ON ADDITIVE OPERATORS

N. A. FRIEDMAN AND A. E. TONG

1. Introduction. Representation theorems for additive functionals have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.

Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of "measures" $\{\mu_h\}$ which take their values in X^{**} . If X is weakly sequentially complete, then $\{\mu_h\}$ can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X^* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; § 4]):

$$(x^*, T(f)) = \int_S K(x^*, f(s), s) \ \mu(ds) \quad \text{for each } x^* \in X^*.$$

While these results are proved by a procedure different from the bounded linear operator case, corresponding results for this case are included in the generalization, such as the following (reformulated from [5, pp 492–494]).

THEOREM. Let X be a weakly sequentially complete Banach space and $T: C(S) \rightarrow X$ a bounded linear operator. Then there is a vector-valued measure μ (on the Borel sets) taking values in X so that:

$$T(f) = \int_{S} f(s) \mu(ds) \text{ for each } f \in \mathbf{C}(S).$$

2. Preliminaries. The dual of a Banach space X will be denoted by X^* . If $x \in X$ and $x^* \in X^*$, then the evaluation of x^* at x will be denoted by $(x, x^*), x^*(x)$, or $x(x^*)$ depending on the context. If two Banach spaces X_1 and X_2 are in duality, then the weak topology induced on X_1 by X_2 is denoted by $\sigma(X_1, X_2)$.

 \mathscr{B} denotes the class of Borel sets of a compact Hausdorff space S. M(S) denotes the Banach space of all regular real-valued measures defined on \mathscr{B}

Received September 23, 1970. The research of the first-named author was partially supported by NSF Grant GP-12043; the research of the second-named author was partially supported by NSF Grant GP-12027.

with the norm of a measure given by $||\mu|| = |\mu|(S)$, where $|\mu|$ is the total variation of μ . The Banach space of all bounded measurable functions on S under the sup norm, $||-||_{\infty}$, will be denoted by B(S).

2.1. Definition. Let $f \in C(S)$. The carrier of f is the open set where f does not vanish and is denoted by c(f). The support of f is the closure of c(f) and is denoted by s(f). Given $A \subset S$, we say that f is carried (supported) in A if $c(f) \subset A$ ($s(f) \subset A$).

2.2. Definition. Let $T: C(S) \to X$. T is β -uniform if T is uniformly continuous on bounded sets. That is, for every bounded set D and $\epsilon > 0$, there exists $\delta > 0$ such that $||T(f) - T(g)|| < \epsilon$ when $f, g \in D$ and $||f - g|| < \delta$. T is additive if for each $g \in C(S)$, the mapping $T_{\mathfrak{g}}: C(S) \to X$ defined by $T_{\mathfrak{g}}(f) =$ $T_{\mathfrak{g}}(f + g) - T(g)$ satisfies $T_{\mathfrak{g}}(f_1 + f_2) = T_{\mathfrak{g}}(f_1) + T_{\mathfrak{g}}(f_2)$ when $f_1f_2 = 0$. This condition is suggested by the measure-theoretic identity

$$\mu(F_1 \cup F_2 \cup G) = \mu(F_1 \cup G) + \mu(F_2 \cup G) - \mu(G),$$

where F_1 and F_2 are disjoint sets. If T is additive and T(0) = 0, then $f_1f_2 \equiv 0$ implies $T(f_1 + f_2) = T(f_1) + T(f_2)$. T is bounded if T maps bounded sets into bounded sets.

2.3. Remark. If T is β -uniform, then T is bounded. Let D be bounded, where $||f|| \leq b, f \in D$. Choose $\delta > 0$ so that $f_1, f_2 \in D$ and $||f_1 - f_2|| < \delta b$ imply $||T(f_1) - T(f_2)|| < 1$. Hence, for any $f \in D$, if n and r satisfy $\delta/2 < r = 1/n < \delta$, then

$$||T(f) - T(0)|| \le \left\| \sum_{1 \le k \le n} T(krf) - T((k-1)rf) \right\|$$
$$\le \sum_{1 \le k \le n} ||T(krf) - T((k-1)rf)|| \le n < 2/\delta.$$

Thus $f \in D$ implies $||T(f)|| < 2/\delta + ||T(0)||$.

2.4. Definition. Let $T: C(S) \to X$. T is an additive operator if T is β -uniform and additive. An additive functional is a real-valued additive operator.

Clearly, bounded linear operators are examples of additive operators. However, an additive operator is generally non-linear. For example, $T(f) = f^2$ is an additive operator mapping C(S) into C(S).

Given a closed set F and real h, let P(F, h) denote the class of continuous functions f satisfying $0 \leq f \leq h$ (or $h \leq f \leq 0$ if $h \leq 0$) and f(G) = h, where Gis an open set containing F. Briefly, P(F, h) is the class of peaks over F of height h. An ordering on P(F, h) is defined by $f_2 \leq f_1$ if $s(f_2) \subset s(f_1)$. Thus $f_2 \leq f_1$ if f_2 is a better fit for F. A limit taken with respect to this ordering is denoted by \lim_{f} .

The following lemma is obtained in [8]. A proof for the case where T is an additive operator and μ_h is a vector-valued measure is given in § 3.

