Prehomogeneity on Quasi-Split Classical Groups and Poles of Intertwining Operators

Xiaoxiang Yu

Abstract. Suppose that P = MN is a maximal parabolic subgroup of a quasisplit, connected, reductive classical group *G* defined over a non-Archimedean field and *A* is the standard intertwining operator attached to a tempered representation of *G* induced from *M*. In this paper we determine all the cases in which Lie(*N*) is prehomogeneous under Ad(*m*) when *N* is non-abelian, and give necessary and sufficient conditions for *A* to have a pole at 0.

1 Introduction

In this paper we continue to study the poles of intertwining operators attached to representations induced from supercuspidal representations of maximal parabolic subgroups of quasi-split classical p-adic groups and their connection with local L-functions [1,2,9,10].

To be more precise, let *F* be a non-Archimedean field of characteristic zero, *G* be a subgroup of *F*-rational points of a quasi-split connected reductive group **G** over *F* and let P = MN be a maximal parabolic subgroup of *G*.

Let $\mathfrak{N} = \text{Lie}(N)$, the Lie algebra of N. When \mathfrak{N} is abelian, then it is known that \mathfrak{N} is a prehomogeneous space under the action of Ad(M) [6,11]. The poles of some certain intertwining operators are determined in terms of orbital integrals in [10]. Even explicit generators of these orbits have been found, together with the fact that the centralizer and twisted centralizer are actually equal when G is split [12].

Throughout this paper we assume that **G** is a quasi-split connected reductive classical group over F and P is any maximal parabolic subgroup of G. We have determined all cases when \mathfrak{N} is prehomogeneous under $\operatorname{Ad}(M)$ if \mathfrak{N} is non-abelian. Namely, except for two special cases, \mathfrak{N} is not prehomogeneous. And in these two special cases, we have shown that the centralizers have index 2 in the twisted centralizers and the poles of standard intertwining operators have been determined.

It should be pointed out that since \mathfrak{N} can be graded as $\mathfrak{N} = \mathfrak{N}_1 \oplus \mathfrak{N}_2$ by α , where α is the simple root that determines *P*. Each \mathfrak{N}_i , i = 1, 2, is a prehomogeneous space under Ad(*M*), *i.e.*, has a finite number of open orbits under Ad(*M*) by M. Sato and T. Kimura in [7]. However, it is not known whether \mathfrak{N} is prehomogeneous. In fact since \mathfrak{N} is reducible, it does not fall into the classification of prehomogeneous spaces in [7].

Received by the editors June 26, 2006; revised February 12, 2007.

This work was partially supported by Distinguished Youth Grant number Q200715001 of Hubei Education Bureau

AMS subject classification: Primary: 22E50; secondary: 20G05.

[©]Canadian Mathematical Society 2009.

2 Preliminaries

Let *F* be a non-Archimedean field of characteristic zero. Denote by \mathcal{O} its ring of integers and by \mathcal{P} the unique maximal ideal of \mathcal{O} . Let *q* be the number of elements in \mathcal{O}/\mathcal{P} and fix a uniformizing element ϖ for which $|\varpi| = q^{-1}$, where $|\cdot|_F = |\cdot|$ denotes an absolute value for *F* normalized in this way.

Let **G** be a quasisplit connected reductive classical group defined over F. For an positive integer r, let

$$w_r = \begin{pmatrix} 1 \\ \ddots \end{pmatrix} \in M_r(F).$$

And for any positive integer *l*, let

$$J_{2l} = \begin{cases} w_{2l+1} & \text{if } \mathbf{G} = SO_{2l+1}; \\ w_{2l} & \text{if } \mathbf{G} = SO_{2l}; \\ \begin{pmatrix} & w_l \\ & -w_l \end{pmatrix} & \text{if } \mathbf{G} = Sp_{2l}. \end{cases}$$

Suppose **G** is defined with respect to J_{2l} , *i.e.*, **G** = { $g \in GL_k | {}^tgJ_{2l}g = J_{2l} \}^\circ$, with the superscript indicating the connected component.

Let T be the maximal split torus of diagonal elements in G, then we can take

$$\mathbf{T} = \left\{ \begin{pmatrix} x_1 & x_2 & & & & \\ & \ddots & & & & \\ & & & 1 & & & \\ & & & & x_l^{-1} & & \\ & & & & & x_l^{-1} & \\ & & & & & x_2^{-1} \\ & & & & & & x_1^{-1} \end{pmatrix} \middle| \begin{array}{c} x_i \in F^*, \quad i = 1, 2, \dots, l \\ & & & & x_l^{-1} \\ & & & & & x_1^{-1} \end{pmatrix} \right|,$$

if $\mathbf{G} = SO_{2l+1}$, and otherwise,

$$\mathbf{T} = \left\{ \begin{pmatrix} x_1 & x_2 & & & \\ & \ddots & & & \\ & & x_l & & \\ & & & x_l^{-1} & \\ & & & \ddots & \\ & & & & x_2^{-1} \\ & & & & & x_1^{-1} \end{pmatrix} \middle| x_i \in F^*, \quad i = 1, 2, \dots, l \right\}.$$

