ON ADDITIVE OPERATORS

N. A. FRIEDMAN AND A. E. TONG

1. Introduction. Representation theorems for additive functionals have been obtained in $[\mathbf{2}, \mathbf{4} ; \mathbf{6}-\mathbf{8} ; \mathbf{1 0}-\mathbf{1 3}]$. Our aim in this paper is to study the representation of additive operators.

Let S be a compact Hausdorff space and let $\mathrm{C}(S)$ be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see $\S 2$) mapping $\mathrm{C}(S)$ into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of "measures" $\left\{\mu_{h}\right\}$ which take their values in $X^{* *}$. If X is weakly sequentially complete, then $\left\{\mu_{h}\right\}$ can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X^{*} is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see $[\mathbf{9} ; \mathbf{1 1} ; \S 4]$):

$$
\left(x^{*}, T(f)\right)=\int_{S} K\left(x^{*}, f(s), s\right) \mu(d s) \quad \text { for each } x^{*} \in X^{*}
$$

While these results are proved by a procedure different from the bounded linear operator case, corresponding results for this case are included in the generalization, such as the following (reformulated from [5, pp 492-494]).

Theorem. Let X be a weakly sequentially complete Banach space and $T: \mathrm{C}(S) \rightarrow X$ a bounded linear operator. Then there is a vector-valued measure μ (on the Borel sets) taking values in X so that:

$$
T(f)=\int_{S} f(s) \mu(d s) \quad \text { for each } f \in \mathrm{C}(S)
$$

2. Preliminaries. The dual of a Banach space X will be denoted by X^{*}. If $x \in X$ and $x^{*} \in X^{*}$, then the evaluation of x^{*} at x will be denoted by $\left(x, x^{*}\right), x^{*}(x)$, or $x\left(x^{*}\right)$ depending on the context. If two Banach spaces X_{1} and X_{2} are in duality, then the weak topology induced on X_{1} by X_{2} is denoted by $\sigma\left(X_{1}, X_{2}\right)$.
\mathscr{B} denotes the class of Borel sets of a compact Hausdorff space $S . \mathrm{M}(S)$ denotes the Banach space of all regular real-valued measures defined on \mathscr{B}

[^0]with the norm of a measure given by $\|\mu\|=|\mu|(S)$, where $|\mu|$ is the total variation of μ. The Banach space of all bounded measurable functions on S under the sup norm, $\|-\|_{\infty}$, will be denoted by $\mathrm{B}(S)$.
2.1. Definition. Let $f \in \mathrm{C}(S)$. The carrier of f is the open set where f does not vanish and is denoted by $c(f)$. The support of f is the closure of $c(f)$ and is denoted by $\mathrm{s}(f)$. Given $A \subset S$, we say that f is carried (supported) in A if $\mathrm{c}(f) \subset A(\mathrm{~s}(f) \subset A)$.
2.2. Definition. Let $T: \mathrm{C}(S) \rightarrow X . T$ is β-uniform if T is uniformly continuous on bounded sets. That is, for every bounded set D and $\epsilon>0$, there exists $\delta>0$ such that $\|T(f)-T(g)\|<\epsilon$ when $f, g \in D$ and $\|f-g\|<\delta . T$ is additive if for each $g \in \mathrm{C}(S)$, the mapping $T_{0}: \mathrm{C}(S) \rightarrow X$ defined by $T_{0}(f)=$ $T_{\rho}(f+g)-T(g)$ satisfies $T_{g}\left(f_{1}+f_{2}\right)=T_{g}\left(f_{1}\right)+T_{g}\left(f_{2}\right)$ when $f_{1} f_{2}=0$. This condition is suggested by the measure-theoretic identity
$$
\mu\left(F_{1} \cup F_{2} \cup G\right)=\mu\left(F_{1} \cup G\right)+\mu\left(F_{2} \cup G\right)-\mu(G)
$$
where F_{1} and F_{2} are disjoint sets. If T is additive and $T(0)=0$, then $f_{1} f_{2} \equiv 0$ implies $T\left(f_{1}+f_{2}\right)=T\left(f_{1}\right)+T\left(f_{2}\right) . T$ is bounded if T maps bounded sets in to bounded sets.
2.3. Remark. If T is β-uniform, then T is bounded. Let D be bounded, where $\|f\| \leqq b, f \in D$. Choose $\delta>0$ so that $f_{1}, f_{2} \in D$ and $\left\|f_{1}-f_{2}\right\|<\delta b$ imply $\left\|T\left(f_{1}\right)-T\left(f_{2}\right)\right\|<1$. Hence, for any $f \in D$, if n and r satisfy $\delta / 2<r=$ $1 / n<\delta$, then
\[

$$
\begin{aligned}
\|T(f)-T(0)\| \leqq \| \sum_{1 \leqq k \leqq n} T(k r f) & -T((k-1) r f) \| \\
& \leqq \sum_{1 \leqq k \leqq n}\|T(k r f)-T((k-1) r f)\| \leqq n<2 / \delta
\end{aligned}
$$
\]

Thus $f \in D$ implies $\|T(f)\|<2 / \delta+\|T(0)\|$.
2.4. Definition. Let $T: \mathrm{C}(S) \rightarrow X . T$ is an additive operator if T is β-uniform and additive. An additive functional is a real-valued additive operator.

Clearly, bounded linear operators are examples of additive operators. However, an additive operator is generally non-linear. For example, $T(f)=f^{2}$ is an additive operator mapping $\mathrm{C}(S)$ into $\mathrm{C}(S)$.

Given a closed set F and real h, let $\mathrm{P}(F, h)$ denote the class of continuous functions f satisfying $0 \leqq f \leqq h$ (or $h \leqq f \leqq 0$ if $h \leqq 0$) and $f(G)=h$, where G is an open set containing F. Briefly, $\mathrm{P}(F, h)$ is the class of peaks over F of height h. An ordering on $\mathrm{P}(F, h)$ is defined by $f_{2} \leqq f_{1}$ if $\mathrm{s}\left(f_{2}\right) \subset \mathrm{s}\left(f_{1}\right)$. Thus $f_{2} \leqq f_{1}$ if f_{2} is a better fit for F. A limit taken with respect to this ordering is denoted by $\lim _{f}$.