2.5. LEMMA. Let T be an additive functional on C(S). Then there is a regular Borel measure μ_h for each real h, such that for each closed set F,

$$\mu_h(F) = \lim_f T(f), \qquad f \in P(F, h).$$

Utilizing the family of measures $\{\mu_{\hbar}\}$, the following representation theorem is obtained [8].

2.6. THEOREM. T is an additive functional on C(S) if and only if there is a measure μ and a kernel function $K(\cdot, \cdot)$ such that

$$T(f) = \int_{S} K(f(s), s) \, \mu(ds),$$

where

(i) μ is a real-valued measure of finite variation,

- (ii) K(h, s) is a measurable function of s for each real h,
- (iii) K(h, s) is a continuous function of h for all $s \in S \setminus N$, where $\mu(N) = 0$ $(\mu$ -a.e. s),
- (iv) for each H > 0 there exists M > 0 such that $|h| \leq H$ implies

 $|K(h, s)| \leq M$ for μ -a.e. s.

A proof of the following result is contained in [6, Lemma 18].

2.7. LEMMA. Let Φ be an additive functional on C(S) with corresponding height measures $\{\mu_h\}$. If s_n is a sequence of simple functions

$$s_n = \sum_{i=1}^{k(n)} c_{n,i} \chi_{B_{n,i}}$$

and $f \in C(S)$ such that $||s_n - f||_{\infty} \rightarrow 0$, then

$$\lim_{n} \sum_{i=1}^{k(n)} \mu_{c_{n,i}}(B_{n,i}) = \Phi(f).$$

The following result can be found in [3, p. 60]. The family of all finite subsets σ of the positive integers is denoted by \mathscr{F} .

2.8. THEOREM (Orlicz-Pettis). Let (x_k) be a sequence in a Banach space X. Then

(1) (x_k) is subseries Cauchy in the weak topology if and only if there exists M > 0 such that

$$\sup \left\{ \left\| \sum_{k \in \sigma} x_k \right\| : \sigma \in \mathscr{F} \right\} < M.$$

(2) If X is weakly sequentially complete, then (x_k) is subseries Cauchy in the weak topology if and only if it is subseries Cauchy in the norm topology. Thus, if (x_k) is subseries Cauchy in the weak topology, then $\lim_k ||x_k|| = 0$.

3. Height measures. In this section we shall represent an additive operator in terms of a family of measures $\{\mu_h\}$. The proofs of Lemmas 3.1–3.3 are based on methods in [2; 6; 8].

3.1. LEMMA. Let $T: C(S) \to X$ be continuous. Fix $g \in C(S)$ and an open set U. Let f be carried in U and $\epsilon > 0$. Then there exists f_{ϵ} supported in U such that $||f_{\epsilon}|| \leq ||f||$ and $||T(f+g) - T(f_{\epsilon}+g)|| < \epsilon$.

Proof. Choose $\delta > 0$ such that $||f - f_{\epsilon}|| < \delta$ implies

$$||T(f+g) - T(f_{\epsilon}+g)|| < \epsilon.$$

Let $V = \{s: |f(s)| < \delta\}$; hence V^{e} (the complement of V) is closed and disjoint from U^{e} . Choose disjoint open sets G and W such that $V^{e} \subset G$ and $U^{e} \subset W$. By Urysohn's lemma there exists $w \in C(S)$, $0 \le w \le 1$, $w(V^{e}) = 1$, and $w(G^{e}) = 0$. Let $f_{\epsilon} = wf$; hence $f_{\epsilon} \in C(S)$. Since G is disjoint from W, f_{ϵ} is supported in U. Also, by definition of V, $||f - f_{\epsilon}|| = ||(1 - w)f|| < \delta$.

3.2. LEMMA. Let X be a weakly sequentially complete Banach space. Let T: $C(S) \rightarrow X$ be an additive operator. Given $g \in C(S)$, h > 0, $\epsilon > 0$, and a closed set $F \subset S$, there exists an open set $U \supset F$ such that if f is carried in U - F and $||f|| \leq h$, then $||T(f + g) - T(g)|| \leq \epsilon$.

Proof. Suppose the contrary. Then given $U_1 \supset F$, there exists f_1^* carried in $U_1 - F$ such that

(1) $||T(f_1^* + g) - T(g)|| > \epsilon$ and $||f_1^*|| \le h$.

Thus Lemma 3.1 implies that f_1 can be chosen so as to be supported in $U_1 - F$ and so that

(2) $||T(f_1 + g) - T(g)|| > \epsilon$ and $||f_1|| \le h$.

Let $U_2 = [c(f_1)]^{\circ} \cap U_1$; hence $U_2 \supset F$. Choose f_2^* carried in $U_2 - F$ such that (1) holds for f_2^* . Thus Lemma 3.1 implies that there exists f_2 supported in $U_2 - F$ and that (2) holds for f_2 . Proceeding inductively, we obtain a sequence of disjointly supported functions (f_k) satisfying

(3) $||T(f_k + g) - T(g)|| > \epsilon, k = 1, 2, ..., \text{ and } ||f_k|| \leq h.$ However, T is additive; hence

(4) $T_{\mathfrak{g}}(\sum_{k \in \sigma} f_k) = \sum_{k \in \sigma} T_{\mathfrak{g}}(f_k), \sigma \in \mathscr{F}$. The class $\{\sum_{k \in \sigma} f_k: \sigma \in \mathscr{F}\}$ is bounded in C(S) because the functions (f_k) are disjointly supported and $||f_k|| \leq h$ for all k. By Remark 2.3, the class

$$\left\{T_{g}\left(\sum_{k\in\sigma}f_{k}\right) = \sum_{k\in\sigma} T_{g}(f_{k}): \sigma\in\mathscr{F}\right\}$$

is also bounded. By Theorem 2.8 (1), this class is subseries Cauchy in the weak topology. By Theorem 2.8 (2), we have $\lim_{k} ||T_{g}(f_{k})|| = 0$, which contradicts (3).

