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Abstract

Models of insulin secretory vesicles from pancreatic beta cells have been created using the
cellPACK suite of tools to research, curate, construct and visualise the current state of know-
ledge. The model integrates experimental information from proteomics, structural biology,
cryoelectron microscopy and X-ray tomography, and is used to generate models of mature and
immature vesicles. A new method was developed to generate a confidence score that reconciles
inconsistencies between three available proteomes using expert annotations of cellular localisa-
tion. The models are used to simulate soft X-ray tomograms, allowing quantification of features
that are observed in experimental tomograms, and in turn, allowing interpretation of X-ray
tomograms at the molecular level.

Introduction

Structural modelling of entire cells is a new frontier actively being addressed by the structural
biology community. Given the magnitude and complexity of this challenge, it is essential to take
an integrative approach, bringing together data from multiple experimental modalities that
address multiple levels of temporal and spatial scales. Already, this approach has generated
detailed atomic models of complex enveloped viruses, entire bacterial cells and cellular organ-
elles, as reviewed in Im et al. (2016), Feig and Sugita (2019), and Goodsell et al. (2020).

A recent perspective (Singla et al., 2018) identified several characteristics that are needed for
an effective integrative mesoscale structural model. The model needs to be complete over
multiple levels of scale, from atomic details to overall ultrastructure. The model needs to couple
a variety of representations in order to integrate different modalities of structural, biochemical,
physiological and bioinformatics knowledge. Furthermore, as a key part of the process of
integration, the uncertainty of each parameter defining the model needs to be quantified and
made accessible in analysis and visualisation of the model. Finally, the model must capture
aspects of the heterogeneity of the system, allowing it to be both descriptive and predictive.

As part of the Pancreatic Beta-Cell Consortium (PBCC; pbcconsortium.org), we are devel-
oping methods to generate mesoscale models of functional regions of the pancreatic beta cell
based on diverse experimental data from the PBCC and the larger research community. As our
first proof of concept, we have chosen to model one of the defining characteristics of this cell, the
insulin secretory granule (ISG). This is a particularly amenable initial target, given the abundance
of available information, its manageable size and complexity and its functional connection to
disease states of the cell. With this report, we present an entire pipeline from data curation to
model generation, and present potential applications that are facilitated by this quantitative
approach to mesoscale cellular biology. We also show preliminary work to simulate soft X-ray
tomograms of vesicles. Soft X-ray tomography is an attractive experimental technique for
imaging whole cells, since the experiment is performed in ‘near-native’ conditions with no
fixatives or freezing (McDermott et al., 2009) and is being actively applied to pancreatic beta cells
in the PBCC (White et al., 2020; Loconte et al., 2022). We are exploring the use of integrative
modelling to provide molecule-level interpretation of features in these tomograms, which
typically have a resolution of 50–60 nm.

State of knowledge for the insulin secretory granule

Given its central role in the regulated delivery of insulin, there is abundant information available
for ISG structure and function.We relied on several excellent reviews to provide general synthesis
of current knowledge (Suckale and Solimena, 2010; Germanos et al., 2021). In the generally
accepted view, immature ISGs have a single membrane and are filled with proinsulin and other
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proteins, which then mature under the action of several specific prote-
ases. Insulin then crystallises into a single crystal that fills most of the
interior. A complex interactionwith the cytoskeletonmediates storage
anddelivery of ISGs to the cell surface, and fusion results in dissolution
of the insulin crystal and release into the blood. In the currentwork,we
are limiting our modelling effort to just the ISG membrane and
interior, in immature and mature forms, and a generic cytoplasm.

However, there is still much uncertainty about basic informa-
tion, such as the ISG proteome components, concentrations and
interactions, as described in more detail below. Several proteomes
are available that show discrepancies that must be reconciled. Even
basic numbers, such as the number of insulin molecules per vesicle,
show wide ranges, for example, from 200 thousand (Suckale and
Solimena, 2010) to 1 million (Eliasson et al., 2008). Much of the
work presented in this paper is seeking to resolve this uncertainty to
generate molecular models of the entire organelle that are consist-
ent with the current state of knowledge (Fig. 1a).