Let $\mathbf{B} = \mathbf{T}\mathbf{U}$ be a Borel subgroup of \mathbf{G} , where \mathbf{U} is the unipotent radical of \mathbf{B} . Let Δ be the set of simple roots of \mathbf{T} in the Lie algebra of \mathbf{U} . Denote by $\mathbf{P} = \mathbf{M}\mathbf{N}$ a maximal parabolic subgroup of \mathbf{G} in the sense that $\mathbf{N} \subset \mathbf{U}$. Assume $\mathbf{T} \subset \mathbf{M}$ and let $\Theta = \Delta \setminus \{\alpha\}$ such that $\mathbf{M} = \mathbf{M}_{\theta}$. Let $\mathbf{\bar{N}}$ be the unipotent subgroup of \mathbf{G} opposed to \mathbf{N} .

As usual, we will use $W = W(\mathbf{T})$ to denote the Weyl group of \mathbf{T} in \mathbf{G} . Given $\widetilde{w} \in W$, we use w to denote a representative for \widetilde{w} . Particularly, let $\widetilde{w_0}$ be the longest element in W modulo the Weyl group of \mathbf{T} in \mathbf{M} .

We will also use $G, P, M, N, \overline{N}, B, T, U$ to denote the subgroups of *F*-rational points of the groups $\mathbf{G}, \mathbf{P}, \mathbf{M}, \mathbf{N}, \overline{\mathbf{N}}, \mathbf{B}, \mathbf{T}, \mathbf{U}$, respectively. Let Φ be the set of roots of *G*, and let Φ^+ be the positives ones. Let $\sum(\Theta)$ be the subset of Φ that are the linear combinations of the elements from Θ and $\sum^+(\Theta)$ be the subset consisting of its positive elements.

Let $\mathfrak{g} = \text{Lie}(G)$, the Lie algebra of *G*. For any $g \in G$, We will use Int(g) to denote the inner morphism of *G* induced by *g*, *i.e.*, for any $u \in G$, $\text{Int}(g) \circ u = gug^{-1}$. We will use Ad(g) to denote the adjoint action on \mathfrak{g} induced from Int(g).

Let $\mathfrak{N} = \text{Lie}(N)$, the Lie algebra of *N*. Then \mathfrak{N} can be graded by α as $\mathfrak{N} = \mathfrak{N}_1 \oplus \mathfrak{N}_2$, *i.e.*, for any $t \in \{\text{center of } M\}$, and for any $\mathfrak{n}_1 \in \mathfrak{N}_1, \mathfrak{n}_2 \in \mathfrak{N}_2$,

$$\operatorname{Ad}(t) \circ \mathfrak{n}_1 = \alpha(t)\mathfrak{n}_1$$
 $\operatorname{Ad}(t) \circ \mathfrak{n}_2 = 2\alpha(t)\mathfrak{n}_2$

M acts on \mathfrak{N} by adjoint action, in particular, each \mathfrak{N}_i , i = 1, 2, is invariant under Ad(*M*). Notice \mathfrak{N}_2 is the center of \mathfrak{N} . Suppose $N_i = \exp(\mathfrak{N}_i)$, i = 1, 2, then $N = N_1N_2$ with N_2 being the center of *N*.

Suppose $\Delta = \{\alpha_i \mid i = 1, 2, ..., l\}$. Let e_i $(1 \le i \le l) \in \text{Hom}(T, F^*)$ such that $e_i(T) = x_i$, then $\alpha_i = e_i - e_{i+1}, i = 1, 2 \cdots l - 1$, and

$$\alpha_{l} = \begin{cases} e_{l}, & \text{if } G = \text{SO}_{2l+1}(F); \\ e_{l-1} + e_{l}, & \text{if } G = \text{SO}_{2l}(F); \\ 2e_{l}, & \text{if } G = \text{Sp}_{2l}(F). \end{cases}$$

Suppose $\alpha = \alpha_n = e_n - e_{n+1}$, then $M \cong GL_n(F) \times SO_{2m+1}(F)$, $GL_n(F) \times SO_{2m}(F)$ or $GL_n(F) \times Sp_{2m}(F)$, depending on whether **G** is of type B_l , D_l , or C_l , respectively. For convenience of notation, we set $G' = GL_n(F)$ and

$$G_m = \begin{cases} SO_{2m+1}(F), & \text{if } G = SO_{2l+1}(F); \\ SO_{2m}(F), & \text{if } G = SO_{2l}(F); \\ Sp_{2m}(F), & \text{if } G = Sp_{2l}(F). \end{cases}$$

3 Non-Prehomogeneity

For any $Y \in M_n(F)$, we set $\varepsilon(Y) = w_n {}^t Y w_n^{-1}$. Then $\varepsilon(\varepsilon(Y)) = Y$ since $w_n^{-1} = w_n$. We define an action ε of G' on $M_n(F)$ by $\varepsilon(g) \circ A = gA\varepsilon(g)$, $\forall g \in G', A \in M_n(F)$. And we call the group $G'_{\varepsilon,A} = \{g \in G' | \varepsilon(g) \circ A = A\}$ the ε - twisted centralizer of A in G'.