3.3. LEMMA. Let X be a weakly sequentially complete Banach space. Let $T: C(S) \rightarrow X$ be an additive operator and let F be closed. Then for each real h,

 $\lim_{f} T(f)$ exists and is denoted by $\lambda_{h}(F)$. Moreover, if $M_{h} > 0$ satisfies $||T(f)|| \leq M_{h}$ for all $||f|| \leq h$, then $||\lambda_{h}(F)|| \leq M_{h}$.

Proof. Let $\epsilon > 0$. By Lemma 3.2, we can choose an open set $U \supset F$ such that if g is carried in U - F, then

(1) $||T(g)|| < \epsilon/6.$

Let f_1 and f_2 be in P(F, h) and supported in U. It suffices to show that

$$||T(f_1) - T(f_2)|| < \epsilon.$$

We have $f_i = h$ on $U_i \supset F$, i = 1, 2. Let $G_1 = U_1 \cap U_2$. By Lemma 3.2 we can choose $G_2 \supset F$ such that if v is carried in $G_2 - F$, then

(2) $||T(f_i - v) - T(f_i)|| < \epsilon/3, i = 1, 2.$

Also assume that $G_2 \subset G_1$. Utilizing normality, choose open sets G_3 and G_4 such that

$$F \subset G_4 \subset \overline{G}_4 \subset G_3 \subset \overline{G}_3 \subset G_2,$$

where \vec{G} denotes the closure of G. By Urysohn's lemma we can choose u_1 such that $u_1(\vec{G}_4) = 1$ and $u_1(G_3^{\circ}) = 0$. Also choose u_2 such that $u_2(G_2^{\circ}) = 1$ and $u_2(\vec{G}_3) = 0$. Since $G_2 \subset G_1$, we have $z = u_1f_i = hu_1$, i = 1, 2. Let $g_i = u_2F_i$, i = 1, 2, and $v_i = f_i - (z + g_i)$. Since z and g_i have disjoint carriers, $T(z + g_i) = T(z) + T(g_i)$. Also g_i is carried in U - F and v_i is carried in $G_2 - F$. Thus (1) and (2) imply

$$||T(f_1) - T(f_2)|| \leq ||T(f_1) - T(f_1 - v_1)|| + ||T(z + g_1) - T(z + g_2)|| + ||T(f_2 - v_2) - T(f_2)|| < \epsilon/3 + ||T(g_1)|| + ||T(g_2)|| + \epsilon/3 < \epsilon.$$

Finally, let M_h be as in the statement of the lemma. Then,

 $||\lambda_h(F)|| \leq \sup\{||T(f)||: ||f|| \leq h\} \leq M_h.$

We shall now assume that T(0) = 0; hence $T(f_1 + f_2) = T(f_1) + T(f_2)$ when f_1 and f_2 have disjoint supports. This is no loss of generality since T(f) - T(0) satisfies this property in the general case.

3.4. LEMMA. Let X be an arbitrary Banach space. Let T be an additive operator mapping C(S) into X. For each $h \in R$ (R the set of reals) there is a vector-valued function $\mu_h: \mathscr{B} \to X^{**}$ such that:

(1) For each $x^* \in X^*$, the mapping $(x^*, \mu_h(\cdot)): \mathscr{B} \to R$ is countably additive,

(2) If $M_h > 0$ satisfies $||T(f)|| \leq M_h$ when $||f|| \leq h$, then $||\mu_h|| \leq M_h$;

(3) Let $\epsilon > 0$ and b > 0. Let $D = \{f: ||f|| \leq b\}$ and let δ be as in Definition 2.2. If B_i are disjoint Borel sets, h_i and $k_i \in (-b, b)$, $|h_i - k_i| < \delta$, i = 1, 2, ..., then

$$\left\|\sum_{i=1}^{\infty} \mu_{h_i}(B_i) - \sum_{i=1}^{\infty} \mu_{k_i}(B_i)\right\| < \epsilon.$$

(We will show that $\sum_{i=1}^{\infty} \mu_{h_i}(B_i)$ and $\sum_{i=1}^{\infty} \mu_{k_i}(B_i)$ are in X**.)