In this work, we gathered, curated and integrated current infor-
mation and used it to build idealisedmodels of an ISG in cytoplasm.
A manual literature search identified the 29 most widely reported
ISG protein components. These 29 were then used to train a
method for scoring proteins from three proteomes, identifying
14 additional proteins that have evidence for association with the
ISG but were missed in the manual search. In addition, 13 proteins
not included in the proteomes, but with experimental data sup-
porting localisation in the ISG, were identified by a manual litera-
ture search. Structures for these 56 proteins were identified or
modelled (Fig. 1b), and were then used to build 3D models of
idealised immature and mature ISGs. Finally, X-ray tomograms
were simulated from the models and used to classify features in
experimental tomograms of pancreatic beta cells.

Methods

Confidence scores for proteomics data

Results from three proteomes were reconciled using a simple scoring
function that combines the proteomics statistics and location

annotations into a confidence value. In brief, high scores are assigned
to proteins found inmultiple proteomes, that have annotations related
to secretory vesicles, and that interact with proteins that also have
annotations related to secretory vesicles. The set of 29manually curated
proteins (Supplementary Table 1) was assigned as true positives, and
the remaining proteins from the three proteomes were assigned as trial
negatives. Then, for each location annotation (loc = ‘nucleus’, ‘cyto-
plasm’ etc.), a location score [LocScore(loc)] was evaluated:

A similar score, IntLocScore(intloc), was calculated for the
location of proteins that have been annotated as interacting with
the protein of interest. This is based on the assumption that interact-
ing proteins will be found in the same compartment. The confidence
of a protein is calculated by

confidence=Nproteome=3þW loc�
X

LocScore locð Þ
þW intloc�

X
IntLocScore intlocð Þ,

where the sum is performed over all of the location annotations for
the particular protein andNproteome is the number of proteomes that
include the protein.

A parameter sweep of the two weights was performed, yielding
values ofWloc = 12 andWintloc = 1 for the best Receiver Operating
Characteristic (ROC) value over the entire dataset. The entire set of

Figure 1. (a) Integrative 3Dmodel of a mature insulin secretory granule. One quadrant is clipped away to show the insulin crystal (turquoise). The long coiled-coil proteins in green
are granins, and the lumen is dominated by many copies of the small beta-peptide left over from the maturation of insulin. (b) Structural proteomes used to build the models.
Cytoplasmic proteins are at the top in red and magenta, vesicle membrane-spanning and membrane-associated proteins are at the centre in orange and yellow-green and vesicle
lumen proteins are at the bottom in blue-green.

TPR(loc) = P(loc)/Ptot True positive rate

P(loc) Number of true positives with a particular
location annotation

Ptot Total number of true positives

FPR(loc) = N(loc)/Ntot False positive rate

N(loc) Number of false positives with a particular
location annotation

Ntot Total number of negatives

LocScore(loc) = [TPR(loc) � FPR(loc)]/[TPR(loc) þ FPR(loc)]
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proteins was then rescored based on these weights, and the scores
were used for ranking the set. Given the small size of the set, cross-
validation studies were not performed, so we expect that the result-
ing high scores of the true positives will be due to bias from use as
the training set.

Location annotations were found by programmatically query-
ing UniProt (https://www.uniprot.org) with gene names from
each protein and rat taxid 10116 to get the UniProt entry with
the highest annotation score, and extract location annotations
listed under ‘Keywords –Cellular component’. We then program-
matically queried the UniProt, StringDB, Biogrid and Intact data-
bases to get a list of proteins that interact with the protein being
evaluated, and extracted location annotations for these in the
same way. This process was repeated for human taxid 9096 and
mouse taxid 10090. Annotations and fractions of positives and
negatives for the training set are included in Supplementary
Table 2.

Protein structures and concentrations

To estimate relative concentrations within each proteomic study,
‘Mascot Protein Score’ values were used for proteome 1 (Brunner
et al., 2007), ‘score’ values for proteome 2 (Hickey et al., 2009) and
‘Intensity HiC12mC13’ values for proteome 3 (Schvartz et al.,
2012). These values were divided by the length of the protein and
then by the sum of all values to create a ‘normalised spectral
abundance factor’ (NSAF) for each entry, which indicates roughly
the molar fraction for each protein detected in the sample. Each
protein’s NSAF was then multiplied by its molecular weight and
normalised again to determine its mass fraction. Proteins that were
identified by manual curation but not observed in the proteomics
studies were assigned arbitrarily low concentration values. Finally,
the total mass fraction of non-insulin proteins was scaled to give a
total mass fraction of 0.2, with insulin the crystal accounting for the
remaining 0.8 mass fraction (Hutton, 1989).

