
AN ANALOGUE OF LUBESEDER'S THEOREM FOR

FORMATIONS OF FINITE RINGS

Dedicated to the memory of Hanna Neumann

CARLTON CHRISTENSEN

(Received 15 January 1973)

Communicated by M. F. Newman

For formations of finite soluble groups, the properties of Frattini closure and
local defineability are known to be equivalent (see [2]). The investigations of
Barnes and Gastineau-Hills [1] on the other hand reveal that although every
Frattini closed formation of finite-dimensional soluble Lie algebras over an
algebraically closed field of zero characteristic is local, without the algebraic
closure condition the relationship between the two properties breaks down even
for supersoluble Lie algebras. We are concerned here with the analogous problem
for rings. The main results are;

THEOREM 1. Let f$ be a formation of finite rings and let n be the set of
primes dividing* "ft then $ is a local formation if and only if it is Frattini closed
and conains the formation of finite nilpotent n-rings.

THEOREM 2. There exist Frattini closed formations of finite rings that are
not local.

It is clear from the example of Barnes and Gastineau-Hills mentioned above,
that the analogous proposition to Theorem 1 is false for finite-dimensional soluble
Lie algebras.

The terms "formation", "local" and "Frattini closed" used above have
natural definitions analogous to those used in group theory. Thus, following
usual terminology, we refer to a class of rings as a homomorph whenever it contains
all homomorphic images of its members and as a formation if in addition it is
subdirect product closed. For any ring R, the intersection (f)(R) of its maximal
ideals, when such exist, is called the Frattini subring of R. It is well-known and

* A prime is said to divide a formation of finite rings if it divides the characteristic of at
least one non-trivial ring in that formation.

375

https://doi.org/10.1017/S1446788700015196 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015196


376 Carlton Christensen [2]

easy to prove that for finite rings 4>(R) is contained in the Jacobson radical J(R)
of R. We are concerned here with classes of rings that contain a ring R whenever
they contain it Frattini factor ring R/<j)(R). Such classes are said to be Frattini
closed.

One of the most elementary non-trivial examples of a Frattini closed forma-
tion of rings is the class 5R of finite nilpotent rings. This class can be described
locally in the sense that R e 9t if and only if the minimal ideals of its factor rings
R jK are trivial left i?-modules. More generally, we refer to the minimal ideals of
the factor rings of a finite ring R as chief factors of R. Since each chief factor has
prime characteristic it can be classified, according to which prime p is involved,
as a p-chief factor. For any chief factor H jK of R we denote its left annihilator
{r:reRArH^K} in R by AR(HjK).

Given a set of primes n and a function / with domain n whose images are
formations of finite rings, the class g °f rc-rings whose p-chief factors H jK have
the property R/AR(H IK)ef(p) for each pen is a formation. This can be proved
in a manner directly analogous to the corresponding result in group theory (see
[2]). Such a formation is called the local formation defined by the formation
function f with support n.

In view of the primary decomposition of finite rings, it is easy to see that for
any pen, the class $p of p-rings in g is a formation and is defined locally by the
formation function fp with support {p} and image {/(/>)}. Moreover, g is the
direct product of the ^ps in the sense that R e g if and only if A is a (ring) direct
product of rings from the 3fP's. The converse is equally true, that given a set
of local formations {2fP

:P67t} f°r some n with $P defined by some formation
function /p, the direct product of the 5p's is the local formation defined by the
formation function / : p t-*fp(p) with support n. We refer to the gp's as the
p-components of g. On the other hand, since the Frattini subring of a finite ring
is the (ring) direct product of the Frattini subrings of its p-primary components,
it is clear that a formation is Frattini closed if and only if its p-components are
Frattini closed. Thus, as is usually the case with finite rings, it is sufficient for
present purposes to consider only p-rings. We use the symbol S$ to denote the
local formation of finite p-rings.

The most elementary non-trivial local formations are the formations ?lp

of finite nilpotent p-rings in the sense that they contain no proper local formations.
That they are local is clear: indeed they are defined by the formation function
with support {p} whose solitary image is the formation of trivial rings. It follows
that 3lp is contained in every local formation divided by p.

The following simple lemma is most useful. It is an immediate consequence
of the characterisation of the Jacobson radical J(R) as the annihilator of all chief
factors of R.
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LEMMA. Let g be the formation of finite p-rings defined locally by a
formation function f then Re'ft if and only if Rety and R /J(R) e/Q>).