(4) Let $f \in C(S)$ satisfy $||f|| \leq b$ and let ϵ , δ be as in (3). Let $\{B_i\}$ be a finite sequence of disjoint Borel sets such that

$$\left\|f-\sum_{i=1}^n h_i\chi_{B_i}\right\|<\delta,$$

where $\{h_i\}$ is a sequence in (-b, b). Then

$$\left\|T(f) - \sum_{i=1}^{n} \mu_{h_i}(B_i)\right\| \leq \epsilon$$

Proof. (1) Since T is an additive operator, setting $x^*T(f) = (T(f), x^*)$ defines an additive functional for each $x^* \in X^*$. Hence, by Lemma 3.3, there exists a family of regular contents $x^*\lambda_h$, where

$$x^*\lambda_h(F) = \lim_f \{x^*T(f): f \in \mathcal{P}(F,h)\}.$$

As in [6], [1, p. 209, Theorem 3], can be utilized to extend $x^*\lambda_h$ uniquely to a regular Borel measure $x^*\mu_h$. Given $x^* \in X^*$, we define $\mu_h(B)$ by setting

(3.4.1)
$$(\mu_h(B), x^*) = (x^*\mu_h)(B).$$

If *h* and *B* are fixed, we verify that $\mu_h(B)$ defines a bounded linear functional on X^* . Boundedness is immediate: if $||T(f)|| \leq M_h$ for all *f* of norm less than or equal to *h*, then

$$(3.4.2) |(x^*\mu_h)(B)| = \sup\{|(x^*\mu_h)(F)|: F \text{ is a closed subset of } B\}$$

$$\leq \sup\{|(x^*T)(f): f \in P(F, h), \text{ where } F \text{ is a closed subset}$$
of $B\}$

$$\leq ||x^*|| M_h.$$

To verify linearity, we have, for closed sets F:

$$\mu_{h}(F)(c_{1}x_{1}^{*} + c_{2}x_{2}^{*}) = \lim_{f}(c_{1}x_{1}^{*} + c_{2}x_{2}^{*})T(f)$$

$$= \lim_{f}((c_{1}x_{1}^{*})T + (c_{2}x_{2}^{*})T)(f)$$

$$= \lim_{f}(c_{1}x_{1}^{*})T(f) + \lim_{f}(c_{2}x_{2}^{*})T(f)$$

$$= c_{1}(x_{1}^{*}\mu_{h})(F) + c_{2}(x_{2}^{*}\mu_{h})(F)$$

$$= c_{1}\mu_{h}(F)(x_{1}^{*}) + c_{2}\mu_{h}(F)(x_{2}^{*}).$$

Thus,

$$(c_1x_1^* + c_2x_2^*)\mu_h(F) = c_1\mu_h(F)(x_1^*) + c_2\mu_h(F)(x_2^*)$$

Since $x^* \mu_h$ is regular, linearity holds also for all Borel sets.

(2) It is immediate from (3.4.2) that the total variation of $x^*\mu_h$ is less than $||x^*||M_h$. Hence, $||\mu_h|| = \sup\{||\mu_h(B)||: B \in \mathscr{B}\} \leq M_h$.

(3) We first show that $\sum_{i} \mu_{h_i}(B_i) \in X^{**}$. Let M > 0 satisfy $||T(f)|| \leq M$ whenever $||f|| \leq 1$. It suffices to show that:

$$\sum_{i} |(\mu_{h_{i}}(B_{i}), x^{*})| \leq 2M ||x^{*}||.$$

Clearly, $\sum_{i} |(\mu_{h_i}(B_i), x^*)| = a + b$, where

$$a = \sup\left\{\left(\sum_{i\in\sigma} \mu_{h_i}(B_i), x^*\right): \sigma \in \mathscr{F}, \quad \text{where } (\mu_{h_i}(B_i), x^*) > 0 \text{ if } i \in \sigma\right\},\\ b = \sup\left\{\left(-\sum_{i\in\sigma} \mu_{h_i}(B_i), x^*\right): \sigma \in \mathscr{F}, \quad \text{where } (\mu_{h_i}(B_i), x^*) < 0 \text{ if } i \in \sigma\right\}.$$

Without loss of generality, assume that σ satisfies $(\mu_{h_i}(B_i), x^*) > 0$ for all $i \in \sigma$. We will show that

(3.4.3)
$$\sum_{i\in\sigma} (\mu_{hi}(B_i), x^*) \leq M||x^*||.$$

For the fixed x^* and σ , choose closed subsets F_i of B_i so that

$$\sum_{i\in\sigma} |(\mu_{\hbar i}(B_i \setminus F_i), x^*)| < \epsilon/2$$

and so that $(\mu_{h_i}(F_i), x^*) > 0$. Choose disjointly supported functions

$$f_i \in \mathbf{P}(F_i, h_i)$$

so that $\sum_{i \in \sigma} |(\mu_{h_i}(F_i) - T(f_i), x^*)| < \epsilon/2$ and so that $(T(f_i), x^*) \ge 0$ for all $i \in \sigma$. Let $f = \sum_{i \in \sigma} f_i$. Since T is additive, $T(f) = \sum_{i \in \sigma} T(f_i)$. We have:

$$\begin{split} \sum_{i\in\sigma} \left(\mu_{h_i}(B_i), x^*\right) &\leq \sum_{i\in\sigma} \left| \left(\mu_{h_i}(B_i \setminus F_i), x^*\right) \right| + \sum_{i\in\sigma} \left| \left(\mu_{h_i}(F_i), x^*\right) \right| \\ &\leq \epsilon/2 + \sum_{i\in\sigma} \left| \left(\mu_{h_i}(F_i) - T(f_i), x^*\right) \right| + \sum_{i\in\sigma} \left| \left(T(f_i), x^*\right) \right| \\ &\leq \epsilon + \left(\sum_{i\in\sigma} T(f_i), x^*\right) \\ &\leq \epsilon + T(f) ||x^*|| \\ &\leq \epsilon + M ||x^*||. \end{split}$$

Since ϵ is arbitrary, this proves (3.4.3).