Absolute copy numbers for proteins were calculated for a gen-
eric ISG with a crystal diameter of 200 nm (Zhang et al., 2020). The
insulin crystal is based on entry 1trz from the RCSB Protein Data
Bank (https://www.rcsb.org). This crystal form has insulin hexam-
ers packed into a rhombohedral H3 lattice, themost common space
group observed for hexameric insulin structure determinations. A
value of 1.22 g cm�3 for proteins was used (Andersson and Hov-
möller, 1998), with the asymmetric unit molecular weight obtained
from the RCSB PDB structure summary page, yielding a volume
occupancy of 0.686. The secondmost prevalent space group is a P21
lattice as exemplified with PDB ID 1ev6, which yields a volume
occupancy of 0.584. Manual exceptions were made for several
proteins: IAPP abundance was assigned 1% of insulin abundance
(Caillon et al., 2016); the copy number of vATPase was calculated
by averaging copy numbers of the subunits with appropriate stoi-
chiometry and the experimental copy number of carboxypeptidase
E from Schvartz et al. (2012) was omitted from the copy number
calculation because it is ~100 times greater than the other two
proteomes.

An initial set of structures was gathered automatically from
online databases using csvcomplete10.0.9 (https://github.com/brett
barbaro/csvcomplete/blob/master/csvcomplete10.0.9.py). The Uni-
Prot RESTful API was used to retrieve sequences, and N-terminal
signal sequences annotated in UniProt were automatically removed.
The resulting sequences were then used to query the RCSB PDB
BLAST-based RESTful API and return the top 10 structure matches
in the PDB database. Subsequent manual curation was required in

several cases. Multiple files were needed to model cytoplasmic and
lumen domains of Syt5, Pam,Atp6ap andEpha, and transmembrane
segments were taken from integrin (PDB ID 2k1a). Similarly, files
representing cytoplasmic and lumen domains of Ptprn and Ptprn2
were combined with transmembrane segments from receptor tyro-
sine kinase ErB1 (PDB ID 2m0b). All of the Vamps were modelled
with Vamp-2, as PDB ID 2kog includes the entire protein in a lipid-
bound environment. Granins were treated as coiled coils based on
biophysical studies of chromogranin-A (Mosley et al., 2007). Infor-
mation was difficult to find for several proteins, resulting in poor or
fragmentary structures for Nucb1, Nucb2, Dnajc2, Stc1 and Nptx1.

As we were completing this project and drafting this manu-
script, structures generated by AlphaFold2 (Jumper et al., 2021)
became readily available through UniProt. We reevaluated the
entire structural proteome to determine if these predicted struc-
tures added value. In the most challenging cases, such as the
granins, AlphaFold2 provided structures that are largely unfolded
and of low confidence. Predicted structures of Nucb1, Nucb2,
Dnajc2, Stc1 and Nptx1 all showed a well-folded core similar to
the existing homologous structures found by the methods above,
flanked by long disordered regions of low confidence. These
low-confidence regions could reflect intrinsic disorder in these
structures or deficiencies in the AlphaFold2 method due to, for
example, unmodelled oligomerisation. Ultimately, we chose to use
one structure from AlphaFold2, for CD36, which showed a well-
folded domain and two membrane-spanning helices, all consist-
ent with UniProt annotations and existing partial structures. We
envision that AlphaFold2 will become a more integral part of the
structural pipeline in future, as methods are developed to create
credible models that incorporate oligomerisation, definition of
membrane-spanning regions and intrinsic disorder.

The cytoplasmwasmodelled using 50 cytoplasmic proteins with
highest abundance in a recent proteomic study (Beck et al., 2011;
Supplementary Table 3). Relative abundances of these proteins
were normalised to a total concentration of 0.2 g ml�1 (Luby-
Phelps, 1999).

