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Solute–surface interactions have garnered considerable interest in recent years as a novel
control mechanism for driving unique fluid dynamics and particle transport with potential
applications in fields such as biomedicine, the development of microfluidic devices
and enhanced oil recovery. In this study, we will discuss dispersion induced by the
diffusioosmotic motion near a charged wall in the presence of a solute concentration
gradient. Here, we introduce a plug of salt with a Gaussian distribution at the centre of
a channel with no background flow. As the solute diffuses, the concentration gradient
drives a diffusioosmotic slip flow at the walls, which results in a recirculating flow in
the channel; this, in turn, drives an advective flux of the solute concentration. This effect
leads to cross-stream diffusion of the solute, altering the effective diffusivity of the solute
as it diffuses along the channel. We derive theoretical predictions for the solute dynamics
using a multiple-time-scale analysis to quantify the dispersion driven by the solute–surface
interactions. Furthermore, we derive a cross-sectionally averaged concentration equation
with an effective diffusivity analogous to that from Taylor dispersion. In addition, we use
numerical simulations to validate our theoretical predictions.

Key words: dispersion, electrokinetic flows

1. Introduction

In fluid dynamics, dispersion is typically used to denote the transport of a species from
high to low concentrations due to non-uniform flow conditions. This is in contrast to
diffusion, which denotes the similar transport of a species from high to low concentrations
but due to Brownian motion. Since relatively few flow systems actually transport flow
in a plug-like way, dispersion is a nearly ubiquitous transport mechanism in systems
including microfluidic devices, filtration systems, chemical reactor systems, medical
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devices, lab-on-a-chip systems and many others. A classical and simple example of
dispersion is that which has come to be known as Taylor dispersion, which was first
studied by Taylor (1953) and later generalized by Aris (1956). Taylor dispersion describes
the enhanced diffusivity that a diffusing species experiences in the presence of a shear
flow, such as the diffusion of a solute concentration field in a pipe or channel flow.
In both of these cases, the advection–diffusion equation governing the solute transport
can be averaged over the cross-section to yield a one-dimensional (1-D) model for the
depth-averaged concentration, which experiences an enhanced effective diffusivity that is
a function of the Péclet number governing the transport. A simple physical understanding
of this Taylor dispersion can be achieved by supposing we have a step initial condition in
the concentration c of some solute species. For example, suppose we have a Poiseuille flow
in a pipe, and we suddenly add solute to the system such that c(x < 0) = c1 and c(x >=
0) = c2, where −∞ < x < ∞ is the axial coordinate of our infinite pipe. Then, in the limit
of no background flow, the interface between the two solute concentrations will smear out
by diffusion in a purely 1-D process. However, as the relative importance of fluid advection
to solute diffusion (i.e. the Péclet number) increases, shear flows in the system distort the
interface between the two solute concentrations as they diffuse, introducing cross-stream
diffusion and enhancing the rate of axial diffusion of the cross-sectionally averaged
concentration. For more rigorous background into the Taylor dispersion phenomenon,
see (i) Barton (1983), who extended the methods and results of Aris (1956) to consider
all times rather than just the asymptotic behaviour, (ii) Frankel & Brenner (1989), who
developed a generalized Taylor dispersion theory to greatly extend the ideas of Taylor and
Aris to whole classes of other problems such as porous medium flows or even sedimenting
particles and (iii) Brenner & Edwards (1993), who provide a comprehensive overview of
the theory of macrotransport processes.

Many other studies and applications have built upon the theoretical work on Taylor
dispersion by Taylor and Aris. Here, we just briefly mention a few examples. Stone &
Brenner (1999) extended the theories of Taylor dispersion to consider laminar flows with
velocity variations in the streamwise direction. Aminian et al. (2016) studied the role
of the channel boundary shape and aspect ratio on the dispersion as a means to control
the delivery of chemicals in microfluidics. Salmon & Doumenc (2020) studied the solute
dispersion induced by buoyancy-driven flow and developed analytical methods analogous
to Taylor dispersion. Chu et al. (2019) added the ideas of oscillatory pressure-driven flow
in a parallel-plate channel flow as well as patterned slip walls and investigated the role
of both of these effects on the dispersion process. Finally, Chu et al. (2021) coupled the
Taylor dispersion in a pipe flow to the transport of a second species consisting of particles
or bacteria via diffusiophoresis, which was also explored by Migacz & Ault (2022).
This list is by no means exhaustive, but one unifying theme that is common to many
of the studies related to dispersion is the role of imposed pressure gradients or moving
boundaries to drive the shear flows that cause the dispersion. Typically, the transport of the
solute is passive in the sense that it is not expected to couple to and alter the background
fluid dynamics. However, there are many scenarios where the transport of solute is fully
coupled to the fluid dynamics, which is the focus of this paper. In particular, we consider
the case where there is no background pressure-driven flow and no moving boundaries,
but where the solute interacts with the boundaries of the system to drive fluid flow via
diffusioosmosis, which is the spontaneous motion of fluid near a surface in the presence
of a solute concentration gradient.

The physical origin of diffusioosmosis was discovered by Derjaguin, Dukhin &
Korotkova (1961), where Derjaguin and his coworkers showed experimentally that a
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local solute concentration gradient near a boundary could induce a slip-flow boundary
condition over the surface. Since then, significant theoretical progress has been made
towards understanding and modelling this effect, and in the context of dispersion, a variety
of studies have demonstrated the potential for diffusioosmosis to alter the transport of
suspended species in confined geometries (Keh & Ma 2005; Kar et al. 2015; Shin et al.
2016, 2017b; Ault, Shin & Stone 2019; Rasmussen, Pedersen & Marie 2020; Chakra
et al. 2023). Diffusioosmosis is also closely related to the analogous phenomenon of
diffusiophoresis. Whereas diffusioosmosis refers to the motion of fluid next to a surface in
the presence of a chemical concentration gradient, diffusiophoresis refers to the reciprocal
motion of suspended particles in a concentration gradient, which results due to the slip
flow at the surface. Both diffusioosmosis and diffusiophoresis can make contributions due
to chemi-osmosis/-phoresis that arises from the osmotic pressure gradient over the surface
and electro-osmosis/-phoresis that arises in the case of electrolyte solutes with mismatched
anion and cation diffusivities (Anderson & Prieve 1984). Coupled diffusioosmosis and
diffusiophoresis has been the subject of a variety of recent studies, especially concerning
the coupled transport of solutes and colloidal particles in confined geometries where
convective transport is difficult to achieve, such as in dead-end pores, microgrooved
channels and other confined systems (Kar et al. 2015; Shin et al. 2017a; Shin, Warren
& Stone 2018; Ha et al. 2019; Singh et al. 2020; Williams et al. 2020; Alessio et al. 2021;
Shi & Abdel-Fattah 2021; Singh et al. 2022a,b; Chakra et al. 2023).

Such coupled motions have also been the focus of studies in a variety of other natural and
engineering settings, such as in underground porous medium flows (Park et al. 2021), water
filtration systems (Florea et al. 2014; Shin et al. 2017b; Lee et al. 2018; Bone, Steinrück &
Toney 2020), microfluidic devices (Palacci et al. 2010; Shin et al. 2017c), fabric cleaning
systems (Shin et al. 2018), particle delivery methods (Ault et al. 2017; Singh et al. 2022b),
energy storage applications (Gupta et al. 2020a; Gupta, Zuk & Stone 2020c) and many
others. Typically, in such studies the role of diffusioosmosis has been a secondary effect,
or neglected entirely, although a collection of studies on the motion of solutes and particles
in narrow pores has considered both effects (Ault et al. 2017; Shin et al. 2017a; Singh et al.
2020; Williams et al. 2020; Alessio et al. 2021, 2022). In such systems, diffusioosmosis
can play an essential role in the transport of the solutes, the fluid and any suspended
particles (Shim 2022). In the present study, we investigate the dispersion of solute in a
channel where the only fluid motion is driven by diffusioosmosis at the channel walls. That
is, the diffusion of the initial solute concentration results in a local concentration gradient
at the walls that in turn drives a fluid recirculation via diffusioosmosis. The resulting shear
flows then in turn alter the transport of the solute concentration by a mechanism analogous
to that of Taylor dispersion.

The coupling between particle diffusiophoresis and mixing has been explored in
several key works, finding a range of possible interactions. In some, the effects of
dispersion/mixing on particle diffusiophoresis are relatively limited. For example, Shah
et al. (2022) investigated the temperature dependence of the diffusiophoretic mobility
with a novel microfluidic system and found that the effects of diffusioosmosis on particle
dispersion were negligible due to the high Brownian motion of their sub-micron particles.
Other systems have exhibited significant coupling. For example, Mauger et al. (2016)
showed that diffusiophoresis, which originates at the micro-scale, can induce changes in
the macroscale mixing of the colloids through chaotic advection, and they introduced the
idea of an effective diffusivity to characterize the mixing. Raynal et al. (2018) and Raynal
& Volk (2019) studied the mixing of both colloids and salt released together in a chaotic
flow. They found that the mixing time strongly depends on the sign of the diffusiophoretic
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mobility, and they also proposed the use of an effective Péclet number for the mixing. Volk
et al. (2022) studied numerically the dispersion of colloids in a two-dimensional (2-D)
cellular flow configuration with a background salt gradient, and they used an effective
diffusivity and a blockage criterion to characterize the parameter regimes where particles
can and cannot travel between cells. Salmon, Soucasse & Doumenc (2021) also used
an effective 1-D dispersion coefficient modelling approach to investigate the coupled
convective and diffusive transport of a buoyant solute experiencing a gravity current.