We now show that $||\sum_{i} \mu_{h_i}(B_i) - \mu_{k_i}(B_i)|| < \epsilon$. It suffices to verify that if σ is a finite index set and $x^* \in X^*$, then

(3.4.4)
$$\left| \left(\sum_{i \in \sigma} \mu_{hi}(B_i) - \mu_{ki}(B_i), x^* \right) \right| < \epsilon ||x^*||.$$

Let $\epsilon' > 0$ be arbitrary. As before, we choose disjoint closed subsets $F_i \subset B_i$ so that

$$\sum_{i\in\sigma} |(\mu_{hi}(B_i\backslash F_i), x^*)| < \epsilon'/4 \quad \text{and} \quad \sum_{i\in\sigma} |(\mu_{ki}(B_i\backslash F_i), x^*)| < \epsilon'/4.$$

Choose disjointly supported functions $f_i \in P(F_i, h_i)$ and $g_i \in P(F_i, k_i)$ so that:

$$||f_{i} - g_{i}|| < \delta,$$

$$\sum_{i \in \sigma} |(\mu_{hi}(F_{i}), x^{*}) - (T(f_{i}), x^{*})| < \epsilon'/4,$$

$$\sum_{i \in \sigma} |(\mu_{ki}(F_{i}), x^{*}) - (T(g_{i}), x^{*})| < \epsilon'/4.$$

474

By the triangle inequality, we have:

$$(3.4.5) \quad \left| \left(\sum_{i \in \sigma} \mu_{hi}(B_i) - \mu_{ki}(B_i), x^* \right) \right| < \epsilon' + \left| \left(\sum_{i \in \sigma} T(f_i) - T(g_i), x^* \right) \right|$$

Write $f = \sum_{i \in \sigma} f_i$ and $g = \sum_{i \in \sigma} g_i$. Then, $||f - g|| < \delta$ so that
$$\left\| \sum_{i \in \sigma} T(f_i) - \sum_{i \in \sigma} T(g_i) \right\| = ||T(f) - T(g)|| < \epsilon.$$

Thus,

$$\left| \left(\sum_{i \in \sigma} T(f_i) - T(g_i), x^* \right) \right| \leq \epsilon ||x^*||.$$

Applying this to (3.4.5) and observing that ϵ' is arbitrary, we obtain (3.4.4).

(4) Let f_n be a sequence of step functions converging in the uniform norm to f. For any $x^* \in X^*$, Theorem 2.6 yields $\lim_n x^*T(f_n) = x^*T(f)$ so that T(f)is the limit of $T(f_n)$ in the weak topology. By (3) above, the sequence $T(f_n)$ is also Cauchy in the norm topology and so must converge to T(f) in the norm. And, if g is any step function such that $||f - g|| \leq \delta$, then $\lim_n ||f_n - g|| \leq \delta$ and so by (3) above, $\lim_{n} ||T(f_{n}) - T(g)|| \leq \epsilon$. Thus $||T(f) - T(g)|| \leq \epsilon$, as required.

Lemma 3.4 suggests the following definition of a non-linear integral.

3.5. Definition. Let Y be a Banach space and $Z \subset Y^*$. Let $\mu_h: \mathscr{B} \to Z$ such that $(y, \mu_h(\cdot))$ is countably additive for each $y \in Y$. For each $\epsilon > 0$ and b > 0there exists $\delta > 0$ such that if B_i are disjoint, $h_i, k_i \in (-b, b), |h_i - k_i| < \delta$, $1 \leq i \leq n$, then

(3.5.1)
$$\left\|\sum_{i=1}^{n} \mu_{h_{i}}(B_{i}) - \sum_{i=1}^{n} \mu_{k_{i}}(B_{i})\right\| < \epsilon.$$

Given a simple function $f = \sum_{i=1}^{n} h_i \chi_{B_i}$, define

$$\int f d\mu = \sum_{i=1}^{n} \mu_{h_i}(B_i).$$

Given $f \in B(S)$, let f_n be a sequence of simple functions such that

$$||f-f_n|| \to 0$$

By (3.5.1) we may define

$$\int f \, d\mu \,=\, \lim_n \, \int f_n \, d\mu.$$

We may regard $\int f d\mu$ as a non-linear integral with respect to the family of measures, $\mu = \{\mu_h : h \in R\}.$

3.6. THEOREM. Let $T: C(S) \to X$, where T is additive and X is an arbitrary Banach space. Then there exists $\mu = \{\mu_h\}$ as in Definition 3.5 with $Z = X^{**}$ such that

(3.6.1)
$$T(f) = \int f d\mu, \quad f \in C(S).$$

Proof. Let μ be the family as in Lemma 3.4. Then (1)-(3) of Lemma 3.4 imply that μ satisfies Definition 3.5 and (3.6.1) follows from (4).

3.7. LEMMA. Let $T: C(S) \to X$, where T is additive and X is a weakly sequentially complete Banach space. Then $\mu_h: \mathscr{B} \to X$ and μ_h is countably additive in the norm of X.