The following lemma is obtained in [8]. A proof for the case where T is an additive operator and μ_{h} is a vector-valued measure is given in $\S 3$.
2.5. Lemma. Let T be an additive functional on $\mathrm{C}(S)$. Then there is a regular Borel measure μ_{h} for each real h, such that for each closed set F,

$$
\mu_{h}(F)=\lim _{f} T(f), \quad f \in \mathrm{P}(F, h)
$$

Utilizing the family of measures $\left\{\mu_{n}\right\}$, the following representation theorem is obtained [8].
2.6. Theorem. T is an additive functional on $\mathrm{C}(S)$ if and only if there is a measure μ and a kernel function $K(\cdot, \cdot)$ such that

$$
T(f)=\int_{s} K(f(s), s) \mu(d s)
$$

where
(i) μ is a real-valued measure of finite variation,
(ii) $K(h, s)$ is a measurable function of s for each real h,
(iii) $K(h, s)$ is a continuous function of h for all $s \in S \backslash N$, where $\mu(N)=0$ ($\mu-a . e . s$),
(iv) for each $H>0$ there exists $M>0$ such that $|h| \leqq H$ implies

$$
|K(h, s)| \leqq M \quad \text { for } \quad \mu \text {-a.e. s. }
$$

A proof of the following result is contained in [6, Lemma 18].
2.7. Lemma. Let Φ be an additive functional on $\mathrm{C}(S)$ with corresponding height measures $\left\{\mu_{h}\right\}$. If s_{n} is a sequence of simple functions

$$
s_{n}=\sum_{i=1}^{k(n)} c_{n, i} \chi_{B_{n, i}}
$$

and $f \in \mathrm{C}(S)$ such that $\left\|s_{n}-f\right\|_{\infty} \rightarrow 0$, then

$$
\lim _{n} \sum_{i=1}^{k(n)} \mu_{c_{n, i}}\left(B_{n, i}\right)=\Phi(f)
$$

The following result can be found in [3, p. 60]. The family of all finite subsets σ of the positive integers is denoted by \mathscr{F}.
2.8. Theorem (Orlicz-Pettis). Let $\left(x_{k}\right)$ be a sequence in a Banach space X. Then
(1) $\left(x_{k}\right)$ is subseries Cauchy in the weak topology if and only if there exists $M>0$ such that

$$
\sup \left\{\left\|\sum_{k \in \sigma} x_{k}\right\|: \sigma \in \mathscr{F}\right\}<M .
$$

(2) If X is weakly sequentially complete, then $\left(x_{k}\right)$ is subseries Cauchy in the weak topology if and only if it is subseries Cauchy in the norm topology. Thus, if $\left(x_{k}\right)$ is subseries Cauchy in the weak topology, then $\lim _{k}\left\|x_{k}\right\|=0$.
3. Height measures. In this section we shall represent an additive operator in terms of a family of measures $\left\{\mu_{h}\right\}$. The proofs of Lemmas 3.1-3.3 are based on methods in $[\mathbf{2} ; \mathbf{6} ; \mathbf{8}]$.
3.1. Lemma. Let $T: \mathrm{C}(S) \rightarrow X$ be continuous. Fix $g \in \mathrm{C}(S)$ and an open set U. Let f be carried in U and $\epsilon>0$. Then there exists f_{ϵ} supported in U such that $\left\|f_{\epsilon}\right\| \leqq\|f\|$ and $\left\|T(f+g)-T\left(f_{\epsilon}+g\right)\right\|<\epsilon$.

Proof. Choose $\delta>0$ such that $\left\|f-f_{\epsilon}\right\|<\delta$ implies

$$
\left\|T(f+g)-T\left(f_{\epsilon}+g\right)\right\|<\epsilon
$$

Let $V=\{s:|f(s)|<\delta\}$; hence $V^{\text {e }}$ (the complement of V) is closed and disjoint from U^{c}. Choose disjoint open sets G and W such that $V^{\mathrm{c}} \subset G$ and $U^{\mathrm{c}} \subset W$. By Urysohn's lemma there exists $w \in \mathrm{C}(S), 0 \leqq w \leqq 1, w\left(V^{c}\right)=1$, and $w\left(G^{c}\right)=0$. Let $f_{\epsilon}=w f$; hence $f_{\epsilon} \in \mathrm{C}(S)$. Since G is disjoint from W, f_{ϵ} is supported in U. Also, by definition of $V,\left\|f-f_{\epsilon}\right\|=\|(1-w) f\|<\delta$.
3.2. Lemma. Let X be a weakly sequentially complete Banach space. Let $T: \mathrm{C}(S) \rightarrow X$ be an additive operator. Given $g \in \mathrm{C}(S), h>0, \epsilon>0$, and a closed set $F \subset S$, there exists an open set $U \supset F$ such that if f is carried in $U-F$ and $\|f\| \leqq h$, then $\|T(f+g)-T(g)\| \leqq \epsilon$.

Proof. Suppose the contrary. Then given $U_{1} \supset F$, there exists $f_{1}{ }^{*}$ carried in $U_{1}-F$ such that
(1) $\left\|T\left(f_{1}{ }^{*}+g\right)-T(g)\right\|>\epsilon$ and $\left\|f_{1}{ }^{*}\right\| \leqq h$.

Thus Lemma 3.1 implies that f_{1} can be chosen so as to be supported in $U_{1}-F$ and so that
(2) $\left\|T\left(f_{1}+g\right)-T(g)\right\|>\epsilon$ and $\left\|f_{1}\right\| \leqq h$.

Let $U_{2}=\left[\mathrm{c}\left(f_{1}\right)\right]^{\mathrm{c}} \cap U_{1}$; hence $U_{2} \supset F$. Choose $f_{2}{ }^{*}$ carried in $U_{2}-F$ such that (1) holds for $f_{2}{ }^{*}$. Thus Lemma 3.1 implies that there exists f_{2} supported in $U_{2}-F$ and that (2) holds for f_{2}. Proceeding inductively, we obtain a sequence of disjointly supported functions $\left(f_{k}\right)$ satisfying
(3) $\left\|T\left(f_{k}+g\right)-T(g)\right\|>\epsilon, k=1,2, \ldots$, and $\left\|f_{k}\right\| \leqq h$.

However, T is additive; hence
(4) $T_{g}\left(\sum_{k \in \sigma} f_{k}\right)=\sum_{k \in \sigma} T_{g}\left(f_{k}\right), \sigma \in \mathscr{F}$.