Of the studies that have considered the coupling between solute/particle transport,
mixing, diffusiophoresis and/or diffusioosmosis, theoretical progress has been made in
several systems using a Taylor dispersion style approach. For example, Chu et al. (2021)
studied the diffusiophoretic dynamics of charged colloidal particles or bacteria in a
solute concentration field that was experiencing Taylor dispersion. This work considered a
one-way coupling, where the fluid flow drives Taylor dispersion of the solute field and
the particle concentration field, and the particles receive an additional contribution to
their motion from diffusiophoresis via the solute field. They developed theoretical and
numerical solutions in the long-time regime following an approach similar to that of
Taylor and Aris. More recently, Migacz & Ault (2022) built upon this work by developing
solutions that are valid for both the early- and long-time regimes. Later, Chu et al. (2022)
built on their previous work and showed that hydrodynamic flows can reduce the so-called
‘superdiffusion’ of solute-repelled colloids and enhance the spreading of solute-attracted
colloids in their system. Xu, Wang & Chu (2023) investigated the advective–diffusive
transport of an electrolyte–colloid suspension in a drying cell with the dynamics driven
by evaporation and gravity. They also developed an effective 1-D macrotransport model to
predict scalings for the transport of the particles.

However, none of these studies considered the diffusioosmosis at the channel walls.
One such study that did consider these effects was that of Alessio et al. (2022), who
considered the diffusioosmotic slip boundary condition and derived a multi-dimensional
effective dispersion equation for solute transport into a dead-end pore similar to that of
Taylor. In contrast to the previous studies, while the velocity profile in Alessio’s work
is still approximately parabolic (as in classical Taylor dispersion), the magnitude is a
function of position and time in the channel as the solute concentration evolves. We
will find a similar behaviour in our system. Finally, Hoshyargar, Ashrafizadeh & Sadeghi
(2017) investigated the dispersive transport of neutral analytes in a diffusioosmotic flow.
They studied the diffusioosmosis-driven flow in a microchannel under a steady, linear
concentration gradient. Here, they considered relatively thin, but not infinitesimal, Debye
layer thickness, and they resolved the dynamics in the Debye layer numerically. They used
a statistical numerical method to estimate the effective diffusivity of the neutral analytes,
and they showed that the hydrodynamic dispersion in diffusioosmotic flow can be even
less than that in electroosmotic flow in some conditions.

To the best of our knowledge, no theoretical solutions have previously been developed
to describe the diffusioosmosis-driven analogue of the Taylor dispersion of solutes. In
this study, we take motivations from the works of Alessio et al. (2022), Chu et al. (2021)
and Migacz & Ault (2022) and develop analytical solutions for the diffusioosmosis-driven
dispersion of a plug of solute in a 2-D channel. We consider a plug of solute that is initially
normally distributed in a Gaussian peak at the centre of the channel (see figure 1). As
the solute diffuses, the local concentration gradient at the wall drives an effective slip
boundary condition via diffusioosmosis that is dependent on the charge of the surface. This
slip at the walls drives a recirculating flow in the channel. The recirculation contributes to
the advection of the solute transport and introduces cross-stream diffusion, which alters
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(b)(a)

h

y r

zx uwall uwall

a

� �

Figure 1. Problem set-up. We consider an initially Gaussian distributed plug of salt with characteristic length
� in both (a) 2-D Cartesian coordinates and (b) axisymmetric cylindrical coordinates. Both channels are infinite
in the axial direction, and uwall represents the slip velocity at the wall induced by diffusioosmosis.

the effective diffusivity of the solute along the channel. In the modelling process, we
use a perturbation method to derive analytical solutions to the coupled fluid and solute
dynamics. The theoretical analysis is performed for transport in a long, narrow 2-D channel
using a 2-D Cartesian coordinate system and in a long, narrow cylindrical pipe using
a 2-D axisymmetric cylindrical coordinate system. In § 2, we introduce the governing
equations and boundary conditions for both systems. We then apply a perturbation method
along with a multiple time-scale analysis to theoretically solve for the fluid and solute
dynamics. In § 2.4, we derive the effective diffusivity of the cross-sectionally averaged
solute concentration analogously to that of Taylor dispersion. In § 3, we perform numerical
simulations to solve for the fluid and solute dynamics and show good agreement with the
theoretical predictions. In § 4, we analyse the dispersion behaviour for various conditions
and in different time regimes. Finally, while the majority of this analysis focuses on the
dispersion of solutes, in § 5, we briefly consider the extension of this modelling approach
to coupled particles experiencing diffusiophoresis.

2. Modelling diffusioosmotic dispersion in a long narrow channel

In this section, we model the coupled fluid and solute transport for a diffusing plug of
solute in a channel in the presence of diffusioosmosis-driven recirculation. We consider
two configurations, corresponding to planar and cylindrical channels, and describe the
flows in these configurations using Cartesian and cylindrical coordinates, respectively. The
channel configurations for both systems are shown in figure 1. Initially, we introduce a plug
of solute with a Gaussian distribution centred around the origin. In cases when the solute
molecules/ions do not interact with the channel walls, the dynamics of the solute transport
is governed by simple Brownian diffusion. Here, however, we consider the case where
the channel walls have a non-zero surface charge and solute–surface interactions cannot
be neglected. The local solute concentration gradient at the channel walls will induce a
diffusioosmotic slip velocity boundary condition, which will in turn drive a recirculation in
the channel as the solute diffuses. The magnitude of this slip velocity boundary condition
is given by uwall = −Γw∇‖ ln c, where uwall is the velocity at the wall in the direction
parallel to the wall, and the gradient is taken parallel to the surface. Here, Γw is the
diffusioosmotic mobility coefficient, which is a function of the surface charge of the
channel walls, and c is the solute ion concentration. The diffusioosmotic mobility depends
on the type of interaction between the solute and surfaces. In the case of electrolyte solutes,
the mobility can be positive or negative depending on the zeta potential of the surface and
the diffusivity contrast of the ions (Shin et al. 2016), whereas with neutral solutes the
mobility may be strictly positive or negative depending on the type of interaction. For
example, with a single neutral solute experiencing an attractive interaction to the surface,
the mobility will be strictly positive (Ajdari & Bocquet 2006).
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2.1. Governing equations
The fluid and solute dynamics in the system is governed by the coupled continuity
and incompressible Navier–Stokes equations and an advection–diffusion equation for
the solute transport. Here, the fluid pressure, density, viscosity and velocity are given
respectively by p, ρ, μ and u = (u, v) or (ur, uz). The solute concentration and diffusivity
are given by c(x, y, t) and Ds, respectively. Here, we consider Re = ρUh/μ � 1, where
U is some characteristic flow velocity in the axial direction; we neglect the influence of
gravity, and we treat the fluid dynamics as quasi-steady. The dimensional form of the
governing equations is given by

∇∗ · u∗ = 0, (2.1a)

−∇∗p∗ + μ∇∗2u∗ = 0, (2.1b)

∂c∗

∂t∗
+ ∇∗ · (u∗c∗) = Ds∇∗2c∗, (2.1c)

where asterisks denote dimensional quantities. The 2-D axisymmetric cylindrical and the
2-D Cartesian cases can be solved similarly and share similar boundary conditions. For
the sake of simplicity, we only show the derivation for the 2-D channel flow case in the
main text and refer the reader to Appendix B for the derivation for the pipe flow case. The
long narrow channel has a height of h in the Cartesian coordinate system. The channel
is infinitely long, and the initial Gaussian solute distribution has a characteristic width of
�, and we will seek solutions in the limit h � �. In addition to facilitating the theoretical
solution via the lubrication approximation, this assumption arises from considerations of
the parameter regimes needed for Taylor dispersion analysis, as well as considerations
about the relative magnitudes of the transport coefficients. In order to use a Taylor
dispersion style analysis, the solute must have sufficient time to diffuse across the channel.
That is to say, the time scale for solute diffusion across the channel must be small compared
with the time scale of solute transfer by convection along the channel, i.e. h2/Ds � �/uf ,
where uf is the flow velocity. For this case of diffusioosmotically driven flow, the fluid
velocity scales as the wall slip velocity uw ∼ Γw/�. Thus, for a Taylor dispersion analysis
to be valid, we must have h2/Ds � �2/Γw, which gives h/� � √

Ds/Γw. Furthermore, for
modest zeta potentials we typically have Ds/Γw ≈ O(1) for many common salts, such that
we must have h/� � 1.

To begin, we non-dimensionalize the system of equations as follows:

x = x∗

�
, y = y∗

h
, u = u∗

U
, v = v∗�

Uh
, p = p∗h2

μU�
, ε = h

�
,

U = Ds

�
, t = t∗

�2/Ds
,

(2.2)

where U = Ds/� is the characteristic speed of solute diffusion along the channel, and
�2/Ds is the characteristic time of diffusion along the channel. With these scalings, we
can rewrite the governing equations (2.1) in non-dimensional form as

0 = ∂u
∂x

+ ∂v

∂y
, (2.3a)

0 = −∂p
∂x

+ ε2 ∂
2u
∂x2 + ∂2u

∂y2 , (2.3b)
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0 = −∂p
∂y

+ ε4 ∂
2v

∂x2 + ε2 ∂
2v

∂y2 , (2.3c)

ε2 ∂c
∂t

+ ε2u
∂c
∂x

+ ε2v
∂c
∂y

= ε2 ∂
2c
∂x2 + ∂2c

∂y2 . (2.3d)

The solution to the governing equations (2.3) is subject to boundary conditions on the
fluid and solute. These boundary conditions can be summarized by

Quiescent far-field condition: p = 0, u = 0, c = 0 at x = ±∞, (2.4)

No fluid penetration at the walls: v = 0 at y = ±1
2
, (2.5)

No-flux conditions at the channel walls:
∂c
∂y

= 0 at y = ±1
2
, (2.6)

Diffusioosmotic wall slip boundary condition: u = −Γw

Ds

∂ ln c
∂x

at y = ±1
2
. (2.7)

The slip boundary condition given by (2.7) is induced by diffusioosmosis, which drives
the flow inside the channel. In this study, we assume a constant zeta potential and
diffusioosmotic mobility coefficient Γw. This assumption is needed in order to achieve
a final analytical solution, and is a reasonable approximation under many scenarios, as
discussed by several recent previous works (see, e.g. Ault et al. 2017; Gupta, Shim & Stone
2020b; Alessio et al. 2022; Lee, Lee & Ault 2022; Migacz & Ault 2022; Akdeniz, Wood
& Lammertink 2023). For typical solutes with modest zeta potentials, the diffusioosmotic
mobility, Γw, can range from approximately −1 to 1. We further focus our attention
on cases where the initial condition is already spread out relative to the channel width,
such that ε � 1, in which case the lubrication approximation can be used to simplify the
governing equations.