Proof. Since $(x^*, \mu_h(F)) = (x^*, \lambda_h(F))$ for every $x^* \in X^*$, we have $\mu_h(F) = \lambda_h(F)$. By Lemma 3.3, $\lambda_h(F) \in X$, and so $\mu_h(F) \in X$. It remains to verify that $\mu_h(B) \in X$ for every Borel set B. It is sufficient to show that

$$\mu_h(B) = \lim \{\mu_h(F): F \text{ is a closed subset of } B\}$$

in the norm topology (we order the net $\{\mu_h(F)\}\$ by setting $\mu_h(F_1) < \mu_h(F_2)$ if and only if $F_2 \subset F_1$).

Suppose the contrary. Then, there is an $\epsilon > 0$ such that

$$(3.7.1) ||\mu_h(B\backslash F)|| > \epsilon \text{ for any closed subset } F \subset B.$$

We construct, inductively, a sequence of disjoint closed sets $\{F_i\}$ so that $||\mu(F_i)|| > \epsilon/2$ for all *i*.

Since (3.7.1) holds when $F = \emptyset$, we have $||\mu_h(B)|| > \epsilon$. Choose a unit vector $x^* \in X^*$ so that $(x^*, \mu_h(B)) > \epsilon/2$. Since $(x^*, \mu_h(\cdot))$ is a regular Borel measure, we can find a closed subset $F_1 \subset B$ so that $(x^*, \mu_h(F_1)) > \epsilon/2$. Thus

$$||\mu_h(F_1)|| > \epsilon/2.$$

Assume now that disjoint closed subsets F_1, \ldots, F_n of B have been chosen so that $||\mu_h(F_i)|| > \epsilon/2$ for $i = 1, 2, \ldots, n$. Set

$$F = \bigcup_{1 \leq i \leq n} F_n.$$

Then *F* is closed and (3.7.1) applies, so that $(x^*, \mu_h(B \setminus F)) > \epsilon/2$ for some unit vector x^* . Since $(x^*, \mu_h(\cdot))$ is a regular Borel measure, choose a closed subset $F_{n+1} \subset B \setminus F$ such that $(x^*, \mu_h(F_{n+1})) > \epsilon/2$. Thus, $||\mu_h(F_{n+1})|| > \epsilon/2$. This completes the induction. However, the set

$$\left\{\sum_{i\in\sigma}\mu_h(F_i):\sigma \text{ is any finite set}\right\}$$

is bounded in the norm by $||\mu_{\hbar}||$. Since $||\mu_{\hbar}(F_i)|| > \epsilon/2$, Theorem 2.8 is contradicted.

Finally, to show that μ_h is countably additive in the norm, we observe that since μ_h is X-valued, part (1) of Lemma 3.4 proves that whenever $\{B_i\}$ is a sequence of disjoint Borel sets, then

$$\mu_{\hbar}\left(\bigcup_{1\leq i<\infty}B_{i}\right) = \sum_{1\leq i<\infty}\mu_{\hbar}(B_{i}),$$

where convergence is taken in the weak topology on X. By Theorem 2.8, the series $\sum_{1 \le i < \infty} \mu_h(B_i)$ converges in the norm.

3.8. THEOREM. Let $T: C(S) \to X$ be an additive operator and X weakly sequentially complete. Then there exists $\mu = {\mu_h}$ as in Definition 3.5 with Z = X such that

$$T(f) = \int f d\mu, \quad f \in \mathbf{C}(S).$$

The theorem follows by combining Lemma 3.7 with Theorem 3.6.

We note that the measures $\mu_h: B \to X^{**}$ determine linear operators $T_h: B(S) \to X^{**}$ as follows. If $f = \sum_{1 \leq i \leq n} c_i \chi_{B_i}$ is a step function, we set

$$T_h(f) = \sum_{1 \leq i \leq n} c_i \mu_h(B_i).$$

It is easy to check that $T_h(f)$ is well-defined. Moreover,

$$||T_{\hbar}(f)|| \leq \sum_{1 \leq i \leq n} |c_i| ||\mu_{\hbar}(B_i)|| \leq ||f||_{\infty} ||\mu_{\hbar}||.$$

Hence, we have defined T_h to be a bounded linear operator on the dense subspace of step functions. Since X^{**} is Banach, we may therefore uniquely extend T_h to the space B(S) so that $||T_h|| = ||\mu_h||$. It is also easy to check that $(x^*, T_h(f)) = \int f(s)x^*\mu_h(ds)$ for $f \in B(S)$.

To summarize, we have the following.

3.9. THEOREM. Let $T: C(S) \to X$ be an additive operator. Then there are bounded linear operators $T_h: C(S) \to X^{**}$ so that

(1) If M_h satisfies $||T(f)|| \leq M_h$ whenever $||f|| \leq h$, then $||T_h|| \leq M_h$,

(2) For each $f \in C(S)$, $x^* \in X^*$,

$$(x^*, T_h(f)) = \int f(s) x^* \mu_h(ds),$$

(3) If X is weakly sequentially complete, then T_h is a weakly compact operator.

Proof. (1) and (2) have been proven above.

(3) If X is weakly sequentially complete, Lemma 3.7 shows that $\mu_h: \mathscr{B} \to X$ is countably additive in the norm. Applying [5, p. 493, Theorem 3] yields the result.

