %,

4o

2 losllE < Xl osll™2
Jj=1 Fj

= ; [So;12 < + o,

This was to be proved.
Next we give some examples of admissible norms on a separable Hil-
bert space X.

ExampLE 1. Define

llzll, = 1Sz, r ek,

where S is a one to one Hilbert-Schmidt operator on ¥. Then |z]l, is a
measurable norm (Section 1). Therefore, by Theorem 3, every Hilbertian
admissible norm is a measurable norm.

ExampLE 2. Define
llzlly = supf—l om), z€X

where {¢,} is a C.O.N.S. in . Then |z|, is a measurable norm but
there is no Hilbertian admissible norm stronger than |z|l,.
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In fact it is evident that ||z, is a norm on X. To prove that |z], is
a measurable norm, we imbed X in a measurable space (2,%) in which %
is an A-measurable subspace and all functions (¢,, %), #=1,2,3, -+ are
extended to UA-measurable functions on @, further, there exists a ¢-additive
extension g of gy, As an example of such a space, we can choose the
space of all sequences.

Then since g is a g-extension of ry» we have

vle € 2: |z, < + o]

= ,{x e 2: sgpﬁT— (¢ @) <+ ‘”]

= lim i c o ,2)] <
i, oo = @ s e o) < ]

= Jim Jim pa[a €8 sup Ukl (o 2] < M ]
= Iﬁ\rfn l}l}nnﬂl {1/ 2r exp l:— ‘] d“}

e
= lim lim i [ \/z_ = exp[— l;—:l du]

M n=1

[
M2
e T s

and for any positive number ¢

v e 2: |xll, <ée]
= NETooﬂ*’e[x e¥: sup ]/_ [(@qs )] <e:]

> nnl{l - T exp[—% n]} >0,
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because

B P S s o

151/7& 3 1— exp[—_

Therefore, by Corollary 4.5 of L. Gross [2], |lzll; is a measurable norm.
While for the C.O.N.S. {¢,} in ¥

Slieali = 3 (sup 10y, 0201 |

+o 1
=X =t

1

By Corollary of Theorem 3, there is no Hilbertian admissible norm stronger
than |lz|l,, This means that there is no Hilbert space of full measure
which is included in the Banach space obtained by the completion of ¥ in
the norm ||z||,.

ExampLE 3. Define

»n 1
||oo||3——|:su %}] go,,,x)[{l?, re X

y=1

where {¢,} is a C.O.N.S. in ¥. Then |z|l; is an admissible norm on ¥
but not a measurable norm.

Proof. Imbed X in the measurable space (2, ¥, p) as in Example 2.
Then by the law of large number, we have

plz € 2t l2fls < + o]
> y[ xE Q: linmsup%i_ﬂ(%, 2)|2 = 1] =1

Therefore ||z|l; is an admissible norm; but, according to Corollary 4.5 of
L. Gross [2], it is not a measurable norm. This means that for a norm on
a separable Hilbert space to be admissible, it is not necessary to be a
measurable norm in the sense of L. Gross [1].
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