Model generation

Models were generated using a modified version of our instant
distribution software (Klein et al., 2018), based on cellPACK
(Johnson et al., 2015), similarly to the method used for building
full models of Mycoplasma genitalium cells (Maritan et al., 2022).
During the packing process, a reduced representation of each
protein is used, comprised of a list of representative beads or
spheres selected using K-means clustering manually tuned to give
a good ratio of number of beads to coverage of the entire protein.
This manual tuning is particularly important for proteins with high
aspect ratios, and is facilitated by the use of the web-based curation
tool Mesoscope (Autin et al., 2020). The beads are used to
(i) estimate the space occupied by each protein in a master grid
and (ii) relax overlapping proteins.

Molecules are distributed by a parallel algorithm that partitions
the available space on a grid, places molecules, and performs a local
relaxation to resolve conflicts. However, the insulin granule can
consist of up to 2 million beads, so local relaxation could not be
applied due to limitations in the NVIDIA Flex library to ~1 million
beads. Thus, we exported and relaxed the model using LAMMPS
(Thompson et al., 2022) through Langevin rigid body dynamics. A
custom approach based on cellPAINT (Gardner et al., 2018, 2021)
is used for the membrane proteins. Each membrane protein is
augmented with two triads of beads on either side of the membrane
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that constrain the protein within the membrane during the simu-
lation. All bead interactions used a soft potential (https://doc
s.lammps.org/pair_soft.html).

The ultrastructure of the vesicle and boundary of the insulin
crystal are defined as primitive signed distance fields (e.g. soft
Boolean operation of spheres) or computed signed distance fields
from a user-defined polygonal mesh (e.g. obtained from segmen-
tation). In the current work, we used a spherical boundary for the
crystal, and insulin was placed procedurally using the rhombohe-
dral H3 lattice of PDB ID 1trz.

The instant packing method also includes a method for distrib-
uting lipids, using an approach similar to LipidWrapper (Durrant
and Amaro, 2014). The vesicle membrane is represented by a
spherical signed distance field, polygonised with a dual contour
algorithm. The resulting triangulated surface is then tiled using
small patches of lipids cookie-cut from equilibrated flat lipid
bilayers. The operation is run in parallel on the gpu for each triangle
giving interactive performance.

Segmentation of X-ray tomograms

X-ray tomograms were obtained from the PBCC website (https://
pbcconsortium.isrd.isi.edu). These datasets have a voxel width of
37.42 nm. Segmentation files were also obtained from the PBCC
that define the location of the cell boundary, nucleus, endoplasmic
reticulum and ISG locations. Blob detection was performed with
VISFD (https://doi.org/10.5281/zenodo.5559243) in several steps.
First, the position and orientation of the glass tube were identified
automatically, and a mask was created to omit areas within 7–10
voxels of the tube from blob detection and visualisation. A mask
was created to identify cytoplasmic regions inside the cell, using the
PBC manual segmentation of the cell membrane and nucleus.
Additional manual curation removed small features that were
disconnected from the bulk of the cell. Blob detection was then
performed on themaps, and blobs that overlap and blobs with weak
scores were discarded. The threshold for discarding weak blobs was
obtained by tuning the threshold for each map individually, choos-
ing threshold values that correctly classify a test set of 30 manually
chosen positives and 30 manually chosen negative decoys. Finally,
an analysis of blobs was performed, including a radial density
profile centred on the brightest pixel in the blob, distance from
the cell surface and classification by brightness.

Simulation of absorption of X-rays

From Ekman et al. (2018), image formation in soft X-ray tomog-
raphy can be approximated as

� ln
Iim
I0im

≈Ahμ,

where Ah is a linear projection matrix incorporating the 3D point
spread function of the system and μ is a discretised vector repre-
sentation of the linear attenuation coefficient (LAC) that is calcu-
lated from the atomistic model of the vesicle. Values of the mass
attenuation coefficient (MAC; μ/ρwhere ρ is the density) at a given
photon energy (here 517 eV) are typically available for different
materials (Henke et al., 1993; http://henke.lbl.gov/optical_constants/
atten2.html), andmay be combinedusing themixture rule, which is a
mass-fraction-weighted average of the MAC of each component:

μ=ρð Þvoxel =Wprotein μ=ρð ÞproteinþW lipid μ=ρð ÞlipidþWwater μ=ρð Þwater,

where Wprotein, Wlipid and Wwater are the mass fraction of the
component materials. The voxel protein LAC μvoxel is then calcu-
lated as the MAC in the voxel (μ/ρ)voxel times the protein density in
the voxel ρvoxel (protein weight/voxel volume):

μvoxel = μ=ρð Þvoxel�ρvoxel:

MAC values were calculated explicitly using the atomic compos-
ition of proteins in each voxel of the model, again using the mixture
rule and the weight fraction of MAC values for each of the atom
types. Lipids were based on DOPC (C40H80NO8P), with a MAC
value of 9,264.835 cm�1 and a volume of 1,150.0 Å3 per lipid
(Greenwood et al., 2006), and a value of 1,114.279 cm�1 was used
for water.