We note that if $T: C(S) \to X$ were a bounded linear operator, then it can be verified that

$$(\mathbf{x^*}, T(f)) = \int f(s) \mathbf{x^*} \mu_1(ds) \text{ for } f \in \mathbf{C}(S).$$

Therefore, by (2) of Theorem 3.9, $T = T_1$. And, if X is weakly sequentially complete, then (3) of Theorem 3.9 yields the well-known result (see [5, p. 494, Theorem 6]) that T is weakly compact.

4. Kernel representation. Let $T: C(S) \to X$ be an additive operator. We shall extend Theorem 2.6 by constructing a kernel representation for T for the case where X^* is separable in the $\sigma(X, X^*)$ topology and the family of measures $\{\mu_h\}$ corresponding to T is X-valued.

4.1. LEMMA. There exists a finite positive measure m and a family of measurable functions $\{K(x^*, h, s)\}$ such that

$$x^*\mu_h(B) = \int_B K(x^*, h, s) m(ds), \quad B \in \mathscr{B}.$$

Proof. Let $\{x_n^*\}$ be a countable dense net in X^* under the $\sigma(X, X^*)$ topology. Given $x^* \in X^*$, there exists a subsequence $x_{n_i}^*$ such that for each h,

(1) $\lim_{i} x_{ni}^* \mu_h(B) = x^* \mu_h(B)$, $B \in \mathscr{B}$. Let $|x_n^* \mu_h|$ denote the variation of $x_n^* \mu_h$ and $||x_n^* \mu_h|| = |x_n^* \mu_h|(S)$. Define a finite measure m_h by setting

(2) $m_h(B) = \sum_{n=1}^{\infty} |x_n^* \mu_h|(B)/2^n||x_n^* \mu_h||.$

Choose a countable dense set of reals $\{h_k\}$ and define

(3) $m(B) = \sum_{k=1} m_{h_k}(B)/2^k$.

Thus *m* is a finite positive measure defined on \mathscr{B} . Suppose that m(B) = 0; hence $m_{hk}(B) = 0$ for each *k*. Thus (2) implies that $|x_n^* \mu_{hk}|(B) = 0$ for each *k* and *n*. By (1), we have $x^* \mu_{hk}(B) = 0$ for each *k*. As in [4, Lemma 16], it can be shown that $x^* \mu_h(B)$ is a continuous function of *h*. Hence $\{h_k\}$ dense in *R* implies that $x^* \mu_h(B) = 0$ for each *h* and x^* .

Thus each measure $x^*\mu_h$ is absolutely continuous with respect to m; hence the conclusion follows by the Radon-Nikodym theorem.

We shall now show that the kernels can be chosen as to be continuous in h. The proof in [2, Lemma 11] only verified convergence in measure.

4.2. LEMMA. There exist kernels $K_1(x^*, h, s)$ which are continuous in h for m-a.e. s such that

$$x^*\mu_h(B) = \int_B K_1(x^*, h, s) \, dm.$$

Proof. Fix a < b and x^* . We shall verify that $K(x^*, h, s)$ is uniformly continuous for rational $h \in [a, b]$ for a.e. s. Suppose the contrary. Then the set where $K(x^*, h, s)$ is not uniformly continuous may be written as

$$A = \bigcup_{n=1}^{\infty} \bigcap_{t=1}^{\infty} A_{n,t},$$

where

$$A_{n,t} = \bigcup_{\substack{0 < h - k < 1/t, \\ h,k \text{ rational}}} \{s: |K(x^*, h, s) - K(x^*, k, s)| > 1/n\}$$

Now m(A) > 0 implies that there exists *n* such that $A_n = \bigcap_{t=1}^{\infty} A_{n,t}$ has positive measure. Let $r = m(A_n)$ and $\epsilon = r/2n$. Choose $\delta > 0$ such that $||f - g|| < \delta$ implies $|x^*T(f) - x^*T(g)| < \epsilon$. Choose *t* such that $1/t < \delta$. Now $A_{n,t} \supset A_n$; hence $m(A_{n,t}) \ge r$.

 $A_{n,i}$ can be expressed as a disjoint union of countably many sets B_j , where $s \in B_j$ implies that there exists rational h_j and k_j such that $0 < h_j - k_j < \delta$ and

(1) $|K(x^*, h_j, s) - K(x^*, k_j, s)| > 1/n$. We may remove the absolute value sign in (1) by interchanging h_j and k_j , still having $0 < |h_j - k_j| < \delta$. Choose J so large that

(2) $m(\bigcup_{j=1}^{J} B_j) > r/2.$

Thus (1) and (2) imply that

(3) $\sum_{j=1}^{J} \{x^* \mu_{h_j}(B_j) - x^* \mu_{k_j}(B_j)\} = \sum_{j=1}^{J} \int_{B_j} (K(x^*, h_j, s) - K(x^*, k_j, s)) dm > 1/n \cdot r/2 = \epsilon.$

Now we can approximate B_j by a closed subset F_j with respect to $x^*\mu_{h_j}$ and $x^*\mu_{k_j}$. We can then choose a peak $f_j \in P(F_j, 1)$ so that $x^*T(h_jf_j)$ and $x^*T(k_jf_j)$ approximate $x^*\mu_{h_j}(F_j)$ and $x^*\mu_{k_j}(F_j)$. Since $F_j \subset B_j$ and the B_j are disjoint, it is possible to choose f_j with disjoint supports. Let

$$f = \sum_{j=1}^{J} h_j f_j$$
 and $g = \sum_{j=1}^{J} k_j f_j$

Then $||f - g|| < 1/t < \delta$ and the left side of (3) is approximated by

$$x^*T(f) - x^*T(g).$$

This contradicts the choice of δ . Thus $K(x^*, h, s)$ is uniformly continuous for rational $h \in [a, b]$ for a.e. s.