The class $\left\{\sum_{k \in \sigma} f_{k}: \sigma \in \mathscr{F}\right\}$ is bounded in $\mathrm{C}(S)$ because the functions $\left(f_{k}\right)$ are disjointly supported and $\left\|f_{k}\right\| \leqq h$ for all k. By Remark 2.3 , the class

$$
\left\{T_{g}\left(\sum_{k \in \sigma} f_{k}\right)=\sum_{k \in \sigma} T_{g}\left(f_{k}\right): \sigma \in \mathscr{F}\right\}
$$

is also bounded. By Theorem 2.8 (1), this class is subseries Cauchy in the weak topology. By Theorem 2.8 (2), we have $\lim _{k}\left\|T_{0}\left(f_{k}\right)\right\|=0$, which contradicts (3).
3.3. Lemma. Let X be a weakly sequentially complete Banach space. Let $T: \mathrm{C}(S) \rightarrow X$ be an additive operator and let F be closed. Then for each real h,
$\lim _{f} T(f)$ exists and is denoted by $\lambda_{h}(F)$. Moreover, if $M_{h}>0$ satisfies $\|T(f)\| \leqq$ M_{h} for all $\|f\| \leqq h$, then $\left\|\lambda_{h}(F)\right\| \leqq M_{h}$.

Proof. Let $\epsilon>0$. By Lemma 3.2, we can choose an open set $U \supset F$ such that if g is carried in $U-F$, then
(1) $\|T(g)\|<\epsilon / 6$.

Let f_{1} and f_{2} be in $\mathrm{P}(F, h)$ and supported in U. It suffices to show that

$$
\left\|T\left(f_{1}\right)-T\left(f_{2}\right)\right\|<\epsilon
$$

We have $f_{i}=h$ on $U_{i} \supset F, i=1,2$. Let $G_{1}=U_{1} \cap U_{2}$. By Lemma 3.2 we can choose $G_{2} \supset F$ such that if v is carried in $G_{2}-F$, then
(2) $\left\|T\left(f_{i}-v\right)-T\left(f_{i}\right)\right\|<\epsilon / 3, i=1,2$.

Also assume that $G_{2} \subset G_{1}$. Utilizing normality, choose open sets G_{3} and G_{4} such that

$$
F \subset G_{4} \subset \bar{G}_{4} \subset G_{3} \subset \bar{G}_{3} \subset G_{2}
$$

where \bar{G} denotes the closure of G. By Urysohn's lemma we can choose u_{1} such that $u_{1}\left(\bar{G}_{4}\right)=1$ and $u_{1}\left(G_{3}{ }^{\mathrm{c}}\right)=0$. Also choose u_{2} such that $u_{2}\left(G_{2}{ }^{\mathrm{c}}\right)=1$ and $u_{2}\left(\bar{G}_{3}\right)=0$. Since $G_{2} \subset G_{1}$, we have $z=u_{1} f_{i}=h u_{1}, i=1,2$. Let $g_{i}=u_{2} F_{i}$, $i=1,2$, and $v_{i}=f_{i}-\left(z+g_{i}\right)$. Since z and g_{i} have disjoint carriers, $T\left(z+g_{i}\right)=T(z)+T\left(g_{i}\right)$. Also g_{i} is carried in $U-F$ and v_{i} is carried in $G_{2}-F$. Thus (1) and (2) imply

$$
\begin{aligned}
\left\|T\left(f_{1}\right)-T\left(f_{2}\right)\right\| & \leqq\left\|T\left(f_{1}\right)-T\left(f_{1}-v_{1}\right)\right\|+\left\|T\left(z+g_{1}\right)-T\left(z+g_{2}\right)\right\| \\
& +\left\|T\left(f_{2}-v_{2}\right)-T\left(f_{2}\right)\right\| \\
& <\epsilon / 3+\left\|T\left(g_{1}\right)\right\|+\left\|T\left(g_{2}\right)\right\|+\epsilon / 3 \\
& <\epsilon .
\end{aligned}
$$

Finally, let M_{h} be as in the statement of the lemma. Then,

$$
\left\|\lambda_{h}(F)\right\| \leqq \sup \{\|T(f)\|:\|f\| \leqq h\} \leqq M_{h}
$$

We shall now assume that $T(0)=0$; hence $T\left(f_{1}+f_{2}\right)=T\left(f_{1}\right)+T\left(f_{2}\right)$ when f_{1} and f_{2} have disjoint supports. This is no loss of generality since $T(f)-T(0)$ satisfies this property in the general case.
3.4. Lemma. Let X be an arbitrary Banach space. Let T be an additive operator mapping $\mathrm{C}(S)$ into X. For each $h \in R(R$ the set of reals) there is a vector-valued function $\mu_{h}: \mathscr{B} \rightarrow X^{* *}$ such that:
(1) For each $x^{*} \in X^{*}$, the mapping $\left(x^{*}, \mu_{h}(\cdot)\right): \mathscr{B} \rightarrow R$ is countably additive,
(2) If $M_{h}>0$ satisfies $\|T(f)\| \leqq M_{h}$ when $\|f\| \leqq h$, then $\left\|\mu_{h}\right\| \leqq M_{h}$;
(3) Let $\epsilon>0$ and $b>0$. Let $D=\{f:\|f\| \leqq b\}$ and let δ be as in Definition 2.2. If B_{i} are disjoint Borel sets, h_{i} and $k_{i} \in(-b, b),\left|h_{i}-k_{i}\right|<\delta, i=1,2, \ldots$, then

$$
\left\|\sum_{i=1}^{\infty} \mu_{h i}\left(B_{i}\right)-\sum_{i=1}^{\infty} \mu_{k i}\left(B_{i}\right)\right\|<\epsilon .
$$

(We will show that $\sum_{i=1}^{\infty} \mu_{h i}\left(B_{i}\right)$ and $\sum_{i=1}^{\infty} \mu_{k i}\left(B_{i}\right)$ are in $X^{* *}$.)
(4) Let $f \in \mathrm{C}(S)$ satisfy $\|f\| \leqq b$ and let ϵ, δ be as in (3). Let $\left\{B_{i}\right\}$ be a finite sequence of disjoint Borel sets such that

$$
\left\|f-\sum_{i=1}^{n} h_{i} \chi_{B_{i}}\right\|<\delta
$$

where $\left\{h_{i}\right\}$ is a sequence in $(-b, b)$. Then

$$
\left\|T(f)-\sum_{i=1}^{n} \mu_{h i}\left(B_{i}\right)\right\| \leqq \epsilon
$$