To generate the final images, the initial calculated volume is
embedded in a larger volume the size of the experimental data. The
simulated reconstructions were obtained similar to the experimen-
tal ones: the projection images were distorted by Poisson noise
corresponding to the shot noise of the experiment, and random
translations were added to the tomograms to mimic subpixel
alignment errors of the image registration (Chen et al., 2022).
The reconstruction was repeated 10 times for each volume and
averaged for calculation of the radial profiles.

Results and discussion

Combining proteomic and annotation information

We manually curated a proteome based on the current state of
knowledge for the system. This proteome is based largely on a
comprehensive review (Suckale and Solimena, 2010), followed by
literature searching to find supporting reports on each molecule.
This includes 29 familiar proteins, including two forms of insulin,
granins, enzymes involved inmaturation, regulatorymolecules and
a variety of membrane-bound transporters and fusion-related pro-
teins. These 29 proteins are included in Supplementary Table 1with
citations for the studies localising them to the ISG.

Manual curation, however, is intrinsically limited by the
vagaries of literature search methods and user bias, so we devel-
oped a method to identify bona fide ISG proteins from prote-
omics data, removing false positives from ISG isolation
impurities. Three proteomes were used in the current study, with
a total of 270 proteins, of which 8 are observed in all three (two
forms of insulin; converting enzymes Pcsk2 and Cpe; granins
ChgA, ChgB and Scg2; nucleobindin-2). The studies used differ-
ent protocols for isolation of ISG: proteome 1 used a gradient
(Brunner et al., 2007), proteome 2 added an affinity purification
step (Hickey et al., 2009) and proteome 3 used a three-step
gradient purification along with stable isotope labelling with
amino acids in cell culture (Schvartz et al., 2012). Proteome
3 identified 668 proteins, but we included the 140 that were
considered ‘specific to ISGs’, as done in a meta-analysis of all
three studies (Crèvecoeur et al., 2015).

The simplest approach to reconcile these differences would be to
use the number of proteomic observations as a weighting factor.
However, this has potential problems. For example, the converting
factor Pcsk1, a necessary component of the ISG, showed up in only
one study, but several subunits of mitochondrial ATP synthase,
which is most likely a mitochondrial impurity, showed up in two.
We developed an ROC-type scoring method that combines the
number of proteomic observations and expert annotations of the
cellular location. The study starts with the full set of proteins from
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the three proteomes, and assigns our manually curated set as true
positives and the rest as trial negatives. We then evaluate each
location annotation for its ability to distinguish between the two.
Annotations like ‘cytoplasmic vesicle’ have the power to discrim-
inate true positives, and ‘mitochondrion’ and ‘nucleus’ are found
for trial negatives (see Supplementary Table 2). A simple scoring
function was developed to quantify this discrimination. Finally, an
overall confidence score was developed that combines these loca-
tion annotation scores with the number of times each protein is
observed in a proteome, as described in the Methods section.

A manual literature search was then performed for all proteins
with confidence >0.333, as well as all proteins present in two or
more proteomes. As described below, in some cases, evidence for
presence in the ISG was found, in other cases, evidence was found
for presence in other compartments of the cell, and a few were
ambiguous.

VAMPs are necessary for the fusion of vesicles with the mem-
brane. Vamp2, Vamp3 and Vamp8 were included in our curated
set. Vamp2 and Vamp3 scored well, but Vamp8, which has been
immunolocalised to the ISG (Zhu et al., 2012), showed a midrange
score of 0.21, due to being found in only one proteome and having
lysosome and endosome localisations. Lamp2 also showed an
intermediate score (0.76), but we could find no evidence for its
presence in the ISG.