2.2. Leading-order fluid dynamics
In our original non-dimensionalization above, we chose a characteristic time scale that
is the characteristic time for solute diffusion along the channel �2/Ds. This corresponds
to the slow dynamics of the system. The other important time scale in the system is the
characteristic time for solute diffusion across the channel, h2/Ds. This corresponds to
the fast dynamics of the system, and the two time scales are separated by a factor of
ε2 = h2/�2 � 1. Here, in order to develop a solution that is uniformly valid across both
the early and late dynamics, we use an approach similar to that of Migacz & Ault (2022).

Following this approach, we introduce a multiple time-scale analysis (Bender &
Orszag 1999) in which we introduce a fast-time variable T = t/ε2. That is, T = O(1)
over dimensional times ∼ h2/Ds corresponding to t = O(ε2), whereas t = O(1) on
dimensional times ∼ �2/Ds. Thus, we can map any time-dependent quantity as

f (t) 
→ f (t, T) ⇒ ∂f
∂t


→ ∂f
∂t

+ ∂T
∂t
∂f
∂T

= ∂f
∂t

+ ε−2 ∂f
∂T
. (2.8)

With this mapping, the advection–diffusion equation (2.3d), becomes

ε2 ∂c
∂t

+ ∂c
∂T

+ ε2u
∂c
∂x

+ ε2v
∂c
∂y

= ε2 ∂
2c
∂x2 + ∂2c

∂y2 . (2.9)
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We seek an analytical solution of the governing equations as perturbation expansions in
the small parameter ε2 in the limit of Re � 1. We seek solutions of the form

c(x, y, t, T) = c0(x, y, t, T)+ ε2c1(x, y, t, T)+ ε4c2(x, y, t, T)+ · · · , (2.10a)

p(x, y, t, T) = p0(x, y, t, T)+ ε2p1(x, y, t, T)+ ε4p2(x, y, t, T)+ · · · , (2.10b)

u(x, y, t, T) = u0(x, y, t, T)+ ε2u1(x, y, t, T)+ ε4u2(x, y, t, T)+ · · · , (2.10c)

v(x, y, t, T) = v0(x, y, t, T)+ ε2v1(x, y, t, T)+ ε4v2(x, y, t, T)+ · · · . (2.10d)

The initial condition of the solute concentration is c(t = T = 0) = exp(−x2). First, we
need to obtain the leading-order velocity and pressure solutions. These can be obtained by
substituting equations (2.10) into (2.3), which gives

0 = ∂2u0

∂y2 + ∂p0

∂x
, (2.11a)

∂p0

∂y
= 0, (2.11b)

∂u0

∂x
+ ∂v0

∂y
= 0, (2.11c)

∂c0

∂T
= ∂2c0

∂y2 , (2.11d)

to leading order. Considering both the initial condition and the no-flux conditions at the
channel walls, i.e. (∂c0/∂y)(y = ±1/2) = 0, it must be true that c0(x, y, t, T) = c0(x, t),
with c0(t = 0) = exp(−x2). Furthermore, (2.11b) indicates that p0 is only a function of
x and t.

To obtain the leading-order velocities, we first take (2.11a) and solve for u0, which is
subject to the slip boundary condition (2.7). This gives

u0 = − Γw

Dsc0

∂c0

∂x
+ 1

8
(−1 + 4y2)

∂p0

∂x
. (2.12)

Here, u0 has a term that includes p0(x, t), which can be found by considering the
conservation of mass and integrating over the channel cross-section A, i.e.

1
A

∫∫
A

u0 dA = 0. (2.13)

Following this approach, p0(x, t), is found to be

p0(x, t) = −12Γw

Ds
ln c0. (2.14)

With this result, u0 can be simplified and written as

u0(x, y, t) = − Γw

2Ds

∂ ln c0

∂x
(−1 + 12y2). (2.15)

To solve for v0(x, y, t), we integrate the continuity equation (2.11c) and apply the boundary
condition given by (2.5). This gives the leading-order y-component of velocity to be

v0(x, y, t) = − Γw

2Ds

∂2 ln c0

∂x2 (1 − 4y2)y. (2.16)

As mentioned, the equivalent results for the flow in a cylindrical pipe can be found in
Appendix B.
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Diffusioosmotic dispersion in a long narrow channel

2.3. Higher-order solute transport
The higher-order solute concentration results from diffusioosmosis, which causes the
deviation from pure diffusion. Using the leading-order velocity profiles found above,
we seek a solution for the higher-order solute dynamics from (2.3d). Substituting our
asymptotic expansion into the advection–diffusion equation (2.9), we find, to leading
order, that

∂c1

∂T
+ ∂c0

∂t
+ u0

∂c0

∂x
= ∂2c0

∂x2 + ∂2c1

∂y2 . (2.17)

The term involving v has disappeared since ∂c0/∂y = 0. To find a solution to this problem,
we first consider long times such that T 
 1, but t is finite. In this limit, ∂c1/∂T is small.
Then, averaging equation (2.17) over the channel cross-section gives

∂c0

∂t
= ∂2c0

∂x2 . (2.18)

The solution to this problem is given by

c0(x, t) = 1√
1 + 4t

exp
(

− x2

1 + 4t

)
, (2.19)

which has been presented previously by Chu et al. (2020) and Gupta et al. (2020b). The
advection–diffusion equation (2.17) can then be simplified to

∂c1

∂T
− Γw

2Ds

∂ ln c0

∂x
(−1 + 12y2)

∂c0

∂x
= ∂2c1

∂y2 , (2.20)

subject to the initial condition c1(t = T = 0) = 0. To solve this, we note that at long times
the fast-time dynamics should have all decayed such that the time derivative term can be
ignored, and the equation can be integrated to yield

c1(T → ∞) ∼ c∞
1 (x, y, t) = − y2

4c0

Γw

Ds
(−1 + 2y2)

(
∂c0

∂x

)2

+ B(x, t), (2.21)

where B(x, t) is a yet unknown function that results from the integration. To solve for
B(x, t), we substitute (2.21) into (2.9), and take the cross-sectional average of the equation,
which gives

∂2B
∂x2 = −Γw

Ds

e−x2/(1+4t)

420(1 + 4t)9/2

[
49(1 + 4t)2 − 48

Γw

Ds
(1 + 4t)x2 + 32

Γw

Ds
x4
]

+ ∂B
∂t
.

(2.22)

Note that, until now, we have left the results in terms of a general c0, but here and in
the solution for B below, we have substituted the specific solution for c0 shown above
since it is needed to solve the (2.22) using the Fourier transform approach. This procedure
can be repeated for other arbitrary initial conditions as needed. Using a Fourier transform
approach, B(x, t) can be found to be

B = − Γw

Ds

e−x2/α

840α9/2

(
49(αx)2 − 16

Γw

Ds
t(3α2 − 12αx2 + 4x4)+ 12

Γw

Ds
α2(α− 2x2) ln(α)

)
,

(2.23)

where α(t) = 1 + 4t. Note that c∞
1 only depends on the slow time t and not the fast

time T . It does not satisfy the initial condition, so it is not yet the full solution for the
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higher-order solute dynamics. We seek a solution of the form c1(x, y, t, T) = c∞
1 (x, y, t)+

ĉ1(x, y, t, T). Substituting into (2.20), we find

∂ ĉ1

∂T
= ∂2ĉ1

∂y2 , with the initial condition ĉ1(T = 0) = −c∞
1 (t = 0), (2.24)

the solution to which is

ĉ1 = − Γw

4c0Ds

(
∂c0

∂x

)2
∣∣∣∣∣
t=0

∞∑
n=1

6(−1)n

n4π4 e−(2nπ)2T cos 2nπy. (2.25)

We can then construct a composite solution c1 = c∞
1 + ĉ1, which is valid for all t. The

solution of c1 can be verified to satisfy the conservation of mass by considering∫ ∞

−∞

∫ 1/2

−1/2
c1(x, y, t, T) dy dx = 0. (2.26)

Once again, analogous results for the coupled dynamics in a cylindrical pipe geometry
can be found in Appendix B. Even though the theoretical solutions are formally valid
for ε � 1, the solution still works well even for ε = O(1), for example, when the initial
condition is compact, which we will show in the later sections.

2.4. Effective diffusivities
As mentioned, the diffusioosmotic slip flow at the channel walls induces a recirculating
flow that drives an advective transport of the solute, altering the effective diffusivity of
its transport as it diffuses along the channel. Here, we seek to characterize the effective
diffusivity of this transport by deriving a 1-D transport equation for the cross-sectionally
averaged solute transport. This approach is analogous to that of Taylor (1953) and Aris
(1956) in their famous work on solute dispersion in the presence of pressure-driven shear
flow (see also, e.g. Aminian et al. 2016; Alessio et al. 2022).