Definition 3.1 For any $A \in M_n(F)$, we say that A is ε -symmetric if $\varepsilon(A) = A$ and skew- ε -symmetric if $\varepsilon(A) = -A$. Denote by $M_n^{\varepsilon}(F)$ the subspace of $M_n(F)$ consisting of ε -symmetric elements, and by $M_n^{s\varepsilon}(F)$ the subspace of $M_n(F)$ consisting of skew- ε -symmetric elements.

Lemma 3.2 $M_n(F) = M_n^{\varepsilon}(F) \oplus M_n^{\varepsilon}(F)$, and both $M_n^{\varepsilon}(F)$ and $M_n^{\varepsilon}(F)$ are closed under $\varepsilon(G')$.

Proof Straightforward.

Lemma 3.3 Let $n \in N$ and suppose that

$$n = \begin{pmatrix} I_n & X & Y \\ 0 & I_k & X' \\ 0 & 0 & I_n \end{pmatrix}$$

Then we have

$$X' = \begin{cases} -J_{2m} {}^{t} X w_{n}, & \text{if } G \text{ is orthogonal;} \\ J_{2m} {}^{t} X w_{n}, & \text{if } G \text{ is symplectic.} \end{cases}$$

And

$$XX' = \begin{cases} Y + \varepsilon(Y), & \text{if } G \text{ is orthogonal;} \\ Y - \varepsilon(Y), & \text{if } G \text{ is symplectic.} \end{cases}$$

In particular, if $n \in N_2$, then X = 0 and $Y \in M_n^{sc}(F)(or M_n^{c}(F))$ if G is orthogonal (or symplectic respectively). If $n \in N_1$, then $Y \in M_n^{c}(F)(or M_n^{sc}(F))$ if G is orthogonal (or symplectic respectively).

Proof The first part is a counterpart of [1, Lemma 2.1], the rest is straightforward.

Lemma 3.4 Use n(X, Y) to denote n in Lemma 3.3. For any $n(X, Y) \in N$, write

$$A = \begin{cases} \frac{Y + \varepsilon(Y)}{2}, & \text{if G is orthogonal;} \\ \frac{Y - \varepsilon(Y)}{2}, & \text{if G is symplectic.} \end{cases}$$

And

$$B = \begin{cases} \frac{Y - \varepsilon(Y)}{2}, & \text{if } G \text{ is orthogonal;} \\ \frac{Y + \varepsilon(Y)}{2}, & \text{if } G \text{ is symplectic.} \end{cases}$$

Then Y = A + B with Y being decomposed as in Lemma 3.2.

Let $n_1 = n(X, A), n_2 = n(0, B)$. Then $n_i \in N_i, i = 1, 2, and n = n_1n_2$. Moreover, for any $B \in M_n^{\varepsilon}(F)$ (or $M_n^{\varepsilon}(F)$, according to whether G is orthogonal or symplectic, respectively), $n(0, B) \in N_2 \subset N$.

Proof Straightforward.

Let $M_n^s(F) = \{A \mid A \in M_n(F), A = {}^tA\}$ be the subspace of *n*-dimensional symmetric matrices, and $M_n^{ss}(F) = \{A \mid A \in M_n(F), A = -{}^tA\}$ be the subspace of *n*-dimensional skew-symmetric matrices. Then it is clear that $M_n(F) = M_n^s(F) \oplus M_n^{ss}(F)$.

Define a group action δ of G' on $M_n(F)$ as $\delta(g) \circ A = gA^t g, \forall g \in G', A \in M_n(F)$. Then we have the following.

Lemma 3.5 $M_n^s(F)$ is a prehomogeneous space under δ .