Proof. (1) Since T is an additive operator, setting $x^{*} T(f)=\left(T(f), x^{*}\right)$ defines an additive functional for each $x^{*} \in X^{*}$. Hence, by Lemma 3.3, there exists a family of regular contents $x^{*} \lambda_{h}$, where

$$
x^{*} \lambda_{h}(F)=\lim _{f}\left\{x^{*} T(f): f \in \mathrm{P}(F, h)\right\} .
$$

As in [6], [1, p. 209, Theorem 3], can be utilized to extend $x^{*} \lambda_{h}$ uniquely to a regular Borel measure $x^{*} \mu_{h}$. Given $x^{*} \in X^{*}$, we define $\mu_{h}(B)$ by setting

$$
\begin{equation*}
\left(\mu_{h}(B), x^{*}\right)=\left(x^{*} \mu_{h}\right)(B) \tag{3.4.1}
\end{equation*}
$$

If h and B are fixed, we verify that $\mu_{h}(B)$ defines a bounded linear functional on X^{*}. Boundedness is immediate: if $\|T(f)\| \leqq M_{h}$ for all f of norm less than or equal to h, then
(3.4.2) $\left|\left(x^{*} \mu_{h}\right)(B)\right|=\sup \left\{\left|\left(x^{*} \mu_{h}\right)(F)\right|: F\right.$ is a closed subset of $\left.B\right\}$
$\leqq \sup \left\{\mid\left(x^{*} T\right)(f): f \in \mathrm{P}(F, h)\right.$, where F is a closed subset of B \}
$\leqq\left\|x^{*}\right\| M_{h}$.
To verify linearity, we have, for closed sets F :

$$
\begin{aligned}
\mu_{h}(F)\left(c_{1} x_{1}{ }^{*}+c_{2} x_{2}{ }^{*}\right) & =\lim _{f}\left(c_{1} x_{1}{ }^{*}+c_{2} x_{2}{ }^{*}\right) T(f) \\
& =\lim _{f}\left(\left(c_{1} x_{1}{ }^{*}\right) T+\left(c_{2} x_{2}{ }^{*}\right) T\right)(f) \\
& =\lim _{f}\left(c_{1} x_{1}{ }^{*}\right) T(f)+\lim _{f}\left(c_{2} x_{2}{ }^{*}\right) T(f) \\
& =c_{1}\left(x_{1}{ }^{*} \mu_{h}\right)(F)+c_{2}\left(x_{2}{ }^{*} \mu_{h}\right)(F) \\
& =c_{1} \mu_{h}(F)\left(x_{1}{ }^{*}\right)+c_{2} \mu_{h}(F)\left(x_{2}{ }^{*}\right) .
\end{aligned}
$$

Thus,

$$
\left(c_{1} x_{1}{ }^{*}+c_{2} x_{2}{ }^{*}\right) \mu_{h}(F)=c_{1} \mu_{h}(F)\left(x_{1}{ }^{*}\right)+c_{2} \mu_{h}(F)\left(x_{2}^{*}\right)
$$

Since $x^{*} \mu_{h}$ is regular, linearity holds also for all Borel sets.
(2) It is immediate from (3.4.2) that the total variation of $x^{*} \mu_{h}$ is less than $\left\|x^{*}\right\| M_{h}$. Hence, $\left\|\mu_{h}\right\|=\sup \left\{\left\|\mu_{h}(B)\right\|: B \in \mathscr{B}\right\} \leqq M_{h}$.
(3) We first show that $\sum_{i} \mu_{h_{i}}\left(B_{i}\right) \in X^{* *}$. Let $M>0$ satisfy $\|T(f)\| \leqq M$ whenever $\|f\| \leqq 1$. It suffices to show that:

$$
\sum_{i}\left|\left(\mu_{h_{i}}\left(B_{i}\right), x^{*}\right)\right| \leqq 2 M\left\|x^{*}\right\|
$$

Clearly, $\sum_{i}\left|\left(\mu_{h_{i}}\left(B_{i}\right), x^{*}\right)\right|=a+b$, where

$$
\begin{aligned}
& a=\sup \left\{\left(\sum_{i \in \sigma} \mu_{h_{i}}\left(B_{i}\right), x^{*}\right): \sigma \in \mathscr{F}, \quad \text { where }\left(\mu_{h_{i}}\left(B_{i}\right), x^{*}\right)>0 \text { if } i \in \sigma\right\}, \\
& b=\sup \left\{\left(-\sum_{i \in \sigma} \mu_{h_{i}}\left(B_{i}\right), x^{*}\right): \sigma \in \mathscr{F}, \quad \text { where }\left(\mu_{h_{i}}\left(B_{i}\right), x^{*}\right)<0 \text { if } i \in \sigma\right\} .
\end{aligned}
$$

Without loss of generality, assume that σ satisfies $\left(\mu_{h_{i}}\left(B_{i}\right), x^{*}\right)>0$ for all $i \in \sigma$. We will show that

$$
\begin{equation*}
\sum_{i \leqslant \sigma}\left(\mu_{h_{i}}\left(B_{i}\right), x^{*}\right) \leqq M\left\|x^{*}\right\| . \tag{3.4.3}
\end{equation*}
$$

For the fixed x^{*} and σ, choose closed subsets F_{i} of B_{i} so that

$$
\sum_{i \in \sigma}\left|\left(\mu_{h i}\left(B_{i} \backslash F_{i}\right), x^{*}\right)\right|<\epsilon / 2
$$

and so that $\left(\mu_{h_{i}}\left(F_{i}\right), x^{*}\right)>0$. Choose disjointly supported functions

$$
f_{i} \in \mathrm{P}\left(F_{i}, h_{i}\right)
$$

so that $\sum_{i \in \sigma}\left|\left(\mu_{h_{i}}\left(F_{i}\right)-T\left(f_{i}\right), x^{*}\right)\right|<\epsilon / 2$ and so that $\left(T\left(f_{i}\right), x^{*}\right) \geqq 0$ for all $i \in \sigma$. Let $f=\sum_{i \in \sigma} f_{i}$. Since T is additive, $T(f)=\sum_{i \in \sigma} T\left(f_{i}\right)$. We have:

$$
\begin{aligned}
\sum_{i \in \sigma}\left(\mu_{h i}\left(B_{i}\right), x^{*}\right) & \leqq \sum_{i \in \sigma}\left|\left(\mu_{h i}\left(B_{i} \backslash F_{i}\right), x^{*}\right)\right|+\sum_{i \in \sigma}\left|\left(\mu_{h i}\left(F_{i}\right), x^{*}\right)\right| \\
& \leqq \epsilon / 2+\sum_{i \in \sigma}\left|\left(\mu_{h i}\left(F_{i}\right)-T\left(f_{i}\right), x^{*}\right)\right|+\sum_{i \in \sigma}\left|\left(T\left(f_{i}\right), x^{*}\right)\right| \\
& \leqq \epsilon+\left(\sum_{i \in \sigma} T\left(f_{i}\right), x^{*}\right) \\
& \leqq \epsilon+T(f)| | x^{*}| | \\
& \leqq \epsilon+M| | x^{*}| |
\end{aligned}
$$