To begin, we define c′(x, y, t) as the deviation of the solute concentration from its
cross-sectionally averaged value c(x, y, t), where overbars are used to denote the average
over a cross-section

c′(x, y, t) = c(x, y, t)− c(x, t). (2.27)

Substituting this definition into the solute advection–diffusion equation gives

∂ c̄
∂t

+ ∂c′

∂t
+ u

∂c′

∂x
+ u

∂ c̄
∂x

+ v
∂c′

∂y
= ∂2c̄
∂x2 + ∂2c′

∂x2 + 1
ε2
∂2c′

∂y2 . (2.28)

Next, averaging this equation over the cross-section gives

∂ c̄
∂t

+ u
∂c′

∂x
+ v

∂c′

∂y
= ∂2c̄
∂x2 . (2.29)

Here, substituting in our solutions for u and v from above, this can be rewritten into a 1-D
diffusion equation with a known forcing term given by

∂ c̄
∂t

+ ∂

∂x

[(
Γw

Ds

)2
ε2

210

(
∂

∂x
ln c0

)2
∂c0

∂x

]
= ∂2c̄
∂x2 . (2.30)

This equation can easily be solved numerically. For the purposes of making an analogy
to the classic Taylor dispersion problem, this can be rewritten into a 1-D pure diffusion
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problem by recognizing that ∂c0/∂x − ∂ c̄/∂x = O(ε2), which gives

∂ c̄
∂t

= ∂

∂x

(
Deff

∂ c̄
∂x

)
, (2.31)

where the effective diffusivity Deff is given by

Deff = 1 +
(
Γw

Ds

)2
ε2

210

(
∂

∂x
ln c0

)2

+ O(ε4). (2.32)

Equation (2.32) is similar to what Alessio et al. (2022) presented. From (2.32), we see
that, to leading order, the effective non-dimensional diffusivity is Deff = 1, and the effects
of diffusioosmosis on the dispersion are O(ε2). That is, as ε → 0, the initial condition of
the solute plug becomes more spread out, the concentration gradients get weaker and the
diffusioosmosis becomes negligible. The same behaviour occurs as t → ∞ as the solute
spreads out over long times. Furthermore, the contribution from diffusioosmosis is also
O((Γw/Ds)

2). Thus, despite the nonlinearity of the diffusioosmotic boundary condition,
flipping the sign of Γw (and thus the direction of the recirculation) results in the same
effective diffusivity. This result may at first be surprising upon noticing that c1 depends
on both Γw/Ds and (Γw/Ds)

2, such that the deviations in the solute concentration from
c0 are not mirror images of each other when the sign of the mobility is flipped (this will
be visualized below in figure 7). However, this dependence arises from the symmetry
and area-averaging nature of the analysis, and is essentially analogous to the idea from
Taylor dispersion that the effective diffusivity is independent of the pressure-driven flow
direction.

Following a similar approach and using the results from Appendix B, the analogous
averaged transport equation for the cylindrical pipe case is given by

∂ c̄
∂t

+ ∂

∂z

[(
Γw

Ds

)2
ε2

48

(
∂

∂z
ln c0

)2
∂c0

∂z

]
= ∂2c̄
∂z2 . (2.33)

This can also be written into a form analogous to Taylor dispersion as

∂ c̄
∂t

= ∂

∂z

(
Deff

∂ c̄
∂z

)
, (2.34)

where the effective diffusivity Deff to leading order is given by

Deff = 1 +
(
Γw

Ds

)2
ε2

48

(
∂

∂z
ln c0

)2

+ O(ε4). (2.35)

Note that the contribution of diffusioosmosis to the effective diffusivity in a 2-D channel
flow is a factor of 48/210 weaker than in a cylindrical pipe system. This is a consequence
of the fact that, for a given slip velocity at the walls, the centreline velocity in a cylindrical
pipe must be greater than in a 2-D channel flow, leading to greater velocity gradients,
greater distortion of the solute profile and a greater contribution to the effective diffusivity
enhancement. Using these effective diffusivities along with the 1-D diffusion equation,
the evolution of the cross-sectionally averaged solute concentration is quite efficient to
compute numerically.
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3. Numerical methods

To validate the theoretical results above, we performed numerical simulations for the
coupled transport in both geometries. In this section, we describe the numerical methods
used and show that the theoretical results above accurately match the numerical results.
The velocity profiles are solved for the 2-D channel flow case using a Fourier transform
approach and for the cylindrical pipe flow case using a multigrid relaxation approach.
Because we are dealing with the low Reynolds number regime and the fluid dynamics
can be treated as quasi-steady, the numerical approach can be outlined as follows. First,
we initialize the solute concentration to the previously described Gaussian distribution.
We then solve for the quasi-steady velocity profile using either a numerical multigrid
relaxation approach or the theoretical Fourier transform approach. Next, using the
determined velocity profiles, we update the solute concentration profile using a numerical
solution of the governing advection–diffusion equation. This procedure is then repeated
until the final time.

3.1. Velocity solver
For the case of incompressible Newtonian Stokes flow, the governing equations can be
simplified to a biharmonic equation for the streamfunction, ψ , which is given by

∇4ψ = 0. (3.1)

This is a convenient formulation, as it allows for the solution of the velocity profiles
without needing to solve for the pressure. In the Cartesian coordinate system, a Fourier
transform approach can be used to greatly accelerate the numerical solution of this
equation. In particular, the biharmonic equation can be Fourier transformed in the x
direction as

k4ψ̂(k, y)− 2k2 ∂
2ψ̂(k, y)
∂y2 + ∂4ψ̂(k, y)

∂y4 = 0. (3.2)

Here, we ignore the functional dependence of ψ on time because the velocity
can be treated as quasi-steady. The boundary conditions for (3.2) are ψ̂(k, 0) = 0,
∂2ψ̂/∂y2|y=0 = 0, ψ̂(k,±1/2) = 0 and ∂ψ̂/∂y|y=±1/2 = ûwall. Here, ûwall can be found
by using the fast Fourier transform, and ψ can be found by using the inverse fast Fourier
transform of ψ̂ . Finally, the velocity components can be obtained directly from ψ using

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (3.3a,b)

For the case in cylindrical coordinates, we have not found a similar approach to using a
Fourier transform to rapidly solve the biharmonic equation, so we instead do this directly
using a multigrid solution to a set of coupled Poisson equations, and we then use the direct
finite difference method to solve for the velocity. In particular, the biharmonic equation
can be written as follows:

D2ψ = r
∂

∂r

(
1
r
∂ψ

∂r

)
+ ∂2ψ

∂z2 = φ, (3.4a)

D2φ = r
∂

∂r

(
1
r
∂φ

∂r

)
+ ∂2φ

∂z2 = 0, (3.4b)

where D2 is a special operator in cylindrical coordinates that is useful for the
biharmonic equation, which is given by D2 = r(∂/∂r)((1/r)(∂/∂r))+ ∂2/∂z2 (Stimson &
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Figure 2. The comparison between numerical and theoretical velocity predictions in both coordinate systems.
The recirculating velocity is due to the diffusioosmotic motion at the channel walls, which is driven by the
uwall = −(Γw/Ds)(∂ ln c/∂x) or uwall = −(Γw/Ds)(∂ ln c/∂z) slip boundary condition for the Cartesian and
cylindrical coordinate systems, respectively. Results are computed for Γw/Ds = 1 and ε = 0.1 at t = 0.2.

Jeffery 1926; Brenner 1961). Here, φ = D2ψ is defined in (3.4a), and is a placeholder
variable that is needed so both equations can be solved simultaneously using the
multigrid method. The wall has boundary conditions of (1/r)(∂ψ/∂r) = uwall and φ =
−(1/r)(∂ψ/∂r)+ ∂2ψ/∂r2. All of the other boundaries have ψ = 0 and φ = 0 because
of symmetry conditions and no-flux conditions at the end of the channel.

This set of coupled Poisson equations is solved by using the Gauss–Seidel relaxation
method with second-order accuracy in space and time for both governing equations and
boundary conditions. As mentioned, the multigrid approach was used to rapidly accelerate
the convergence of this iterative approach.

3.2. Concentration solver
The solute concentration profiles can be numerically solved using the advection–diffusion
equation. We use a finite difference with the approximate factorization method to solve the
advection–diffusion equation for both geometries (Moin 2010). Numerical details of the
concentration solver are given in Appendix A. Note that in all cases we add a small offset
background concentration of 10−7 to prevent the so-called ‘ballistic motion’ described by
Gupta et al. (2020b), which represents the background ion concentration typically present
in solution due to dissolved CO2 or other factors. In this section, we have developed
and presented the numerical methods used for both systems. In the following section,
we explore the range of results and the physical evolution of such systems with numerical
validation, and we show that the cross-sectionally averaged approach closely approximates
the results of fully 2-D simulations and can greatly simplify the analysis as in the case of
Taylor dispersion.

4. Results

To begin, we first use the numerical simulations to validate the theoretical predictions. An
example comparison between the numerical and theoretical results is shown in figure 2.
The analytical predictions of velocities in the parallel-plate channel are calculated by
using (2.15) and (2.16), and those in the cylindrical channel are calculated from (B13)
and (B14). Results are compared for Γw/Ds = 1 and ε = 0.1 at t = 0.2. With a positive
diffusioosmotic mobility, the wall slip velocity is away from the peak solute concentration,
driving flow away from the centreplane (x = 0 or z = 0) at the walls and towards the
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Figure 3. Evolution of the higher-order solute concentration in both the Cartesian (a,b) and cylindrical (c,d)
geometries. This illustrates the deviation of the solute concentration profile from the purely 1-D dynamics
and represents the role of the diffusioosmotic dispersion. The panels with cnum − c0 represent the numerically
computed solute evolution minus the theoretical 1-D solution, and panels with ε2c1 show the theoretically
calculated higher-order solute profile. Results are presented over time for Γw/Ds = 1 and ε = 0.1.

centreplane along the channel centreline (y = 0 or r = 0). The theoretical and numerical
results agree well. One feature of the results to notice is that the velocity along the
centreline in the cylindrical case is enhanced relative to the Cartesian case. We will
see later how this alters the effective dispersion in such configurations. Figure 3 shows
the comparison between (a,c) numerical simulations and (b,d) theoretical predictions of
the higher-order solute concentration in the parallel-plate (a,b) and the cylindrical (c,d)
channels, respectively. Here, the results are plotted over one quarter of the domain due
to symmetry. The comparison is again calculated with Γw/Ds = 1 and ε = 0.1, and the
results demonstrate that the numerical results closely match the theoretical predictions.