Proof Let $GL_n^s(F) = GL_n(F) \cap M_n^s(F)$, then $GL_n^s(F)$ is a dense open subset of $M_n^s(F)$. For any $A \in GL_n^s(F)$, it is a basic fact in linear algebra that there is $g \in G'$, such that $gA^tg = \text{diag}(a_1, a_2, \ldots, \alpha_n)$ for some $a_i \neq 0, i = 1, 2, \ldots, n$. Choose a complete set of representatives $S = \{\varepsilon_i, i = 1, 2, \ldots, \kappa\}$ of $F^*/(F^*)^2$, where $\kappa = \text{card}(F^*/(F^*)^2)$. Suppose $a_i = t_i^2 \varepsilon_i$ with $\varepsilon_i \in S$, let $g_1 = \text{diag}(t_1^{-1}, t_2^{-1}, \ldots, t_n^{-1})$. Then $\delta(g_1g) \circ A = \text{diag}(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)$. So $GL_n^s(F)$ has only finite number of generators under $\delta(G')$, *i.e.*, $M_n^s(F)$ is a prehomogeneous space.

Corollary 3.6 $M_n^{\varepsilon}(F)$ is a prehomogeneous space under $\varepsilon(G')$.

Proof There is an isomorphism $f: M_n^{\varepsilon}(F) \longrightarrow M_n^{\varepsilon}(F)$ defined by $f(A) = Aw_n, \forall A \in M_n^{\varepsilon}(F)$. If we notice the fact that $\varepsilon(g) = f \circ \delta(g) \circ f^{-1}, \forall g \in G'$, then the proof is trivial. Moreover, for any $A \in M_n^{\varepsilon}(F) \cap G'$, there is $g \in G'$, such that

(3.1)
$$\varepsilon(g) \circ A = \begin{pmatrix} \varepsilon_2 & \varepsilon_1 \\ \vdots & \vdots & \vdots \\ \varepsilon_n & \ddots & \vdots \end{pmatrix}$$

with $\varepsilon_i \in S$, $i = 1, 2, \ldots, n$.

Lemma 3.7 $M_n^{ss}(F)$ is a prehomogeneous space under $\delta(G')$. More precisely, suppose

$$B = \begin{pmatrix} 0 & b_{1,2} & b_{1,3} & \cdots & b_{1,n} \\ -b_{1,2} & 0 & b_{2,3} & \cdots & b_{2,n} \\ -b_{1,3} & -b_{2,3} & 0 & \cdots & b_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -b_{1,n} & -b_{2,n} & -b_{3,n} & \cdots & 0 \end{pmatrix}$$

is an arbitrary element in $M_n^{ss}(F)$, then there is $g \in G'$, such that

(3.2)
$$\delta(g) \circ B = \begin{pmatrix} 0 & 1 & & \\ -1 & 0 & & \\ & 0 & 1 & \\ & -1 & 0 & \\ & & \ddots \end{pmatrix}$$

Moreover, such g fixes the vector $(0, ..., 0, 1)^t$ by left multiplication, and consequently $\delta(g)$ will fix the element $E_{n,n}$.

Proof Let $r_n = 2[n/2]$, where [n/2] is the maximal integer that is no greater than n/2. Let $\overline{M}_n^{ss}(F) = \{A | A \in M_n^{ss}(F), \operatorname{rank}(A) = r_n\}$, then $\overline{M}_n^{ss}(F)$ is a dense open subset of $M_n^{ss}(F)$.

If n = 1, then the lemma is trivial.

If n = 2, let $g = \text{diag}(1, b_{1,2}^{-1})$ if $B \neq 0$. Then g will satisfy the lemma.

Suppose the lemma is true for all $k \le n - 1$. Let k = n.

We can always assume $b_{1,2} \neq 0$. Otherwise, we first assume that there is one $i, 3 \leq i \leq n$, such that $b_{1,i} \neq 0$. Let $K_{2,i} = I_n + E_{2,i}$, where for any pair of positive integers $\{i, j\}$, $E_{i,j}$ is an elementary matrix in $M_n(F)$, whose $\{i, j\}$'s entry equals to 1,

all other entries are 0. Then the $\{1, 2\}$'s entry of $K_{2,i}B^{i}K_{2,i}$ is $b_{2,i}$, which is not 0. On the other hand, if such *i* does not exist, then it will fall into the induction hypothesis. Now let

$$K_i = I_n - \frac{b_{1,i}}{b_{1,2}} E_{i,2}, \quad i = 3, \dots, n, \text{ and } h_1 = \prod_{i=3}^n K_i.$$

Then

$$B_1 = \delta(h_1) \circ B = \begin{pmatrix} 0 & b_{1,2} & 0 & \cdots & 0 \\ -b_{1,2} & 0 & b_{2,3} & \cdots & b'_{2,n} \\ 0 & -b_{2,3} & 0 & \cdots & b'_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -b'_{2,n} & -b'_{3,n} & \cdots & 0 \end{pmatrix}.$$

Let $P_i = I_n + \frac{b'_{2,i}}{b_{1,2}}E_{i,1}, 3 < i \le n$, and set

$$h' = \prod_{i=3}^{n} P_i, \quad h'' = \operatorname{diag}(b_{1,2}^{-1}, 1, \cdots, 1), \quad h_2 = h'' h'$$

Then

$$B_2 = \delta(h_2) \circ B_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ -1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & b_{3,4}' & \cdots & b_{3,n}'' \\ 0 & 0 & -b_{3,4}'' & 0 & \cdots & b_{4,n}'' \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & -b_{3,n}'' & -b_{4,n}'' & \cdots & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ & B' \end{pmatrix},$$

with $B' \in M^{ss}_{n-2}(F)$.