Rabs and similar membrane-associated proteins play an essen-
tial role in the regulation of the vesicle life cycle. Rab37, Rap1a and
Rab3a were all included in the curated list, and showed high to
intermediate scores. Immunolocalisation studies were found for
Rph3al (Matsunaga et al., 2017), Rab3c and Rab3d (Iezzi et al.,
1999). Rab27a is connected to secretory vesicles in general
(Suckale and Solimena, 2010), but no evidence was found for
several Rab5 members, Rab35 or Rhog. Rab1a, Rab2a and several
G-protein subunits were found in two proteomes but received low
scores because of localisation, and we could not find evidence for
their presence in the ISG. Two additional proteins, Rac1 and
Cdc42, were included based on the literature search (Wang and
Thurmond, 2009), although they were not included in any of the
proteomes.

Several proteins were not included in the original curated list,
but strong evidence for their inclusion was found in the subsequent
literature search. Peptide-amidating enzyme PAM (Garmendia
et al., 2002), neurosecretory protein Vgf (Stephens, 2017), neuro-
nalpentraxin-1 (Schvartz et al., 2012) and stanniocalcin-1 (Zaidi
et al., 2012) all received high to intermediate scores. Conversely,
several proteins were included in the original list, but scored poorly.
Two nucleobindins, which have been placed in the ISG by immu-
nolocalisation (Ramesh et al., 2015), scored low due to nuclear and
endoplasmic reticulum annotations, in spite of nucleobindin-2
being found in all three proteomic studies. vATPase has been
localised to the ISG (Sun-Wada et al., 2006), but most of the
subunits scored poorly, due to their presence in a single proteome
and a variety of conflicting localisations. Macrophage migration
inhibitory factor was found in only one proteome, but has been
immunolocalised to the ISG (Waeber et al., 1997).

Several proteins showed high scores, and evocative but non-
conclusive evidence was found in the literature search. Tmem163, a
putative zinc transporter (Sharma et al., 2017), and Enpp2 (Gorelik
et al., 2017) have connections to type 2 diabetes. Depalmatase
Abhd17 (Won et al., 2018), Dnajc5 (Gorenberg and Chandra,
2017) and Wnt ligands like Wif1 are involved in the secretory
process (Schinner et al., 2007). These may be candidates for immu-
nolocalisation studies.

A variety of proteins were found in two of the proteomic
studies, but appear to be impurities from other compartments
in the cells. These include lysosomal proteins alpha-glucosidase,
septin-11 and cathepsin D; cytoplasmic enzymes ATP-citrate
synthase, fructose bisphosphate aldolase A and glyceraldehyde-
3-phosphate dehydrogenase; a subunit of mitochondrial ATP
synthase and tubulin and fibronectin. All showed low scores due
to the localisation annotations and were culled from the list used
for modelling.

Models of the insulin secretory granule

Idealised models of mature and immature vesicles were created
with the final proteome of 56 proteins (Supplementary Table 1), an
insulin crystal with a diameter of 200 nm (Zhang et al., 2020), and a
vesicle diameter of 320 nm (Suckale and Solimena, 2010). The
initial model created with the interactive method of cellPACKgpu
roughly places molecules in the proper compartments, but has a
number of steric contacts, particularly with highly asymmetric
molecules such as the granins. Subsequent optimisation with
LAMMPS resolves these contacts to create the final model. Relax-
ation is required between 1 and 2 h using 30 threads, followed by
~30 min to recompute the position/rotation of the protein instance
from the bead coordinates for each frame of the simulation (CPU
AMD Ryzen Threadripper 1950X 16-Core Processor, GPU NVI-
DIA Quadro R8000). The final models reveal the ISG as being
densely packed with soluble proteins and with a protein-rich
bounding membrane. The full model (idealised mature and imma-
ture granules surrounded by cytoplasmic proteins) consists of
424,384 individual proteins represented by 2,343,538 beads of
radius 17.0 Å.

Interpreting experimental soft X-ray tomograms

Fig. 2 demonstrates the use of this methodology to interpret experi-
mental soft X-ray tomograms. Tomograms of whole pancreatic
beta cells show many easily distinguishable features with high
LAC values. The ones with the highest LAC values are presumed
to be lipid droplets, and the remainder are insulin secretory vesicles.
We address two questions that have been posed with the experi-
mental work.