Having validated the theoretical solutions using numerical simulations, we now provide
a detailed examination of the diffusioosmotic dispersion process. We first consider the
early-time dynamics of the system over which the initial deviation of the solute profile
from the purely 1-D dynamics forms. Figure 4 illustrates this early-time dynamics by
presenting visualizations of both ĉ1, c∞

1 , and c1 in the early-time regime for times up
to t = 1 × 10−3 with ε = 0.1 and Γw/Ds = 1. Recall that the fast time scale corresponds
to the characteristic time for diffusion to occur across the channel and is represented by
ĉ1 from (2.25). In contrast, the slow time scale corresponds to the diffusion along the
channel and is represented by c∞

1 from (2.21). Here, c1 is the total deviation of the solute
concentration profile from the purely 1-D dynamics and is formed by the sum of both c∞

1
and ĉ1. As can be seen, the purpose of ĉ1 is to cancel out the initial condition of c∞

1 such
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Figure 4. Components of the higher-order solute contribution during the early-time regime. Results are
calculated for Γw/Ds = 1 and ε = 0.1 up to a time of t = 1 × 10−3. Here, c∞

1 is calculated from (2.21) and
corresponds to the long-time solution from the multiple time-scale analysis. The ĉ1 component is calculated
from (2.25) and corresponds to the fast-time dynamics that is required to satisfy the initial condition. The
total higher-order solute profile is then given by c1 = c∞

1 + ĉ1. The contribution due to the fast-time dynamics
decays over the time scale for solute diffusion across the channel, and the long-time contribution decays over
the time scale for diffusion along the channel.

that the initial condition of c1 can be zero. Then, in this example, ĉ1 has almost entirely
decayed by t = 10−3 after which the solution is dominated by the slow-time dynamics.

The early-time dynamics is expected to decay over the time scale ε2. This can be verified
by plotting the peak value of ĉ1 over a range of mobilities and ε values, which is shown
in figure 5. Solid dots correspond to the results of 2-D simulations which are calculated as
ĉnum = (c − c0)/ε

2 − c∞
1,theory. Specifically, figure 5(a) shows the peak of ĉ1 with ε = 0.1

at various Γw/Ds values. As can be seen, higher Γw/Ds values correspond to larger peak
ĉ1 values, reflecting the enhanced dispersion in those cases. For all Γw/Ds, the peak ĉ1
values have all apparently decayed before t reaches ε2 = 10−2. Figure 5(b) extends these
results by considering cases with different ε values at a constant Γw/Ds = 1. Here, the
dashed lines are the locations where t = ε2. As expected, in every case the peak ĉ1 value
vanishes over the time scale t = O(ε2) as predicted by the theory.

In § 2, we developed a theoretical model for the higher-order correction to the solute
concentration profile due to diffusioosmosis. As discussed, the diffusioosmotic slip flow
drives a recirculating flow in the channel that alters the transport of the solute. The
vorticity and recirculating fluid flow in the channels are shown in figure 6 at t = 1 for
both coordinate systems. Here, (a) and (c) show the non-dimensional vorticity on the
cross-section for the parallel-plate and cylindrical channels, respectively, with Γw/Ds = 1.
Streamlines illustrating the recirculation on the cross-section are superposed on top of the
colour map. Panels (b) and (d) show the same non-dimensional vorticity data but with
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Figure 5. Evolution of the peak values of ĉ1 in the channel over time as functions of (a) Γw/Ds for fixed
ε = 0.1 and (b) ε for fixed Γw/Ds = 1. Solid dots indicate the 2-D numerical simulation results, ĉnum = (c −
c0)/ε

2 − c∞
1,theory. The theoretical predictions show an excellent agreement with the 2-D numerical simulation.

The dashed lines correspond to the time when t = ε2. Recall that ĉ1 represents the fast-time dynamics in the
system corresponding to solute diffusion across the channel and is expected to decay over the time scale t ∼ ε2

as shown. In (a), the increased magnitude with increasing Γw/Ds reflects the enhanced dispersion with stronger
diffusioosmosis.
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Figure 6. Non-dimensional vorticity and flow visualizations of the recirculation driven by diffusioosmosis for
Γw/Ds = 1 at t = 1. Panels (a) and (c) correspond to the 2-D channel flow case, and (b) and (d) correspond
to the axisymmetric pipe flow case. Streamlines highlighting the recirculation zones are shown in (a) and (b),
and velocity vector maps are shown in (c) and (d). Results correspond to the leading-order velocity profiles and
thus are independent of ε.

scaled velocity vector maps superposed instead. With Γw/Ds = 1, the diffusioosmosis at
the channel walls drives a slip flow away from the centreplane, driving a recirculating flow
that is towards the centreplane along the channel centreline. The flow directions and the
signs of the vorticity will be reversed in cases with negative mobilities.

Next, we visualize the higher-order solute dynamics on the cross-section to better
understand the role of the diffusioosmotic dispersion on the solute transport. Figure 7
shows the theoretical values of c1 for both parallel-plate (a) and cylindrical (b) channels
as functions of Γw/Ds at a fixed time of t = 1. In order to interpret the figure, recall
that positive Γw values correspond to slip flow away from the centreplane along the
walls and towards the centreplane along the centreline of the channel, while negative Γw
values correspond to flows that recirculate in the opposite direction. Regions of positive
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Figure 7. Higher-order solute concentration profiles c1 as functions of Γw/Ds at t = 1. Panel (a) corresponds
to the 2-D Cartesian channel flow system and is calculated from (2.21), while panel (b) corresponds to the
axisymmetric pipe flow case and is calculated from (B19). In both panels, the vertical coordinate (y or r) has
been stretched by a factor of 2 for visualization purposes; (a) c1 in Cartesian coordinates at t = 1 and (b) c1 in
cylindrical coordinates at t = 1.

c1 (red) indicate locations that have increased solute concentration relative to the 1-D pure
diffusion case (c0), and regions of negative c1 (blue) have relatively less concentration
relative to c0. We can interpret the formation of these regions as follows. For example,
consider the case with Γw/Ds = 1 in the parallel-plate channel. Along the channel walls,
the flow is away from the centreplane x = 0, pulling the relatively higher concentration
fluid away from x = 0 and enhancing the solute concentration somewhat away from the
centreplane. This is enhanced by the recirculating nature of the flow that also pulls flow
away from the centreline of the channel and towards the walls. Along the centreline, the
flow is towards the centreplane, pulling relatively lower concentration fluid towards the
centreplane and resulting in a depletion region. These effects are flipped in the case of
negative Γw/Ds. From figure 7, it is apparent that c1 is not symmetric in Γw/Ds, as
mentioned above. That is, the figure shows that c1(Γw/Ds = −1) /=−c1(Γw/Ds = 1).
Nonetheless, the contribution of diffusioosmosis to the effective diffusivity is O(Γw/Ds)

2,
which again arises due to the fact that flipping the sign of Γw simply flips the sign of
the velocity along with the fact that the results are area averaged. One last point to note
is that the cylindrical case has relatively greater solute depletion and enhancement along
the channel centreline due to the relatively greater centreline velocity in a cylindrical pipe
compared with a 2-D channel flow for the same wall slip velocity.

Next, we visualize the long-time behaviour of the solute concentration profile as
modelled by c∞

1 . Recall that, for t > O(ε2), the higher-order solute profile is c1 ≈ c∞
1 , as

ĉ1 has already decayed. The long-time results are shown in figure 8 for times up to t = 1000
with Γw/Ds = 1. Here, the horizontal axis is scaled by

√
1 + 4t, since this represents the

rate of spread of c0 along the channel. Recall that, with our non-dimensionalization, this
corresponds to 1000 times the characteristic time for diffusion along the channel, such
that the initial pulse of solute has well decayed by this time. As shown in the figure,
over long times, the higher-order solute profile also spreads significantly in the axial
direction, retaining qualitatively the same shape, and ultimately decaying. As the initial
pulse of solute decays, the concentration gradient at the walls likewise decays such that
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Figure 8. Long-time behaviour of the higher-order solute concentration c1 with Γw/Ds = 1 for times up to t =
1000. Panel (a) corresponds to the 2-D channel flow case, and panel (b) corresponds to the axisymmetric pipe
flow case. In both cases, the axial coordinate is scaled by

√
1 + 4t, demonstrating that the higher-order solute

effects spread at the same rate as c0. As time proceeds, the solute concentration gradient at the walls decreases
as the solute pulse spreads out, leading to decreased diffusioosmosis at the channel walls, less recirculation and
thus less dispersion. Ultimately, the higher-order profile smears out by diffusion, and the dynamics approaches
that of pure diffusion.

the diffusioosmosis and recirculating flow also decay with time, leading to the ultimate
decay of c1. Here, panel (a) corresponds to the 2-D channel flow case, and panel (b)
corresponds to the axisymmetric pipe flow case. The only significant notable difference
between the two cases is that the magnitude of the higher-order solute concentration is a
factor of 4–5 higher for the cylindrical case. As mentioned, this is due to the relatively
greater centreline velocity in the axisymmetric geometry, which yields greater velocity
gradients and enhanced dispersion.

Before proceeding to investigate the cross-sectionally averaged dynamics, we consider
the effect of varying ε and the breakdown of the theoretical solution at large ε. Figure 9
shows the theoretical and numerical predictions of the higher-order solute concentration
profiles in the parallel-plate channel with Γw/Ds = 1 at t = 1. As shown above, the
theoretical predictions show good agreement with the numerical results in the limit of
small ε. Here, we see that reasonable quantitative agreement between the theory and
simulations exists up to approximately ε = 2, above which the theoretical predictions
break down. In particular, as can be seen for ε = 10 in figure 9, the numerical results
show a much more uniform depletion along the channel centreline near x = 0 compared
with the theoretical results.

Finally, following the strategy of Taylor and Aris, we consider the dynamics of the
cross-sectionally averaged concentration profile. In § 2.4, we derived a cross-sectionally
averaged concentration equation that can be used to model the net effects of
diffusioosmotic dispersion. These equations are relatively simpler 1-D diffusion equations
with an effective diffusion coefficient that depends on the channel geometry and captures
the effects of the dispersion. Unlike in the relatively simpler case of pure Taylor
dispersion, here, the effective diffusivity is no longer a constant but rather a function
of both axial position in the channel and time, as the net effects of the dispersion
evolve with time and space. Thus, several methods are available for characterizing the
cross-sectionally averaged solute dynamics. First, this 1-D variable diffusivity model can
be easily numerically integrated in time to yield the dynamics. Second, the results of the
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Figure 9. Higher-order solute concentration profiles ε2c1 in the parallel-plate channel with Γw/Ds = 1 at
t = 1. Panel (a) corresponds to the theoretical predictions of ε2c1 and is calculated from (2.21) and panel
(b) corresponds to the numerical simulation of c − c0. As can be seen, the theoretical results appear to break
down above approximately ε = 2.