By induction hypothesis, there is $g_1 \in \operatorname{GL}_{n-2}(F)$, such that $\delta(g_1) \circ B'$ satisfies equation (3.2) when k = n - 2.

Let $h_3 = \text{diag}(I_2, g_1), g = h_3h_2h_1$, then $\delta(g) \circ B$ satisfies equation (3.2). Therefore there is only one generator of $\overline{M}_n^{ss}(F)$ under $\delta(G')$ which automatically implies that $M_n^{ss}(F)$ is a prehomogeneous space under $\delta(G')$. The property that $g(0, \ldots, 0, 1)^t =$ $(0, \ldots, 0, 1)^t$ is obvious from the construction of g, thus, $\delta(g) \circ E_{n,n} = E_{n,n}$.

Corollary 3.8 $M_n^{s\varepsilon}(F)$ is prehomogeneous under $\varepsilon(G')$. Moreover, for any $B \in M_n^{s\varepsilon}(F)$ there is $g \in G'$ such that

(3.3)
$$\varepsilon(g) \circ B = \begin{pmatrix} & 1 & 0 \\ & 0 & -1 \\ 1 & 0 & & \\ 0 & -1 & & \\ & & & & \\ & & & & \\ & & & & & \end{pmatrix}$$

In addition, such g fixes $(0, ..., 0, 1)^t$ by left multiplication, and consequently, $\varepsilon(g)$ fixes $E_{n,1}$.

Proof This is a direct result of Lemma 3.7, and the proof is similar to Corollary 3.6.

Let $GL_n^{\varepsilon}(F) = GL_n(F) \cap M_n^{\varepsilon}(F)$, then $GL_n^{\varepsilon}(F)$ is a dense open subset of $M_n^{\varepsilon}(F)$ when *n* is even and is an empty set when *n* is odd. For this reason and the purpose of further use, we let B_n be the matrix which has a form as the right side of equation (3.3) with rank r_n . Then from Lemma 3.7 and Corollary 3.8, B_n is a generator of the unique dense open orbit of $M_n^{\varepsilon}(F)$ under $\varepsilon(G')$. We then define:

$$E_n = \begin{cases} B_n, & \text{if } n \text{ is even;} \\ B_n + E_{n,1}, & \text{if } n \text{ is odd.} \end{cases}$$

We can define a map f from $M_{n \times k}(F)$ to $M_n^{\varepsilon}(F)$ (or $M_n^{s\varepsilon}(F)$) by f(X) = XX'. Notice f is a polynomial function in terms of the entries of X.

Lemma 3.9 If $n \le m$, then f is surjective. In particular, if $n \ge 2$ and $m \ge 1$, then for almost all X, rank $(XX') \ge 2$.

Proof Suppose first that *G* is orthogonal, let $A = (a_{i,j})_{n \times n}$ be an arbitrary element in $M_n^{\varepsilon}(F)$. Let $X = (I_n, 0, X_1)$ where $X_1 = -A/2$. Then

$$X' = \begin{pmatrix} \varepsilon(X_1) \\ 0 \\ I_n \end{pmatrix},$$

and $XX' = -(X_1 + \varepsilon(X_1)) = A$ as desired.

If *G* is symplectic, then the proof is similar. The rest of the lemma is straightforward.

For any $m = (g, h, \varepsilon(g^{-1})) \in M$, where $g \in G'$ and $h \in G_m$, we have $Int(m) \circ n(X, Y) = n(gXh^{-1}, gY\varepsilon(g))$, (see also [1,2]). Moreover, if we decompose $M_n(F)$ (as *Y* is concerned) into subspaces as in Lemma 3.2, then both $M_n^{\varepsilon}(F)$ and $M_n^{s\varepsilon}(F)$ are invariant under Int(M).

Lemma 3.10 There is an open dense subset O in N, such that for any $n(X, Y) \in O$, $det(Y) \neq 0$.

Proof Write Y = A + B as in Lemma 3.4. By Lemmas 3.3 and 3.4, det(*Y*) is a polynomial function in terms of the entries of *X* and *B*. So we only need to show that det(*Y*) $\not\equiv$ 0.

If *G* is symplectic, let X = 0 and $B = Y \in GL_n^{\varepsilon}(F)$. If *G* is orthogonal and *n* is even, choose X = 0 and $B = Y = E_n$. In both cases, det $(Y) \neq 0$.