Since ϵ is arbitrary, this proves (3.4.3).
We now show that $\left\|\sum_{i} \mu_{h_{i}}\left(B_{i}\right)-\mu_{k_{i}}\left(B_{i}\right)\right\|<\epsilon$. It suffices to- verify that if σ is a finite index set and $x^{*} \in X^{*}$, then

$$
\begin{equation*}
\left|\left(\sum_{i \in \sigma} \mu_{h i}\left(B_{i}\right)-\mu_{k i}\left(B_{i}\right), x^{*}\right)\right|<\epsilon\left\|x^{*}\right\| . \tag{3.4.4}
\end{equation*}
$$

Let $\epsilon^{\prime}>0$ be arbitrary. As before, we choose disjoint closed subsets $F_{i} \subset B_{i}$ so that

$$
\sum_{i \in \sigma}\left|\left(\mu_{h_{i}}\left(B_{i} \backslash F_{i}\right), x^{*}\right)\right|<\epsilon^{\prime} / 4 \quad \text { and } \quad \sum_{i \in \sigma}\left|\left(\mu_{k i}\left(B_{i} \backslash F_{i}\right), x^{*}\right)\right|<\epsilon^{\prime} / 4
$$

Choose disjointly supported functions $f_{i} \in \mathrm{P}\left(F_{i}, h_{i}\right)$ and $g_{i} \in \mathrm{P}\left(F_{i}, k_{i}\right)$ so that:

$$
\begin{gathered}
\left\|f_{i}-g_{i}\right\|<\delta \\
\sum_{i \in \sigma}\left|\left(\mu_{h i}\left(F_{i}\right), x^{*}\right)-\left(T\left(f_{i}\right), x^{*}\right)\right|<\epsilon^{\prime} / 4 \\
\sum_{i \in \sigma}\left|\left(\mu_{k i}\left(F_{i}\right), x^{*}\right)-\left(T\left(g_{i}\right), x^{*}\right)\right|<\epsilon^{\prime} / 4
\end{gathered}
$$

By the triangle inequality, we have:

$$
\begin{equation*}
\left|\left(\sum_{i \in \sigma} \mu_{h_{i}}\left(B_{i}\right)-\mu_{k i}\left(B_{i}\right), x^{*}\right)\right|<\epsilon^{\prime}+\left|\left(\sum_{i \in \sigma} T\left(f_{i}\right)-T\left(g_{i}\right), x^{*}\right)\right| . \tag{3.4.5}
\end{equation*}
$$

Write $f=\sum_{i \in \sigma} f_{i}$ and $g=\sum_{i \in \sigma} g_{i}$. Then, $\|f-g\|<\delta$ so that

$$
\left\|\sum_{i \in \sigma} T\left(f_{i}\right)-\sum_{i \in \sigma} T\left(g_{i}\right)\right\|=\|T(f)-T(g)\|<\epsilon
$$

Thus,

$$
\left|\left(\sum_{i \in \sigma} T\left(f_{i}\right)-T\left(g_{i}\right), x^{*}\right)\right| \leqq \epsilon\left\|x^{*}\right\| .
$$

Applying this to (3.4.5) and observing that ϵ^{\prime} is arbitrary, we obtain (3.4.4).
(4) Let f_{n} be a sequence of step functions converging in the uniform norm to f. For any $x^{*} \in X^{*}$, Theorem 2.6 yields $\lim _{n} x^{*} T\left(f_{n}\right)=x^{*} T(f)$ so that $T(f)$ is the limit of $T\left(f_{n}\right)$ in the weak topology. By (3) above, the sequence $T\left(f_{n}\right)$ is also Cauchy in the norm topology and so must converge to $T(f)$ in the norm. And, if g is any step function such that $\|f-g\| \leqq \delta$, then $\lim _{n}\left\|f_{n}-g\right\| \leqq \delta$ and so by (3) above, $\lim _{n}\left\|T\left(f_{n}\right)-T(g)\right\| \leqq \epsilon$. Thus $\|T(f)-T(g)\| \leqq \epsilon$, as required.

Lemma 3.4 suggests the following definition of a non-linear integral.
3.5. Definition. Let Y be a Banach space and $Z \subset Y^{*}$. Let μ_{h} : $\mathscr{B} \rightarrow Z$ such that $\left(y, \mu_{h}(\cdot)\right)$ is countably additive for each $y \in Y$. For each $\epsilon>0$ and $b>0$ there exists $\delta>0$ such that if B_{i} are disjoint, $h_{i}, k_{i} \in(-b, b),\left|h_{i}-k_{i}\right|<\delta$, $1 \leqq i \leqq n$, then

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} \mu_{h_{i}}\left(B_{i}\right)-\sum_{i=1}^{n} \mu_{k i}\left(B_{i}\right)\right\|<\epsilon . \tag{3.5.1}
\end{equation*}
$$

Given a simple function $f=\sum_{i=1}^{n} h_{i} \chi_{B i}$, define

$$
\int f d \mu=\sum_{i=1}^{n} \mu_{h_{i}}\left(B_{i}\right)
$$

Given $f \in \mathrm{~B}(S)$, let f_{n} be a sequence of simple functions such that

$$
\left\|f-f_{n}\right\| \rightarrow 0
$$

By (3.5.1) we may define

$$
\int f d \mu=\lim _{n} \int f_{n} d \mu
$$

We may regard $\int f d \mu$ as a non-linear integral with respect to the family of measures, $\mu=\left\{\mu_{h}: h \in R\right\}$.
3.6. Theorem. Let $T: \mathrm{C}(S) \rightarrow X$, where T is additive and X is an arbitrary Banach space. Then there exists $\mu=\left\{\mu_{h}\right\}$ as in Definition 3.5 with $Z=X^{* *}$ such that

$$
\begin{equation*}
T(f)=\int f d \mu, \quad f \in \mathrm{C}(S) \tag{3.6.1}
\end{equation*}
$$

Proof. Let μ be the family as in Lemma 3.4. Then (1)-(3) of Lemma 3.4 imply that μ satisfies Definition 3.5 and (3.6.1) follows from (4).
3.7. Lemma. Let $T: \mathrm{C}(S) \rightarrow X$, where T is additive and X is a weakly sequentially complete Banach space. Then $\mu_{h}: \mathscr{B} \rightarrow X$ and μ_{h} is countably additive in the norm of X.