2-D numerical simulations can be averaged over the cross-section. Finally, the theoretical
results for c = c0 + ε2c1 can be averaged over the cross-section to yield the theoretical
leading-order dynamics. All of these approaches should be expected to match up to O(ε2).
A visualization of the cross-sectionally averaged solute dynamics is shown in figure 10
for the parallel-plate channel. Here, the results are the deviation of the cross-sectionally
averaged solute concentration from the 1-D results i.e. c̄ − c0. Figure 10(a) shows results
as a function of |Γw/Ds| with ε = 0.1 and t = 1. The solid lines indicate the theoretical
predictions. The square markers correspond to the results of numerically solving the
1-D forced diffusion equation given by (2.30). The star markers represent the results of
averaging the 2-D numerical simulation results over the cross-section. All three methods
show close agreement. Recall that in the effective diffusivity coefficients derived in § 2.4,
the contribution from diffusioosmosis is O(Γw/Ds)

2, such that the sign of the mobility
does not affect the cross-sectionally averaged evolution.

However, increasing the magnitude of Γw/Ds enhances the diffusioosmosis relative
to the solute diffusion, leading to greater dispersion and greater deviations from c0.
Figure 10(b) shows the cross-sectionally averaged solute concentration as a function of
ε with |Γw/Ds| = 1 and t = 1. The solid lines indicate the numerical simulations, and
the square markers correspond to the theoretical predictions. As the value of ε increases,
the magnitude of diffusioosmotic dispersion increases, enhancing the deviations from
the pure diffusion case. The theoretical predictions show a good agreement with the
simulations up to approximately ε = 1. As shown, as ε increases beyond 1, the results
of the 1-D model break down, and errors between the numerical simulations manifest
quickly. This breakdown is consistent with the description provided above about the
assumption h � �. That is, if h/� is not small, this implies that the solute does not have
sufficient time to diffuse across the cross-section, and a Taylor diffusion style 1-D analysis
is inappropriate. Figure 10(c,d) present the cross-sectionally averaged concentration profile
as a function of time. Figure 10(c) shows the theoretical (solid lines) and numerical (star
symbols) predictions of the cross-sectionally averaged solute concentration for constant
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Figure 10. Evolution of the cross-sectionally averaged solute dynamics for the 2-D channel flow case.
Results show the cross-sectionally averaged solute concentration c̄ minus the results from pure diffusion c0.
(a) Results as a function of |Γw/Ds| with ε = 0.1 and t = 1. Solid lines correspond to the cross-sectionally
averaged theoretical results developed in § 2.4. Square symbols correspond to the numerical solution of the
1-D forced diffusion equation given by (2.30). Star symbols indicate the cross-sectional average of the full 2-D
numerical simulations. All three methods of calculating c̄ − c0 show excellent agreement at small ε.(b) Results
as a function of ε with |Γw/Ds| = 1 and t = 1. Solid lines correspond to numerical results, and square
markers indicate theoretical predictions. The errors in the theoretical predictions manifest graphically for ε ≥ 2.
(c) Results over time with fixed Γw/Ds = 1 and ε = 0.1. Solid lines correspond to the theoretical predictions,
and star symbols indicate the cross-sectional average of the full 2-D numerical simulations. (d) Numerical
results of the 1-D model over time with fixed Γw/Ds = 1 and ε = 10.

Γw/Ds = 1 and ε = 0.1 and (d) shows the cross-sectionally averaged solute concentration
from numerical simulations for constant Γw/Ds = 1 and ε = 10. As time progresses, a
relative depletion zone forms near the channel centre that is balanced by accumulation
regions to the left and right of the solute peak. Note that the depletion at x = 0 does
not form quite as quickly as that near x = 0, resulting in a small bump that decays with
time. This is due to the fact that the axial concentration gradient is zero at x = 0 due to
symmetry, such that the wall slip velocity and any recirculating flow is negligible very
near the centreplane. Thus, some time is still required for the solute to diffuse and adjust.

In addition, we study the width of the spread of the cross-sectionally averaged
concentration profiles. Here, we define the width of the solute distribution as L99, which
corresponds to the axial position (x or z), where the concentration has decayed by 99 %

977 A5-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.919


Diffusioosmotic dispersion in a long narrow channel

0 0.5 1.0 1.5 2.0

4.28

4.30

4.32

4.34

4.36

4.38

4.40

4.42 ε = 0.5 ε = 1 ε = 2

c0 + ε2c1
∞ c0

cnum

10–1 100

t ε
101

9.5

9.6

9.7

9.8

9.9

10.0

10.1

10.2

10.3 c0 + ε2c1
∞

c0

L 9
9
/ �

1
+

4
t

L 9
9

(b)(a)

Figure 11. Rescaled width of the cross-sectionally averaged higher-order solute concentration L99/
√

1 + 4t
with Γw/Ds = 1. The distribution width is defined such that c̄(L99, t) = 0.01c̄(0, t). (a) Transient evolution of
the distribution width as a function of ε. Symbols correspond to numerical simulation results, and the solid and
light blue dashed lines correspond to the theoretical predictions of the spread of c0 + ε2c∞

1 and c0, respectively.
(b) Distribution width at t = 1 as a function of ε. The results show that the theory works well when ε < 1. For
increasing ε, the diffusioosmosis enhances the rate of spreading of the solute pulse, but this effect decays over
time as the solute gradient weakens.

of its current peak value. Numerical results for a range of ε values are shown in figure 11
and compared with the theoretical predictions. Panel (a) shows the rescaled width of the
concentration distributions as a function of time with constant Γw/Ds = 1 for different
values of ε. The coloured markers represent the numerical results of solute concentration,
and the solid and light blue dashed lines correspond to theoretical predictions of the
distribution width of c0 + ε2c∞

1 and c0, respectively. Here, the distribution widths are
rescaled by

√
1 + 4t, which represents the expected spreading rate of c0. As can be seen,

the results tend towards constant values, indicating that the spread of the higher-order
solute profile is set by the spread of c0. This is due to the fact that while c0 becomes
small at the edge of the distribution, the gradient of the logarithm of c0 may remain
large, allowing the diffusioosmotic dispersion to act over a relatively wider distribution.
As ε increases, the width of the higher-order solute distribution increases. Figure 11(b)
shows L99 as a function of ε with constant Γw/Ds = 1 at a fixed time of t = 1. Here, the
theoretical predictions of c0 + ε2c∞

1 and c0 are shown as a solid line and a dashed line,
respectively. The symbol markers correspond to the numerical results. At a given time, the
width of the distribution increases with a larger ε value. The theoretical predictions show
a good agreement with numerical simulation for ε < 1, and the error between simulations
and theory for this metric remains less than 10 % even at ε = 10.

5. Consequences for diffusiophoretic particle transport

Finally, in this section we briefly remark on the feasibility of extending this
Taylor-dispersion-style averaged analysis to the motion of suspended colloidal particles
that also experience diffusiophoresis. As mentioned above, this idea has been the focus of
several recent research works including Chu et al. (2021), Chu et al. (2022), Alessio et al.
(2022) and Xu et al. (2023). These works use two key assumptions in deriving an averaged
1-D particle transport model. First, particle diffusiophoresis across the channel is assumed
to be negligible at times longer than the solute diffusion time scale across the channel, as
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the solute concentration is nearly homogeneous over the cross-section, and second, the
deviation in particle concentration from the mean over the cross-section should be small.
Here, we use our analysis from above to provide new insights into these assumptions.

First, we model the transport of a particle concentration N using the modified
advection–diffusion equation given by

∂N
∂t∗

+ ∇∗ · (v∗
pN) = Dp∇∗2N, (5.1)

where stars denote dimensional quantities, and the velocity field v∗
p is the combination

of the fluid velocity and the particle diffusiophoresis velocity, i.e. v∗
p = v∗

f + v∗
DP. Here,

we consider just the 2-D Cartesian configuration without loss of generality. The particle
equation can be expanded as

∂N
∂t∗

+ u∗
f
∂N
∂x∗ + v∗

f
∂N
∂y∗ + ∂

∂x∗ (u
∗
DPN)+ ∂

∂y∗ (v
∗
DPN) = Dp

(
∂2N
∂x∗2 + ∂2N

∂y∗2

)
, (5.2)

where v∗
f = (u∗

f , v
∗
f ) and v∗

DP = (u∗
DP, v

∗
DP). Using the same non-dimensionalization as in

§ 2, this becomes

∂N
∂t

+ uf
∂N
∂x

+ vf
∂N
∂y

+ ∂

∂x
(uDPN)+ ∂

∂y
(vDPN) = Dp

Ds

∂2N
∂x2 + Dp

Ds

1
ε2
∂2N
∂y2 . (5.3)

The diffusiophoretic velocity components are

u∗
DP = Γp

∂ ln c
∂x∗ and v∗

DP = Γp
∂ ln c
∂y∗ , (5.4a,b)

where Γp is the diffusiophoretic mobility of the particles and is analogous to Γw for
diffusioosmosis. In non-dimensional form these are

uDP = Γp

Ds

∂ ln c
∂x

and vDP = 1
ε2
Γp

Ds

∂ ln c
∂y

. (5.5a,b)

Substituting in the solute concentration c, the leading-order diffusiophoretic velocity
components are

uDP = Γp

Ds

∂ ln c0

∂x
+ O(ε2) and vDP = Γp

Ds

1
c0

∂c1

∂y
+ O(ε2). (5.6a,b)

Here, we see a key result, which is that both diffusiophoresis components are the same
order of magnitude. That is, the diffusiophoresis across the channel cannot be neglected.
Although the solute variation across the channel is small, it occurs over a relatively smaller
length scale than the solute variation along the channel, such that diffusiophoresis across
the channel is the same order of magnitude as diffusiophoresis along the channel.