If *G* is orthogonal and *n* is odd, let $B = B_n$, where B_n is defined as before. And let

$$X = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & -1 \end{pmatrix} \in M_{n \times (2m+1)}(F).$$

Then $Y = B_n + E_{n,1} = E_n$, and obviously $det(Y) \neq 0$.

Thus, the subset of *N* satisfying det(Y) = 0 is a closed subset (in Zariski topology).

Remark. The above lemma can also be used to prove the fact that up to a closed subset of N, $w_0^{-1}n(X,Y) \in P\bar{N}$ by applying Lemma 2.2 in [1] where \bar{N} is the unipotent subgroup opposite to N.

Theorem 3.11 If n > 1 and $m \neq 0$, then N does not have a finite number of open orbits under Int(M), i.e., \mathfrak{N} is not a prehomogenous space under Ad(M).

Proof Suppose $O = \bigcup O_i$ is a dense open subset of *N* where each O_i is an orbit of *N* under Int(*M*). Let $n(X_i, Y_i)$ be a representative of O_i under Int(*M*). Write $Y_i = A_i + B_i$ as in Lemma 3.4. By Lemma 3.4 and Corollaries 3.6 and 3.8, we can always assume B_i has a same form as the right side of equation (3.1) or (3.3) depending on whether *G* is symplectic or orthogonal, respectively. If *G* is orthogonal, we can even fix B_i as B_n by Corollary 3.8.

Suppose $n(X, Y) \in O$ with Y = A + B being decomposed as in Lemma 3.4, then there is an *i* such that $n(X, Y) \in O_i$. Thus, there exists an $m = (g, h, \varepsilon(g^{-1})) \in M$, such that $Int(m) \circ n(X, Y) = n(X_i, Y_i)$. Consequently, $gY\varepsilon(g) = Y_i$, $gB\varepsilon(g) = B_i$, by the uniqueness of the decomposition in Lemma 3.2.

Therefore, if G is symplectic or if G is orthogonal and n is even, then

(3.4)
$$\frac{\det(B)}{\det(Y)} = \frac{\det(B_i)}{\det(Y_i)},$$

since by Lemma 3.10, we can always assume that both det(Y) and $det(Y_i)$ are nonzero. The left side of equation (3.4) is a rational function in terms of the entries of *X* and *B*. By Corollaries 3.6 and 3.8 and Lemma 3.9, it is obviously nonconstant. Therefore, the set of n(X, Y) satisfying equation (3.4) is only a closed subset of *N*, a contradiction!

If *G* is orthogonal and *n* is odd, let $B' = g^{-1}E_{n,1}\varepsilon(g)^{-1}$. Then $g(B+B')\varepsilon(g) = E_n$, and consequently, we will have:

$$\frac{\det(B+B')}{\det(Y)} = \frac{\det(E_n)}{\det(Y_i)}.$$

By the proof of Lemma 3.7 and Corollary 3.8, the entries of g are rational functions of that of B, so are the entries of B'. Now the same argument of the above paragraph applies which will lead to a contradiction.

Remark. We use E_n and B + B' because the determinants of both B and B_i are 0 when G is orthogonal and n is odd.

4 Cases When \mathfrak{N} is Prehomogeneous

By Theorem 3.11, \mathfrak{N} has a finite number of open orbits under Ad(*M*) only when n = 1 or m = 0. Since the prehomogeneity of \mathfrak{N} has been studied in [6, 7, 11] when \mathfrak{N} is abelian, we will only study the prehomogeneity when \mathfrak{N} is non-abelian.

When m = 0, the only case that \mathfrak{N} is non-abelian is $G = SO_{2l+1}(F)$. While if n = 1, the unique case that \mathfrak{N} is non-abelian is $G = Sp_{2l}(F)$.

Theorem 4.1 If $G = SO_{2l+1}(F)$ and m = 0, then N is a prehomogeneous space under Int(M).

Proof Suppose $n(X, Y) \in N$, in this case M = G' and

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in M_{n \times 1}(F).$$

By restricting to a dense open subset, we can assume that $X \neq 0$, then there is $g \in G'$ such that $gX = (0, ..., 0, 1)^t = X_1$. Therefore, $X'\varepsilon(g) = (gX)' = (-1, 0, ..., 0)$, and consequently, $gXX'\varepsilon(g) = -E_{1,n}$.

Write Y = A + B as in Lemma 3.4, let $B' = \varepsilon(g) \circ B$. By Corollary 3.8, there is $g' \in G'$ such that $\varepsilon(g') \circ B' = B_n$ by restricting *B* to a dense open subset of $M_n^{s\varepsilon}(F)$. Moreover, $g'X_1 = X_1$ and $\varepsilon(g')$ fixes $E_{n,1}$. Therefore $\operatorname{Int}(g'g) \circ n(X, Y) =$ $n(X_1, B_n - \frac{1}{2}E_{n,1})$, in other words, there is only one dense open orbit of *N* under $\operatorname{Int}(M)$.