First, there has been some question about the contribution of the
membrane to the observed features. We created models and simu-
lated tomograms for vesicles with and without the membrane
(Fig. 2) and calculated a 2D radial profile for all four volumes.
These show that the membrane for these idealised vesicles accounts
for 10–20% of the observed X-ray absorbance in these features. For
the full model with lipids, the projected mature blob peak value
is 0.538 μm�1 for mature and 0.437 μm�1 for immature, and the
surrounding cytoplasm has an average value of 0.35 μm�1.

Second, it has been noted that immature vesicles, which do not
include the dense crystal of insulin, may not show enough contrast
to be observed in experimental soft X-ray tomograms. As seen in
Fig. 2, immature vesicles are less visible in simulated tomograms.
When we applied our VISFD segmentation protocol to these simu-
lated tomograms, only the mature vesicles were detected with a
contour diameter of 184 nm, whereas the immature vesicles were
undetected. This result indicates that a pool of immature vesicles
may not be detected with the VISFD segmentation protocol in the
analysis described below. We also evaluated the need for the
relaxation step in model generation, when these models are used
to simulate soft X-ray tomograms, and as seen in the graph in Fig. 2,
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unrelaxed and relaxed models show very similar radial profiles. In
the following larger study, a quick optimisation was performed to
ensure that all lumen proteins are inside the membrane, but a full
relaxation was not performed.

We then estimated the size and insulin content of all visible
vesicles in an experimental whole-cell tomogram (cell 766_5;
Fig. 3a). We segmented the experimental volume with VISFD,
resulting in 1,136 features interpreted to be vesicles (Fig. 3e).

We generated a library of 3,456 models to sample potential vari-
ations in vesicle and cytoplasmic properties (4 h of computation).
Sixteen vesicle diameters were sampled from 130 to 473 nm. For
each vesicle size, six different insulin crystal sizes were sampled and
the number of soluble and membrane proteins was scaled based on
the number of insulin molecules in the crystal. Six steps of transi-
tion between mature and immature vesicles were generated by
partitioning this amount of insulin as mature insulin in a crystal,
proinsulin in immature vesicles, and cleaved insulin monomer in
the lumen in transitional forms. Six different concentrations of
cytosolic proteins were also scanned from 0.06 to 0.2 g ml�1. A
quick relaxation of 150 iterations was applied on the gpu to force
proteins (in particular, the highly extended granins) inside the
vesicles. Finally, model LAC values were computed for each of
these sample vesicles in a 636-nm bounding box (17 � 17 � 17
voxels with a voxel size of 37.42 nm), then embedded in a sur-
rounding volume of size 247 � 17 � 247 voxels (Fig. 3b,c). Each
volume was projected and reconstructed 10 times (37 h of compu-
tation), used to calculate an average 2D radial profile, and an R2

score between the experimental profile and the simulated profile
was calculated, yielding a ‘confidence level’ in the assignment. R2

scores are calculated for six radial distance points to focus on the
vesicle profile, and for 15 points to include information on the
surrounding cytoplasmic LAC. The simulated profile with the
maximum R2 score was selected for each of the 1,136 features in
the experimental tomogram.

We obtained an average R2 score of 0.94 � 0.1 across all 1,136
experimental blobs, with 83% with a score >0.93 and 68% with a
score >0.96. Looking at the steps of transition, 128 blobs are
assigned as immature vesicles, 747 in transitional states and
261 assigned as mature vesicles (Fig. 3f). This predominance of
immature and transitional forms is consistent with recent cryoelec-
tron tomography studies, which found that the percentage of
mature vesicles ranged from 12 to 32% depending on the location
in the cell (Zhang et al., 2020). In addition, note that this analysis
may be missing a pool of immature vesicles that are not visible in
the soft X-ray tomographic experiment, as described above. Several
examples are shown in detail in Fig. 4.

Outlook

The convergence of experimental methodology and computational
capability is putting whole-cell structural modelling within reach.
Using this methodology, it is becoming possible to interpret entire
cellular tomograms with integrative molecular models. In Fig. 3, an
entire X-ray tomogram has been segmented to identify mature
secretory vesicles, and models have been generated with crystal
sizes that match the observed absorption of the vesicle. This model
is the first step towards a quantitative mesoscale interpretation of
this cell. For example, in cell 766_5 from the PBCC, the observed
features include a total of ~606,000,000 insulin monomers across
the cell, with an average of 533,000� 253,000 per vesicle, and with
~125,000,000 out of the total in crystal form.