Additional insights into the role of each transport mechanism on the dispersion of
particles can be achieved through the use of an expansion for N given by

N(x, y, t) = N0(x, y, t)+ ε2N1(x, y, t)+ ε4N2(x, y, t)+ · · · , (5.7)

where we are only interested in the late-time dynamics in which the 1-D averaged transport
equations have typically been used. In the limit of small ε, the leading-order particle
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Figure 12. Evolution of the maximum values of the quantities labelled ‘Term 1’ and ‘Term 2’ in (5.10). Here,
Term 1 corresponds to the contribution of diffusiophoresis across the channel to the particle dispersion, and
Term 2 corresponds to the contribution of diffusioosmosis along the channel to the particle dispersion. As can
be seen, the contribution due to diffusiophoresis across the channel is not negligible relative to that due directly
to diffusioosmosis.

concentration is N0(x, t), and is governed by

∂N0

∂t
+ Γp

Ds

∂

∂x

(
∂ ln c0

∂x
N0

)
= Dp

Ds

∂2N0

∂x2 . (5.8)

Following a similar approach as for the solute concentration derivation above, the
next-leading order can be found to be

N1(x, y, t) = C(x, t)+ Γp

Dp

c1N0

c0
+ Γw

Dp

y2(1 − 2y2)

4c0

∂c0

∂x
∂N0

∂x
, (5.9)

where C(x, t) is analogous to the function B(x, t) in (2.23) and is needed to conserve
particles. Here, ε2N1 represents the deviation in particle concentration from the mean
(N0), and thus captures the role of dispersion on the particle transport. Taking the depth
average of N1 gives

N̄1(x, t) = C(x, t)+ Γp

Dp

(
B
c0

+ Γw

Ds

7
480

1
c2

0

∂c0

∂x

2
)

︸ ︷︷ ︸
Term 1

N0 + Γw

Dp

(
7

480
1
c0

∂c0

∂x

)
︸ ︷︷ ︸

Term 2

∂N0

∂x
. (5.10)

Here, the second term on the right represents the contribution of diffusiophoresis across
the channel to the particle dispersion, and the third term represents the contribution of
diffusioosmosis (along the flow) to the particle dispersion. As can be seen, both effects can
contribute to the effective dispersion of the particles depending on the relative magnitudes
of Γp, Γw, Ds and Dp. Thus, the diffusiophoresis of particles across the channel is generally
not negligible when considering the channel-averaged particle dynamics. However, for this
particular system we have analytical expressions for B and c0, and so we can evaluate the
rate at which both contributions decay by considering the quantities in parentheses. Here,
we will assume that N0 and ∂N0/∂x decay at a similar rate, and we will consider Γw/Ds =
1 for illustration purposes. The maximum values of the quantities in parentheses in (5.10)
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are shown in figure 12 as functions of time. As can be seen, ‘Term 1’, which represents the
contribution of diffusiophoresis across the channel to the particle dispersion, is clearly not
negligible relative to ‘Term 2’, which represents the direct effect of diffusioosmosis on the
particle dispersion. Of course, both terms ultimately result from the diffusioosmosis, it is
just that the role of diffusioosmosis in ‘Term 1’ is indirect through its effect on the solute
gradient, since the diffusioosmotic dispersion on the solute results in the cross-channel
solute gradients that drive diffusiophoresis across the channel.

The purpose of this analysis is to show two key points. First, although the solute
variation across the channel is small, the diffusiophoresis across the channel cannot
generally be neglected, because this gradient occurs over a small length scale, such that the
diffusiophoresis components along the channel and across the channel are the same order
of magnitude in the non-dimensional particle governing equation. Second, the contribution
of diffusiophoresis across the channel to the particle dispersion is not generally negligible.
If N0 decays faster than ∂N0/∂x, there may be a time regime where such an assumption
is appropriate, but typically we would advocate for the use of an analytical solution of
the higher-order solute dynamics such as was performed in this manuscript in order to
accurately quantify in which systems these effects are really negligible.

6. Conclusion

In this study, we investigated the diffusioosmotic dispersion in a long, narrow channel
with an initial Gaussian plug of solute at the centre of the channel. The concentration
gradients associated with the diffusion of this solute induce diffusioosmotic slip flow at
the channel walls. The slip flow, in turn, drives recirculation inside the channel so that the
transport of the solute is not purely diffusive, but also advective. The recirculating fluid
flow in the channel introduces a shear flow that distorts the solute concentration profile
and alters the effective transport of it analogously to the process of Taylor dispersion. We
derived theoretical solutions for the coupled fluid and solute dynamics in such systems
for both 2-D channel flows and axisymmetric pipe flows. The theoretical derivation
utilized a multiple-time-scale analysis that incorporates both the fast- and slow-time
dynamics. By averaging the governing equations over the cross-section and incorporating
the leading-order solutions, the system was reduced to a 1-D diffusion equation with a
variable effective diffusivity coefficient that depends on the geometry of the system and
incorporates the effects of diffusioosmotic dispersion in an averaged sense. This approach
is analogous to that of Taylor and Aris in the study of Taylor dispersion. Numerical
solutions of this effective 1-D model were compared with cross-sectionally averaged
results of the 2-D numerical simulations as well as the theoretical averaged results, all of
which show good agreement. As much as possible, we have kept this analysis independent
of the specific initial condition, except for the limitation that it be uniform over the cross
section and have a characteristic distribution that is reasonably spread out relative to the
channel width. The specific Gaussian initial condition chosen here was only needed for
the calculation of B(x, t) due to the Fourier transform approach needed to solve for it.
Thus, while the full derivation of the effective diffusivity coefficients is not completely
general, it can easily be adapted to other systems and initial conditions by modifying
this one section of the calculation. It may also be possible to seek an explicit solution
to B(x, t) that remains general of the initial solute concentration, but this is a problem that
we leave for future work. The results and analysis presented here have documented the role
of diffusioosmosis-driven recirculation on the transport of solute in a straight channel or
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pipe flow and have shown how the cross-sectionally averaged effective dynamics can be
reduced to a 1-D effective diffusion problem analogously to Taylor dispersion.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Jian Teng https://orcid.org/0000-0003-0262-5680;
Bhargav Rallabandi https://orcid.org/0000-0002-7733-8742;
Jesse T. Ault https://orcid.org/0000-0002-1232-362X.

Appendix A. Numerical details

Numerical simulations were performed using MATLAB to validate the theoretical
results. First, we developed a velocity solver to solve the biharmonic equation for the
streamfunction in order to obtain the fluid velocity. The mathematical description of this
problem is given in § 3. In the Cartesian coordinate solver, we used the fast Fourier
transform fft() and inverse fast Fourier transform ifft() functions in MATLAB
for this approach. Next, we used the numerically solved velocities to solve for the
concentration using the advection–diffusion equation. We implemented finite difference
with the approximate factorization method (Moin 2010). The semi-discretized governing
equations applicable to the approximate factorization method for the Cartesian and
cylindrical coordinate systems are given, respectively, by[

I − Ds
t
2

δxx

] [
I − Ds
t

2
δyy

]
cn+1 = −
t

2

(
3un ∂cn

∂x
+ un−1 ∂cn−1

∂x

)
− 
t

2

(
3vn ∂cn

∂y
+ vn−1 ∂cn−1

∂y

)
+
[

I + Ds
t
2

δxx

] [
I + Ds
t

2
δyy

]
cn, (A1)

and[
I − Ds
t

2

(
δrr + 1

r
δr

)][
I − Ds
t

2
δzz

]
cn+1 = −
t

2

(
3un

r
∂cn

∂r
− un−1

r
∂cn−1

∂r

)
− 
t

2

(
3un

z
∂cn

∂z
− un−1

z
∂cn−1

∂z

)
+
[

I + Ds
t
2

(
δrr + 1

r
δr

)][
I + Ds
t

2
δzz

]
cn,

(A2)

where 
t is the time step, n indicates the current time index, I represents the identity
matrix and the δxx, etc. are the spatial derivative matrices. Here, implicit second-order
accurate time stepping is used for the diffusive terms, and second-order Adams–Bashforth
is used for the advective terms. For the cylindrical case, second-order finite differencing
was used for the spatial derivatives, whereas fourth-order finite differencing was used for
the Cartesian case. To start the simulation, a series of small time steps using a first-order
Euler method were used to calculate the advective terms. For each time step, the solute
concentration profiles are updated in time by solving (A1) or (A2), and then the fluid
velocities are recalculated as described above for use in the next time step.

In the numerical simulations for the Cartesian case, we implemented a numerical
scheme that is second-order accurate in time and fourth-order accurate in space. For
the cylindrical case, we implemented a second-order accurate scheme in both time and
space. Figure 13 shows the numerical convergence study results with Γw/Ds = 1. The
solid lines are the best-fit power-law curves, and the matching colour equations are the
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Figure 13. The relative norm error in cylindrical and Cartesian convergence studies with Γw/Ds = 1. The
solid lines are the best-fit power-law curves, and the matching colour equations are the corresponding fitted
power-law functions. (a) Relative norm error between the theoretical and numerical prediction of c0 + ε2c1
as a function of ε at t = 0.01. (b) Convergence test results with respect to the time step dt with grid size as
2049 × 1025 for the cylindrical case and 1600 × 200 for the Cartesian case. Here, the final time is 0.1 and
ε = 0.1. (c) Spatial convergence test results for the Cartesian case with respect to dx. (d) Spatial convergence
tests for the cylindrical case with respect to dz. Here, we used ε = 0.1, dt = 1 × 10−5 and tfinal = 0.1 for spatial
convergence studies.

corresponding fitted power-law functions. Figure 13(a) shows the relative norm error
between the theoretical and numerical prediction of c0 + ε2c1 at t = 0.01 as we increase
the value of ε. The theoretical prediction of solute concentration c0 + ε2c1 has correction
terms due to diffusioosmosis, which are order ε4. The theoretical predictions converge to
c0 as ε goes to zero, which can also be observed in figure 13(a). Figure 13(b) shows the
order of convergence in the time step, dt, for both Cartesian and cylindrical cases with
ε = 0.1. Here, we fixed the cylindrical case grid size as 2049 × 1025 and the Cartesian
case grid size as 1600 × 200. In both cases, the simulation ran until t = 0.1. The relative
norm error is calculated in reference to the smallest dt case in the simulation. Both
Cartesian and cylindrical cases are second-order accurate in time as shown in the best-fit
curve in figure 13(b), where the absolute norm error is shown to decrease as O(dt2),
as expected. We chose dt = 10−4 for both cases as the relative error is less than 10−4.
Figures 13(c) and 13(d) are the spatial convergence studies with ε = 0.1 for the Cartesian
and cylindrical cases, respectively. Here, we used dt = 1 × 10−5 and tfinal = 0.1 for both
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Cartesian and cylindrical spatial convergence studies. The relative norm error is calculated
in reference to the finest grid in the simulation. As shown in figures 13(c) and 13(d), the
errors are O(dx4) in the Cartesian case and O(dz2) in the cylindrical case.