Proof. Since $\left(x^{*}, \mu_{h}(F)\right)=\left(x^{*}, \lambda_{h}(F)\right)$ for every $x^{*} \in X^{*}$, we have $\mu_{h}(F)=$ $\lambda_{h}(F)$. By Lemma 3.3, $\lambda_{h}(F) \in X$, and so $\mu_{h}(F) \in X$. It remains to verify that $\mu_{h}(B) \in X$ for every Borel set B. It is sufficient to show that

$$
\mu_{h}(B)=\lim \left\{\mu_{h}(F): F \text { is a closed subset of } B\right\}
$$

in the norm topology (we order the net $\left\{\mu_{h}(F)\right\}$ by setting $\mu_{h}\left(F_{1}\right)<\mu_{h}\left(F_{2}\right)$ if and only if $F_{2} \subset F_{1}$).

Suppose the contrary. Then, there is an $\epsilon>0$ such that

$$
\begin{equation*}
\left\|\mu_{h}(B \backslash F)\right\|>\epsilon \text { for any closed subset } F \subset B \tag{3.7.1}
\end{equation*}
$$

We construct, inductively, a sequence of disjoint closed sets $\left\{F_{i}\right\}$ so that $\left\|\mu\left(F_{i}\right)\right\|>\epsilon / 2$ for all i.

Since (3.7.1) holds when $F=\emptyset$, we have $\left\|\mu_{h}(B)\right\|>\epsilon$. Choose a unit vector $x^{*} \in X^{*}$ so that $\left(x^{*}, \mu_{h}(B)\right)>\epsilon / 2$. Since $\left(x^{*}, \mu_{h}(\cdot)\right)$ is a regular Borel measure, we can find a closed subset $F_{1} \subset B$ so that $\left(x^{*}, \mu_{h}\left(F_{1}\right)\right)>\epsilon / 2$. Thus

$$
\left\|\mu_{h}\left(F_{1}\right)\right\|>\epsilon / 2
$$

Assume now that disjoint closed subsets F_{1}, \ldots, F_{n} of B have been chosen so that $\left\|\mu_{h}\left(F_{i}\right)\right\|>\epsilon / 2$ for $i=1,2, \ldots, n$. Set

$$
F=\bigcup_{1 \leqq i \leqq n} F_{n} .
$$

Then F is closed and (3.7.1) applies, so that $\left(x^{*}, \mu_{h}(B \backslash F)\right)>\epsilon / 2$ for some unit vector x^{*}. Since $\left(x^{*}, \mu_{h}(\cdot)\right)$ is a regular Borel measure, choose a closed subset $F_{n+1} \subset B \backslash F$ such that $\left(x^{*}, \mu_{h}\left(F_{n+1}\right)\right)>\epsilon / 2$. Thus, $\left\|\mu_{h}\left(F_{n+1}\right)\right\|>\epsilon / 2$. This completes the induction. However, the set

$$
\left\{\sum_{i \in \sigma} \mu_{h}\left(F_{i}\right): \sigma \text { is any finite set }\right\}
$$

is bounded in the norm by $\left\|\mu_{h}\right\|$. Since $\left\|\mu_{h}\left(F_{i}\right)\right\|>\epsilon / 2$, Theorem 2.8 is contradicted.

Finally, to show that μ_{h} is countably additive in the norm, we observe that since μ_{h} is X-valued, part (1) of Lemma 3.4 proves that whenever $\left\{B_{i}\right\}$ is a sequence of disjoint Borel sets, then

$$
\mu_{h}\left(\bigcup_{1 \leqq i<\infty} B_{i}\right)=\sum_{1 \leqq i<\infty} \mu_{h}\left(B_{i}\right)
$$

where convergence is taken in the weak topology on X. By Theorem 2.8, the series $\sum_{1 \leqq i<\infty} \mu_{h}\left(B_{i}\right)$ converges in the norm.
3.8. Theorem. Let $T: \mathrm{C}(S) \rightarrow X$ be an additive operator and X weakly sequentially complete. Then there exists $\mu=\left\{\mu_{h}\right\}$ as in Definition 3.5 with $Z=X$ such that

$$
T(f)=\int f d \mu, \quad f \in \mathrm{C}(S)
$$

The theorem follows by combining Lemma 3.7 with Theorem 3.6.
We note that the measures $\mu_{h}: B \rightarrow X^{* *}$ determine linear operators $T_{h}: \mathrm{B}(S) \rightarrow X^{* *}$ as follows. If $f=\sum_{1 \leqq i \leqq n} c_{i} \chi_{X_{i}}$ is a step function, we set

$$
T_{h}(f)=\sum_{1 \leqq i \leqq n} c_{i} \mu_{n}\left(B_{i}\right) .
$$

It is easy to check that $T_{h}(f)$ is well-defined. Moreover,

$$
\left\|T_{h}(f)\right\| \leqq \sum_{1 \leqq i \leqq n}\left|c_{i}\right|\left\|\mu_{h}\left(B_{i}\right)\right\| \leqq\|f\|_{\infty}\left\|\mu_{h}\right\| .
$$

Hence, we have defined T_{h} to be a bounded linear operator on the dense subspace of step functions. Since $X^{* *}$ is Banach, we may therefore uniquely extend T_{h} to the space $\mathrm{B}(S)$ so that $\left\|T_{h}\right\|=\left\|\mu_{h}\right\|$. It is also easy to check that $\left(x^{*}, T_{h}(f)\right)=\int f(s) x^{*} \mu_{h}(d s)$ for $f \in \mathrm{~B}(S)$.

To summarize, we have the following.
3.9. Theorem. Let $T: \mathrm{C}(S) \rightarrow X$ be an additive operator. Then there are bounded linear operators $T_{h}: \mathrm{C}(S) \rightarrow X^{* *}$ so that
(1) If M_{h} satisfies $\|T(f)\| \leqq M_{h}$ whenever $\|f\| \leqq h$, then $\left\|T_{h}\right\| \leqq M_{h}$,
(2) For each $f \in \mathrm{C}(S), x^{*} \in X^{*}$,

$$
\left(x^{*}, T_{h}(f)\right)=\int f(s) x^{*} \mu_{h}(d s),
$$

(3) If X is weakly sequentially complete, then T_{n} is a weakly compact operator.