One of the goals of our work on the cellPACK suite is to create
tools that will be widely usable; however, these models are strain-
ing the current capabilities of consumer-level computational
hardware and software. The cellPACK suite heavily leverages
advances from the gaming community for use of gpu hardware,
which underlies the instant packing algorithm used to generate
initial models (Klein et al., 2018). For the relaxation/optimisation
steps, the size of thesemodels required amove from the interactive

Figure 2. Simulation of X-ray tomograms. Mature and immature vesicles are shown in
three states: the full model, a model without lipids and a rough model generated
without the relaxation step. The small insets are ‘phantoms’: voxelised representations
of the simulated linear attenuation coefficient for each vesicle. These phantoms are
embedded in a large volume of cytoplasm and used to simulate tomograms that reflect
the experimental imaging and processing, as shown below the models and phantoms.
Radial density profiles for the six models are shown at the bottom.
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methods of Flex to the traditional batch mode of LAMMPS. We
thus developed an initial simplistic input for LAMMPS that will
serve as the foundation for more advanced simulation of similar
large systems. Finally, visualisation before and after the simulation
is provided by cellVIEW (Muzic et al., 2015) within our cellPACK
application built within Unity. Simulation can be cached and
played back directly in our application. Final models are saved/
exported in different resolutions and file formats (.bin, .pdb and .cif)
to enable visualisation with other molecular graphics software
(e.g. OVITO, VMD, UCSF Chimera and Mol*). These files typic-
ally include coordinates for each type of protein along with
transformation information for placing all of the instances of
the protein into the overall model. However, as of today, only
Mol* (Sehnal et al., 2018) is capable of reading and visualising the
full all-atom model (Fig. 5) and this at a low frame rate using a
coarse Gaussian surface representation of the molecules (e.g. visit

the GitHub site included below to see Mol* visualisation of the
mature and immature vesicles). Other molecular graphics tools
were able to load coordinate files for each type of protein but
currently failed to build the many instances of each protein to
visualise the entire model.

Of course, many challenges remain as we move forward in this
mesoscale structural view of a cell. As is always the case with
biology, there are numerous unique features for each of the com-
partments of the cell, and new methodologies will be needed, for
example, to incorporate complex structural features like intrinsic
disorder in nuclear pores, the cytoskeleton and its interactions with
organelles, the dynamic endomembrane system and the proteins
that manage it and the many structural and functional states of
chromatin. With all of this, structural mesoscale modelling will
proceed with a combination of automated methods when possible,
and manual attention when necessary.

Figure 3. Interpretation of an experimental X-ray tomogram. (a) Volume rendering of a slice through the X-ray tomogram of cell 766_5 from the Pancreatic Beta-Cell Consortium
(PBCC). Bright white vertical bands at the edges are the capillary used to hold the cell. (b) Idealised simulated absorption for this slice from vesicle models placed at features in the
tomogram. (c) Simulated absorption of this slice mimicking the experimental imaging and processing. Horizontal bands are due to the calculation of the volume in sections. (d)
Manual segmentation from the PBCC showing mitochondria (yellow), nucleus (grey), endoplasmic reticulum (red) and vesicles (blue). (e) VISFD automatically segments blob-like
features as spheres (blue). The manually segmented nucleus is included in grey for context. (f) Interpretation of the automated segmentation with idealised spherical vesicles,
showing the predicted vesicle membrane radius and coloured with mature vesicles in dark red, immature vesicles in white and transitional forms in pastel shades.
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Figure 4. Interpretation of selected features in the experimental tomogram. Three vesicles are shown: (a) mature vesicle with a radius of 236 nm and a crystal of 124 nm, and
cytoplasmic concentration to give an average linear attenuation coefficient (LAC) of 0.34 μm�1, (b) transitional vesicle with a radius of 202 nm and a crystal of 50 nm, and
cytoplasmic LAC of 0.28 μm�1 and (c) immature vesicle with a radius of 236 nmand cytoplasmic LAC of 0.25 μm�1. The vesiclemodels are shown at the centre and experimental (blue
curve) and simulated (orange curve) radial density profiles are shown at the right with a central slice through the tomograms.

Figure 5. Idealisedmodels of (left)mature and (right) immature vesicles viewed interactively inMol* using a coarse Gaussian surface and coloured by the default “Color by Chain Id”
property.
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