Appendix B. Derivation of cylindrical channel

In this section, we demonstrate the theoretical solution to the fluid and solute dynamics
in the axisymmetric cylindrical coordinate system. The general procedure is the same as
that for the 2-D Cartesian coordinate system. The governing equations for the system are
provided by (2.1). Here, we consider an axisymmetric configuration. We introduce the
following non-dimensionalizations:

z = z∗

�
, r = r∗

a
, uz = u∗

z

U
, ur = u∗

r �

Ua
, P = P∗a2

μU�
, ε = a

�
,

U = Ds

�
, t = t∗

�2/Ds
.

(B1)

With these scalings the non-dimensional form of the governing equations in cylindrical
coordinates are given by

1
r
∂(rur)

∂r
+ ∂uz

∂z
= 0, (B2a)

−∂p
∂r

+ ε2 1
r
∂

∂r

(
r
∂ur

∂r

)
− ε2 ur

r2 + ε4 ∂
2ur

∂z2 = 0, (B2b)

−∂p
∂z

+ 1
r
∂

∂r

(
r
∂uz

∂r

)
+ ε2 ∂

2uz

∂z2 = 0, (B2c)

ε2 ∂c
∂t

+ ε2ur
∂c
∂r

+ ε2uz
∂c
∂z

= 1
r
∂

∂r

(
r
∂c
∂r

)
+ ε2 ∂

2c
∂z2 . (B2d)

The solution to the governing equation (B2) is subject to boundary conditions on the fluid
and solute. These boundary conditions can be summarized by

Quiescent far-field conditions: p = 0 and uz = 0 and c = 0 at z = ±∞, (B3)

No fluid penetration at the walls: ur = 0 at r = 1, (B4)

No-flux conditions at the channel walls:
∂c
∂r

= 0 at r = 1, (B5)

Diffusioosmotic wall slip boundary condition: uz = −Γw

Ds

∂ ln c
∂z

at r = 1. (B6)

Similar to the Cartesian case, we introduce a multiple time-scale approach (Bender
& Orszag 1999) in which we introduce a fast-time variable T = t/ε2. That is, T =
O(1) over dimensional times ∼ a2/Ds corresponding to t = O(ε2), whereas t = O(1) on
dimensional times �2/Ds. Thus, we rewrite the advection–diffusion equation as

ε2 ∂c
∂t

+ ∂c
∂T

+ ε2ur
∂c
∂r

+ ε2uz
∂c
∂z

= 1
r
∂

∂r

(
r
∂c
∂r

)
+ ε2 ∂

2c
∂z2 . (B7)

Again, similar to the approach used in Cartesian coordinates, we seek the analytical
solution of the governing equations as perturbation expansions with the small parameter
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ε = a/� using an expansion that has the form

c(r, z, t, T) = c0(r, z, t, T)+ ε2c1(r, z, t, T)+ ε4c2(r, z, t, T)+ · · · , (B8a)

p(r, z, t, T) = p0(r, z, t, T)+ ε2p1(r, z, t, T)+ ε4p2(r, z, t, T)+ · · · , (B8b)

uz(r, z, t, T) = uz0(r, z, t, T)+ ε2uz1(r, z, t, T)+ ε4uz2(r, z, t, T)+ · · · , (B8c)

ur(r, z, t, T) = ur0(r, z, t, T)+ ε2ur1(r, z, t, T)+ ε4ur2(r, z, t, T)+ · · · . (B8d)

We first need to obtain the leading-order velocity and pressure solutions. These can be
obtained by substituting equations (B8) into the governing equations, which gives

∂uz0

∂z
+ ur0

r
+ ∂ur0

∂r
= 0, (B9a)

∂p0

∂r
= 0, (B9b)

−∂p0

∂z
+ 1

r
∂uz0

∂r
+ ∂2uz0

∂r2 = 0, (B9c)

∂c0

∂T
= 1

r
∂

∂r

(
r
∂c0

∂r

)
, (B9d)

to leading order. Considering the fact that the initial condition is given by c0(T = 0,
t = 0) = exp(−z2) and that there are no-flux conditions at the channel walls, i.e. (∂c0/∂r)
(r = ±1) = 0, it must be true that c0(r, z, t, T) = c0(z, t), with c0(t = 0) = exp(−x2).

To solve for the leading-order velocities, we first take (B9a) and solve for uz0, which is
subject to the slip boundary condition (B6). The leading-order uz0 becomes

uz0 = − Γw

Dsc0

∂c0

∂z
+ 1

4
(−1 + r2)

∂p0

∂z
. (B10)

Here, uz0 has a term that includes p0(z, t), which can be found by considering the
conservation of mass and integrating over the channel cross-section∫ 1

0
uz02πr dr = 0. (B11)

Following this approach, p0(z, t), is found to be

p0 = −8
Γw

Ds
ln(c0). (B12)

With (B12), uz0(r, z, t) can be simplified and written as

uz0 = − Γw

Dsc0
(−1 + 2r2)

∂c0

∂z
. (B13)

To solve for ur0(r, z, t), we integrate the continuity equation (B9a) and apply the boundary
condition given by (2.5). This gives the leading-order ur0 to be

ur0 = −Γwr(−1 + r2)

Ds2c2
0

((
∂c0

∂z

)2

− c0
∂2c0

∂z2

)
. (B14)
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Substituting the asymptotic expansion into the advection–diffusion equation, we find, to
leading order, that

∂c0

∂t
+ ∂c1

∂T
+ uz0

∂c0

∂z
− ∂2c0

∂z2 − 1
r
∂c1

∂r
− ∂2c1

∂r2 = 0, (B15)

subject to the initial condition c0(t = 0) = exp(−z2) and c1(t = T = 0) = 0. To solve this,
we note that at long times the fast-time dynamics should have all decayed such that the
time derivative term can be ignored, and the equation can be averaged across the channel
to obtain

∂c0

∂t
= ∂2c0

∂z2 . (B16)

As in the Cartesian case, the solution to this is

c0(z, t) = 1√
1 + 4t

exp
(

− z2

1 + 4t

)
. (B17)

Substituting this into (B15) gives

∂c0

∂t
− Γw

Dsc0
(−1 + 2r2)

(
∂c0

∂z

)2

+ ∂c1

∂T
− ∂2c0

∂z2 − 1
r
∂c1

∂r
− ∂2c1

∂r2 = 0. (B18)

At long times, the fast-time dynamics has decayed such that derivatives with respect to T
can be neglected, and the equation can be integrated to yield

c1(T → ∞) ∼ c∞
1 (r, z, t) = 1

8
r2

[
2
∂c0

∂t
− Γw

Dsc0
(−2 + r2)

(
∂c0

∂z

)2

− 2
∂2c0

∂z2

]
+ B(z, t),

(B19)

where B(z, t) is a yet unknown function obtained from integration. This can be
determined by applying conservation of mass and taking the cross-sectional average of
the advection–diffusion equation, which gives

∂B
∂t

= ∂2B
∂z2 + e−z2/(1+4t)Γw/Ds(2 + 32t2 + 4t(4 − Γw/Dsz2)− Γw/Ds(z2 − z4))

3(1 + 4t)9/2
.

(B20)

Using a Fourier transform approach, the solution can be found to be

B = −2Γw/Ds[16zα2 − 4Γw/Dst(3α2 − 12αz2 + 4z4)+ 3Γw/Dsα
2(α − 2z2) lnα]

ez2/α(α7/2(96 + 384t))
.

(B21)
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This equation does not satisfy the initial condition, so it is not yet the full solution for the
higher-order solute dynamics. Now, we look for a solution c1(r, z, t, T) = c∞

1 (r, z, t)+
ĉ1(r, z, t, T). Substituting into (B7), we find

∂ ĉ1

∂T
= 1

r
∂

∂r

(
r
∂ ĉ1

∂r

)
, (B22)

with the initial condition given by

ĉ1(T = 0) = −c∞
1 (t = 0) = 1

6
e−z2 Γw

Ds
(2 − 6r2 + 3r4)z2. (B23)

The solution to this is in the form of a Bessel series ĉ1(r, T) = ∑∞
n=0 an e−λ2

nTJ0(λnr),
with initial condition of f (r) = 1

6 e−z2
(Γw/Ds)(2 − 6r2 + 3r4)z2 and boundary condition

of ∂ ĉ1/∂r = 0 at r = 1. Using the boundary condition, the λn can be found to be the roots
of J1, which we denote as j1,n. The coefficients an can be determined as follows:

an = 2
J0( j1,n)2

∫ 1

0
rf (r)J0( j1,nr) dr

=
e−z2 Γw

Ds
z2(96J2( j1,n)− J1( j1,n) j1,n(24 + j21,n))

3J0( j1,n)2j41,n
. (B24)

Thus, the solution of ĉ1 is as follows:

ĉ1(r, z, t, T) = 2
∫ 1

0
rf (r) dr +

∞∑
n=1

an e−j21,nTJ0( j1,nr). (B25)

We can then construct a composite solution c1 = c∞
1 + ĉ1 that is valid for all t using the

fact that T = t/ε2.
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