Theorem 4.2 If $G = \text{Sp}_{2l}(F)$ and n = 1, then N is a prehomogeneous space under Int(M).

Proof Suppose $n(X, Y) \in N$, then $X \in M_{1 \times (2m-2)}(F)$ and XX' = 0. Also in this case $M = \operatorname{GL}_1 \times \operatorname{Sp}_{2m}(F)$, $G' = \operatorname{GL}_1 = F^*$, and $Y \in M_1(F) = F$.

Assume $a = Y \neq 0$, this assumption will apply to a dense open subset of *N*. Write $a = b^2 \varepsilon_i$ for a suitable $\varepsilon_i \in S$, let $g_1 = (b^{-1}, I_{2m}, b)$. Then $Int(g_1) \circ n(X, Y) = n(X_1, \varepsilon_i)$, where $X_1 = b^{-1}X$.

Suppose $X_1 = (x_1, \ldots, x_m, x_{m+1}, \ldots, x_{2m})$. We can assume $x_1 \neq 0$, by doing so, it will only amount to a closed subset of N. Let $X'_1 = (x_1, \ldots, x_m)$, then there exists a $g \in GL_m(F)$ such that $X'_1g = (1, 0, \ldots, 0) \in M_{1 \times m}(F)$. Let

 $h' = \text{diag}(g, w_m^{-1} g^{-1} w_m^{-1}) \in Sp_{2m}(F), \quad h_1 = \text{diag}(1, h', 1) \in M, \quad \text{and } X_2 = X_1 h'.$ Then $\text{Int}(h_1^{-1}) \circ n(X_1, \varepsilon_i) = n(X_2, \varepsilon_i)$, where

$$X_2 = (1, 0, \dots, 0, x'_{m+1}, \dots, x'_{2m}) \in F$$

for some suitable $x'_{m+1}, \ldots, x'_{2m} \in F$.

Let

$$Q = \begin{pmatrix} -x'_{m+1} & \cdots & -x'_{2m-1} & -x'_{2m} \\ 0 & \cdots & 0 & -x'_{2m-1} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & -x'_{m+1} \end{pmatrix} \in M_n^{s\varepsilon}(F),$$

and

$$h" = \begin{pmatrix} I_m & Q \\ 0 & I_m \end{pmatrix} \in \operatorname{Sp}_{2m}(F).$$

Then $X_1h'h'' = X_2h'' = (1, 0, \dots, 0) \in M_{1 \times 2m}(F)$.

Denote $E_1 = (1, 0, ..., 0) \in M_{1 \times 2m}(F)$, let $h_2 = \text{diag}(1, h^*, 1)$ and $h = h_2^{-1}h_1^{-1}g_1$, then $\text{Int}(h) \circ n(X, Y) = n(E_1, \varepsilon_i)$. Therefore, there are only finitely many generators for a dense open subset of N under Int(M). *i.e.*, \mathfrak{N} is a prehomogeneous space under Ad(M). In particular, the number of open orbits is card(S).

5 Centralizers and Twisted Centralizers on Prehomogeneous Cases

We now suppose $G = SO_{2l+1}(F)$, $\alpha = e_l$; or $G = Sp_{2l}(F)$, and $\alpha = e_1 - e_2$. Then

$$M = \begin{cases} \operatorname{GL}_{l}(F) \times 1, & \text{if } G \text{ is orthogonal;} \\ \operatorname{GL}_{1}(F) \times \operatorname{Sp}_{2l-2}(F), & \text{if } G \text{ is symplectic.} \end{cases}$$

And

$$G_m = \begin{cases} 1, & \text{if } G \text{ is orthogonal;} \\ Sp_{2l-2}(F), & \text{if } G \text{ is symplectic,} \end{cases}$$

by definition.

By Theorems 4.1 and 4.2, N is prehomogeneous under Int(M). We choose w_0 as follows:

$$w_0 = \begin{cases} \begin{pmatrix} 0 & 0 & I_n \\ 0 & 1 & 0 \\ I_n & 0 & 0 \end{pmatrix}, & \text{if } G \text{ is orthogonal;} \\ \begin{pmatrix} 0 & 0 & -1 \\ 0 & I_{2l-2} & 0 \\ 1 & 0 & 0 \end{pmatrix}, & \text{if } G \text{ is symplectic.} \end{cases}$$

Lemma 5.1 Suppose $G = SO_{2l+1}(F)$ and $n = n(X, Y) \in N$. Then $w_0^{-1}n \in P\bar{N}$ if and only if $Y \in GL_n(F)$, in which case

(5.1)
$$w_0^{-1}n = \begin{pmatrix} \varepsilon(Y^{-1}) & -Y^{-1}X & I_n \\ 0 & 1 - X'Y^{-1}X & X' \\ 0 & 0 & Y \end{pmatrix} \begin{pmatrix} I_n & 0 & 0 \\ (Y^{-1}X)' & 1 & 0 \\ Y^{-1} & Y^{-1}X & I_n \end{pmatrix},$$

with $X'Y^{-1}X = 0$.