PROOF OF THEOREM 1. Let 3 be a local formation of finite p-rings defined
locally by a formation function /, then from the observations above, 9lp £ 5-
So let R be a finite ring such that R /</>(R) e g. Then R is a p-ring since <p(R) is
a (ring) direct product of the Frattini subrings of the primary components of R,
each of which is proper. Moreover, J(R /(t>(R)) = J(R) I4>(R) so that, writing R for
RI(j>(R), the lemma yields i?/J(J?)e/(p). That is, R/J(R)ef(p) and hence Re%
as required.

The sufficiency of the conditions of the theorem follows immediately from
the next result.

PROPOSITION 1. Let $ be a Frattini closed formation of finite p-rings
containing 3lp, then 5 is defined locally by the formation function f with support
{p} and image {R: Rety ARIJ(R)e%}.

That the class f(p) defined in Proposition 1 is a formation is easily checked
directly. We can say more however:

PROPOSITION 2. Let <r> be a homomorph of finite rings then the class of
finite rings £>J = {R: R/J(R)e§>} is a Frattini closed formation.

PROOF. Let Re§>J and let 9 be a homomorphism of R, then the simple
components of RGjJ(R6) are also simple components of R/J(R) and hence
£0/J(R0)e$. It follows that %>J is a homomorph. Moreover, if R/U and R jV
are in §>J and U n V = 0, then each simple component of R jJ{K) is a simple
component of one of (R/U)/J(RIU) or {R!V)jJ{RjV) and hence lies in $.
It follows that RlJ(R)e$ and that Re§>J. Finally, let RI<p(R) e$ J . Then, since
4>(R) £ J(R), R IJ(R)E& and hence R e § J as required.

PROOF OF PROPOSITION 1. Firstly note that by Proposition 2, %J is a formation
and so clearly/(p) = g J n ty is also a formation. Let $* be the formation defined
locally by the given forrrtation function /, then it follows immediately from the
lemma that 5 £ 5*- So let Re$* and assume inductively that all rings of smaller
order than R in 5* are in 5- Then, since g is Frattini closed, if K is a minimal
ideal ofR it cannot be contained in </»(i?) because R/Keff by induction. It follows
that K is complemented directly in R by a maximal ideal L. If L # 0, then K = R/L
and L^RjK are in g and hence R is in g. On the other hand, if L = 0 then R
is a simple p-ring. Either .R is nilpotent, in which case J? e 9lp s g or i? is not
nilpotent in which case J(R) = 0 and by the lemma R e 5-

Unlike the analogous situation in finite soluble group theory, the existence
of suitable nilpotent objects in a Frattini closed formation is by no means assured.
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Indeed, we show now that some Frattini closed formations of finite rings contain
no non-trivial nilpoent rings.

Given a homomorph § of finite rings, we denote by $f the class
{R:Rj(j){R)e^)} and by £* the subdirect product closure of $*>. In other words,
§>d is the intersection of all subdirect product closed classes of finite rings contain-
ing §. It is easy to see that $f is the Frattini closure of §> and that §>* consists of
all finite subdirect products of rings in §>.

PROPOSITION 3. Let § be a homomorph of finite rings, then §* and § a are
homomorphs. In particular, § a is a formation. Moreover, if any one of §, §* and
§* contains a non-trivial nilpotent ring, all three of them do.

PROOF. Let R e §* and let 9 be a homomorphism of R, then since
0(R)0S <j>(RO), R614>(R9) is a homomorphic image of RI(j)(R) and hence is in §.
If, on the other hand,Re§>s, then there exist ideals K1,K2,--,Kn of R such that
D?=i &i = 0 and, for each i, i?/K,e§. But RO/Kfi is a homomorphic image
of R /Ki for each i and so is also in §. Thus R8 e <r>*.

Moreover, if K is a non-trivial nilpotent ring and lies in gf then .R j(j)(R) is
a non-trivial nilpotent ring in §>. UR lies in £>5, then .R /J£; is a non-trivial nilpotent
ring in §>. Since § is contained in both $f and § a the proof is complete.

COROLLARY. Let $£) bea homomorph of finite rings containing no non-trivial
nilpotent rings, then 5 = UreZ+ H(<pS)r is a Frattini closed formation of finite
rings containing no non-trivial nilpotent rings.

PROOF OF THEOREM 2. In the corollary above, choose for $ the class consisting
of all fields with two elements and all trivial rings. Then the formation ^ is Frattini
closed but is not local by Theorem 1.

Proposition 2 gives a good idea of the size of the formation 5 in the corollary
above: it is clear that § " c g c §y.
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