Proceeding as in [2], we consider $a = n, b = n + 1, n = 0, \pm 1, \pm 2, ...$ to conclude that $K(x^*, h, s)$ is uniformly continuous for rational $h \in [n, n + 1]$ for all *n* for a.e. *s*. We now define $K_1(x^*, h, s) = K(x^*, h, s)$ for rational *h*. If *h* is irrational, then we choose rational $h_i \rightarrow h$ and define $K_1(x^*, h, s) = \lim_i K(x^*, h_i, s)$. An argument similar to the above implies that $K(x^*, h, s) = K_1(x^*, h, s)$ for a.e. *s*, when x^* and *h* are fixed.

4.3. THEOREM. Let $T: C(S) \to X$ be an additive operator. Assume that X^* is separable in the $\sigma(X, X^*)$ topology and the family of measures $\{\mu_h\}$ corresponding to T are X-valued. Then for each x^* ,

(1) $x^*T(f) = \int K(x^*, f(s), s)H(x^*, s) m(ds)$, where

(2) m is a measure of finite variation defined on \mathscr{B} ;

(3) $K(x^*, h, s)$ is a measurable function of s for each h;

(4) $K(x^*, h, s)$ is a continuous function of h for m-a.a. s;

(5) For each b > 0 there exists B > 0 such that $|h| \leq b$ implies that

$$|K(x^*, h, s)| \leq B$$
 for m-a.a. s;

(6) $H(x^*, s)$ is a measurable function of s and $d\mu = H(x^*, s)m(ds)$ defines a measure μ with finite variation;

(7) For each $f \in C(S)$, the right side of (1) defines a continuous linear functional on X^* in X.

Conversely, if (2)-(7) hold, then there exists an additive operator T satisfying (1).

Proof. As in [2], it follows from Lemma 4.2 that $K_1 = KH$, where K and H satisfy (3)-(6). As in [2; 4], it is verified that (1) holds.

Conversely, fix $f \in C(S)$. By (7) there exists $T(f) \in X$ such that (1) holds for each x^* . It remains to verify that T is an additive operator from C(S) into X. Let us fix x^{*}. Then (2)–(6) imply that $x^{*}T(f)$ is an additive functional on C(S). This follows as in [2]. The Hahn-Banach theorem now implies that T is additive on functions with disjoint support. We now verify that T is β -uniform. Let $\epsilon > 0$, b > 0, and consider $||f|| \leq b$ and $||g|| \leq b$. By the Hahn-Banach theorem it suffices to show that there exists $\delta > 0$ such that

(8) $||f - g|| < \delta$ implies $|x^*(T(f) - T(g))| < \epsilon$, $||x^*|| = 1$.

Let $B_n = \{x^*: (8) \text{ holds for } \delta = 1/n\}$. Then B_n is convex and (7) implies that B_n is closed. Since $x^*T(f)$ defines an additive functional, we have

$$\bigcup_{n=1}^{\infty} B_n = X^*.$$

The Baire category theorem now implies that some B_n has non-empty interior. The existence of δ follows by a standard argument.

References

- 1. S. K. Berberian, Measure and integration (Macmillan, New York, 1965).
- 2. R. V. Chacon and N. A. Friedman, Additive functionals, Arch. Rational Mech. Anal. 18 (1965), 230-240.
- 3. M. M. Day, Normed linear spaces, second printing, corrected, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 21 (Academic Press, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962).
- 4. L. Drewnowski and W. Orlicz, On orthogonally additive functionals, Bull. Acad. Polon. Sci. 16 (1968), 883-888.
- 5. N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Interscience, (New York, 1958). Pure and Applied Mathematics, Vol. 7.
- 6. N. A. Friedman and M. Katz, A representation theorem for additive functionals, Arch. Rational Mech. Anal. 21 (1966), 49-57.
- Additive functionals on L_p spaces, Can. J. Math. 18 (1966), 1264–1271.
 On additive functionals, Proc. Amer. Math. Soc. 21 (1969), 557–561.
- 9. M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, translated by I. Burlak (Macmillan, New York, 1964).
- 10. A. D. Martin, and V. J. Mizel, A representation theorem for certain nonlinear functionals. Arch. Rational Mech. Anal. 15 (1964), 353-367.
- 11. V. J. Mizel, Representation of nonlinear transformations on L_p spaces, Bull. Amer. Math. Soc. 75 (1969), 164-168.
- 12. V. J. Mizel and K. Sundaresan, Representation of additive and biadditive functionals, Arch. Rational Mech. Anal. 30 (1968), 102-126.
- 13. K. Sundaresan, Additive functionals on Orlicz spaces, Studia Math. 32 (1969), 270-276.

State University of New York, Albany, New York