Proof. (1) and (2) have been proven above.
(3) If X is weakly sequentially complete, Lemma 3.7 shows that $\mu_{h}: \mathscr{B} \rightarrow X$ is countably additive in the norm. Applying [5, p. 493, Theorem 3] yields the result.

We note that if $T: \mathrm{C}(S) \rightarrow X$ were a bounded linear operator, then it can be verified that

$$
\left(x^{*}, T(f)\right)=\int f(s) x^{*} \mu_{1}(d s) \quad \text { for } f \in \mathrm{C}(S)
$$

Therefore, by (2) of Theorem 3.9, $T=T_{1}$. And, if X is weakly sequentially complete, then (3) of Theorem 3.9 yields the well-known result (see [5, p. 494, Theorem 6]) that T is weakly compact.
4. Kernel representation. Let $T: \mathrm{C}(S) \rightarrow X$ be an additive operator. We shall extend Theorem 2.6 by constructing a kernel representation for T
for the case where X^{*} is separable in the $\sigma\left(X, X^{*}\right)$ topology and the family of measures $\left\{\mu_{h}\right\}$ corresponding to T is X-valued.
4.1. Lemma. There exists a finite positive measure m and a family of measurable functions $\left\{K\left(x^{*}, h, s\right)\right\}$ such that

$$
x^{*} \mu_{h}(B)=\int_{B} K\left(x^{*}, h, s\right) m(d s), \quad B \in \mathscr{B}
$$

Proof. Let $\left\{x_{n}{ }^{*}\right\}$ be a countable dense net in X^{*} under the $\sigma\left(X, X^{*}\right)$ topology. Given $x^{*} \in X^{*}$, there exists a subsequence $x_{n i}{ }^{*}$ such that for each h,
(1) $\lim _{i} x_{n_{i}}{ }^{*} \mu_{h}(B)=x^{*} \mu_{h}(B), \quad B \in \mathscr{B}$.

Let $\left|x_{n}{ }^{*} \mu_{h}\right|$ denote the variation of $x_{n}{ }^{*} \mu_{h}$ and $\| x_{n}{ }^{*} \mu_{h}| |=\left|x_{n}{ }^{*} \mu_{h}\right|(S)$. Define a finite measure m_{h} by setting
(2) $m_{h}(B)=\sum_{n=1}^{\infty}\left|x_{n}{ }^{*} \mu_{h}\right|(B) / 2^{n}\left\|x_{n}{ }^{*} \mu_{h}\right\|$.

Choose a countable dense set of reals $\left\{h_{k}\right\}$ and define
(3) $m(B)=\sum_{k=1} m_{h k}(B) / 2^{k}$.

Thus m is a finite positive measure defined on \mathscr{B}. Suppose that $m(B)=0$; hence $m_{h_{k}}(B)=0$ for each k. Thus (2) implies that $\left|x_{n}{ }^{*} \mu_{h_{k} k}\right|(B)=0$ for each k and n. By (1), we have $x^{*} \mu_{h_{k}}(B)=0$ for each k. As in [4, Lemma 16], it can be shown that $x^{*} \mu_{h}(B)$ is a continuous function of h. Hence $\left\{h_{k}\right\}$ dense in R implies that $x^{*} \mu_{h}(B)=0$ for each h and x^{*}.

Thus each measure $x^{*} \mu_{h}$ is absolutely continuous with respect to m; hence the conclusion follows by the Radon-Nikodym theorem.

We shall now show that the kernels can be chosen as to be continuous in h. The proof in [2, Lemma 11] only verified convergence in measure.
4.2. Lemma. There exist kernels $K_{1}\left(x^{*}, h, s\right)$ which are continuous in h for m-a.e. s such that

$$
x^{*} \mu_{h}(B)=\int_{B} K_{1}\left(x^{*}, h, s\right) d m
$$

Proof. Fix $a<b$ and x^{*}. We shall verify that $K\left(x^{*}, h, s\right)$ is uniformly continuous for rational $h \in[a, b]$ for a.e. s. Suppose the contrary. Then the set where $K\left(x^{*}, h, s\right)$ is not uniformly continuous may be written as

$$
A=\bigcup_{n=1}^{\infty} \bigcap_{t=1}^{\infty} A_{n, t},
$$

where

$$
A_{n, t}=\bigcup_{\substack{0<n-k<1 / t, h, k \text { rationai }}}\left\{s:\left|K\left(x^{*}, h, s\right)-K\left(x^{*}, k, s\right)\right|>1 / n\right\}
$$

Now $m(A)>0$ implies that there exists n such that $A_{n}=\bigcap_{t=1}^{\infty} A_{n, t}$ has positive measure. Let $r=m\left(A_{n}\right)$ and $\epsilon=r / 2 n$. Choose $\delta>0$ such that $\|f-g\|<\delta$ implies $\left|x^{*} T(f)-x^{*} T(g)\right|<\epsilon$. Choose t such that $1 / t<\delta$. Now $A_{n, t} \supset A_{n}$; hence $m\left(A_{n, t}\right) \geqq r$.
$A_{n, t}$ can be expressed as a disjoint union of countably many sets B_{j}, where $s \in B_{j}$ implies that there exists rational h_{j} and k_{j} such that $0<h_{j}-k_{j}<\delta$ and
(1) $\left|K\left(x^{*}, h_{j}, s\right)-K\left(x^{*}, k_{j}, s\right)\right|>1 / n$.

We may remove the absolute value sign in (1) by interchanging h_{j} and k_{f}, still having $0<\left|h_{j}-k_{j}\right|<\delta$. Choose J so large that
(2) $m\left(\bigcup_{j=1}^{J} B_{j}\right)>r / 2$.

Thus (1) and (2) imply that
(3) $\sum_{j=1}^{J}\left\{x^{*} \mu_{h_{j}}\left(B_{j}\right)-x^{*} \mu_{k_{j}}\left(B_{j}\right)\right\}=\sum_{j=1}^{J} \int_{B_{j}}\left(K\left(x^{*}, h_{j}, s\right)-\right.$
$\left.K\left(x^{*}, k_{j}, s\right)\right) d m>1 / n \cdot r / 2=\epsilon$.
Now we can approximate B_{j} by a closed subset F_{j} with respect to $x^{*} \mu_{h_{j}}$ and $x^{*} \mu_{k_{j}}$. We can then choose a peak $f_{j} \in \mathrm{P}\left(F_{j}, 1\right)$ so that $x^{*} T\left(h_{j} f_{j}\right)$ and $x^{*} T\left(k_{j} f_{j}\right)$ approximate $x^{*} \mu_{h_{j}}\left(F_{j}\right)$ and $x^{*} \mu_{k_{j}}\left(F_{j}\right)$. Since $F_{j} \subset B_{j}$ and the B_{j} are disjoint, it is possible to choose f_{j} with disjoint supports. Let

$$
f=\sum_{j=1}^{J} h_{j} f_{j} \quad \text { and } \quad g=\sum_{j=1}^{J} k_{j} f_{j} .
$$

Then $\|f-g\|<1 / t<\delta$ and the left side of (3) is approximated by

$$
x^{*} T(f)-x^{*} T(g)
$$

This contradicts the choice of δ. Thus $K\left(x^{*}, h, s\right)$ is uniformly continuous for rational $h \in[a, b]$ for a.e. s.

Proceeding as in [2], we consider $a=n, b=n+1, n=0, \pm 1, \pm 2, \ldots$ to conclude that $K\left(x^{*}, h, s\right)$ is uniformly continuous for rational $h \in[n, n+1]$ for all n for a.e. s. We now define $K_{1}\left(x^{*}, h, s\right)=K\left(x^{*}, h, s\right)$ for rational h. If h is irrational, then we choose rational $h_{i} \rightarrow h$ and define $K_{1}\left(x^{*}, h, s\right)=$ $\lim _{i} K\left(x^{*}, h_{i}, s\right)$. An argument similar to the above implies that $K\left(x^{*}, h, s\right)=$ $K_{1}\left(x^{*}, h, s\right)$ for a.e. s, when x^{*} and h are fixed.
4.3. Theorem. Let $T: \mathrm{C}(S) \rightarrow X$ be an additive operator. Assume that X^{*} is separable in the $\sigma\left(X, X^{*}\right)$ topology and the family of measures $\left\{\mu_{h}\right\}$ corresponding to T are X-valued. Then for each x^{*},
(1) $x^{*} T(f)=\int K\left(x^{*}, f(s), s\right) H\left(x^{*}, s\right) m(d s)$, where
(2) m is a measure of finite variation defined on \mathscr{B};
(3) $K\left(x^{*}, h, s\right)$ is a measurable function of s for each h;
(4) $K\left(x^{*}, h, s\right)$ is a continuous function of h for m-a.a.s;
(5) For each $b>0$ there exists $B>0$ such that $|h| \leqq b$ implies that

$$
\left|K\left(x^{*}, h, s\right)\right| \leqq B \quad \text { for } \quad \text { m-a.a. } s
$$

(6) $H\left(x^{*}, s\right)$ is a measurable function of s and $d \mu=H\left(x^{*}, s\right) m(d s)$ defines a measure μ with finite variation;
(7) For each $f \in \mathrm{C}(S)$, the right side of (1) defines a continuous linear functional on X^{*} in X.

Conversely, if (2)-(7) hold, then there exists an additive operator T satisfying(1).

Proof. As in [2], it follows from Lemma 4.2 that $K_{1}=K H$, where K and H satisfy (3)-(6). As in [2; 4], it is verified that (1) holds.

Conversely, fix $f \in \mathrm{C}(S)$. By (7) there exists $T(f) \in X$ such that (1) holds for each x^{*}. It remains to verify that T is an additive operator from $\mathrm{C}(S)$ into X. Let us fix x^{*}. Then (2)-(6) imply that $x^{*} T(f)$ is an additive functional on $\mathrm{C}(S)$. This follows as in [2]. The Hahn-Banach theorem now implies that T is additive on functions with disjoint support. We now verify that T is β-uniform. Let $\epsilon>0, b>0$, and consider $\|f\| \leqq b$ and $\|g\| \leqq b$. By the Hahn-Banach theorem it suffices to show that there exists $\delta>0$ such that
(8) $\|f-g\|<\delta$ implies $\left|x^{*}(T(f)-T(g))\right|<\epsilon,\left\|x^{*}\right\|=1$.

Let $B_{n}=\left\{x^{*}:(8)\right.$ holds for $\left.\delta=1 / n\right\}$. Then B_{n} is convex and (7) implies that B_{n} is closed. Since $x^{*} T(f)$ defines an additive functional, we have

$$
\bigcup_{n=1}^{\infty} B_{n}=X^{*}
$$

The Baire category theorem now implies that some B_{n} has non-empty interior. The existence of δ follows by a standard argument.

References

1. S. K. Berberian, Measure and integration (Macmillan, New York, 1965).
2. R. V. Chacon and N. A. Friedman, Additive functionals, Arch. Rational Mech. Anal. 18 (1965), 230-240.
3. M. M. Day, Normed linear spaces, second printing, corrected, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 21 (Academic Press, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962).
4. L. Drewnowski and W. Orlicz, On orthogonally additive functionals, Bull. Acad. Polon. Sci. 16 (1968), 883-888.
5. N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Interscience, (New York, 1958). Pure and Applied Mathematics, Vol. 7.
6. N. A. Friedman and M. Katz, A representation theorem for additive functionals, Arch. Rational Mech. Anal. 21 (1966), 49-57.
7. Additive functionals on L_{p} spaces, Can. J. Math. 18 (1966), 1264-1271.
8. -_ On additive functionals, Proc. Amer. Math. Soc. 21 (1969), 557-561.
9. M. A. Krasnosel'skiir, Topological methods in the theory of nonlinear integral equations, translated by J. Burlak (Macmillan, New York, 1964).
10. A. D. Martin, and V. J. Mizel, A representation theorem for certain nonlinear functionals, Arch. Rational Mech. Anal. 15 (1964), 353-367.
11. V. J. Mizel, Representation of nonlinear transformations on L_{p} spaces, Bull. Amer. Math. Soc. 75 (1969), 164-168.
12. V. J. Mizel and K. Sundaresan, Representation of additive and biadditive functionals, Arch. Rational Mech. Anal. 30 (1968), 102-126.
13. K. Sundaresan, Additive functionals on Orlicz spaces, Studia Math. S2 (1969), 270-276.

State University of New York, Albany, New York

[^0]: Received September 23, 1970. The research of the first-named author was partially supported by NSF Grant GP-12043; the research of the second-named author was partially supported by NSF Grant GP-12027.