Proof This is [1, Lemma 2.2]. The proof is straightforward.

Lemma 5.2 Suppose $G = \text{Sp}_{2l}(F)$ and $n = n(X, Y) \in N$. Then $w_0^{-1}n \in P\bar{N}$ if and only if $Y \in \text{GL}_n(F)$, in which case

(5.2)
$$w_0^{-1}n = \begin{pmatrix} -\varepsilon(Y^{-1}) & -Y^{-1}X & I_n \\ 0 & I_{2m} - X'Y^{-1}X & X' \\ 0 & 0 & -Y \end{pmatrix} \begin{pmatrix} I_n & 0 & 0 \\ (Y^{-1}X)' & I_{2m} & 0 \\ Y^{-1} & Y^{-1}X & I_n \end{pmatrix}$$

and $I_{2m} - X'Y^{-1}X \in \text{Sp}_{2m}(F)$.

Proof This is also [1, Lemma 2.2], but since we chose a different J_{2l} , the right side of equation (5.2) is a little bit different from the expression there.

Write equations (5.1) and (5.2) as $w_0^{-1}n_i = m_i n_i n_i^-$, where m_i, n_i, n_i^- belong to M, N and \bar{N} , respectively. Define

$$M_{n_i} = \operatorname{Cent}_M(n_i) = \{ m \in M | \operatorname{Int}(m) \circ n_i = n_i \}$$

https://doi.org/10.4153/CJM-2009-037-6 Published online by Cambridge University Press

as the centralizer of n_i in M, and

$$M_{m_i}^t = \operatorname{Cent}_{m_i}^t = \{m \in M | w_0(m)m_im^{-1} = m_i\}$$

as the twisted (by means of w_0) centralizer of m_i in M. Then $M_{n_i} \subset M_{m_i}^t$ by [10, Lemma 2.1].

Theorem 5.3 Suppose G, M, α as above, then for any $n_i \in O$, where O has the same meaning as in Theorem 4.1 or 4.2, $|M_{m_i}^t/M_{n_i}| = 2$.

Proof We only need to prove the lemma for any generator of each orbit, since any two elements in a same orbit are $\varepsilon(G')$ conjugate to each other, their centralizers and twisted centralizers are therefore $\varepsilon(G')$ conjugate to each other.

First suppose G is orthogonal, then by Theorem 4.1, there is only one orbit of N under Int(M). We can also choose a representative of this orbit as $n = n(X_1, B_n - \frac{1}{2}E_{n,1})$, where $B_n, E_{n,1}$ and $X_1 = (0, \ldots, 0, 1)^t \in M_{n \times 1}(F)$ are as in Theorem 4.1. Then in this case $m_i = B_n - \frac{1}{2}E_{n,1}$ if we identify $(\varepsilon(G'^{-1}), 1, G')$ with G'. Suppose $g \in M_{m_i}^t \subset G'$ such that $\varepsilon(g) \circ m_i = m_i$. Then by Lemma 3.2, $\varepsilon(g) \circ$

Suppose $g \in M_{m_i}^t \subset G'$ such that $\varepsilon(g) \circ m_i = m_i$. Then by Lemma 3.2, $\varepsilon(g) \circ B_n = B_n$ and $\varepsilon(g) \circ (-E_{n,1}) = \varepsilon(g) \circ (X_1X_1') = (gX_1)(gX_1)' = -E_{n,1}$. Thus $gX_1 = \pm X_1$. If $gX_1 = X_1$, then $g \in M_{n_i}$; if $gX_1 = -X_1$, then $-g \in M_{n_i}$. Therefore $|M_{m_i}^t/M_{n_i}| = 2$.

Now suppose *G* is symplectic, then by Theorem 4.2, there are finitely many open orbits of *N* under Int(*M*). The generator of each orbit can be chosen as $n_i = n(E_1, \varepsilon_i)$ with $\varepsilon_i \in S$. If $m = (k, h, k^{-1}) \in M_{m_i}^t$, with $k \in F^*$ and $h \in \text{Sp}_{2l-2}(F)$. Then Int(*m*) $\circ m_i = m_i$, where $m_i = (-\varepsilon_i, I_{2l-2} + E_{2l-2,1}, -\varepsilon_i)$ is determined by Lemma 5.2.

Thus $k^2 \varepsilon_i = \varepsilon_i$ and $(kE_1h)'(kE_1h) = E_{2l-2,1} = E'_1E_1$. Therefore, $kE_1h = \pm E_1$. If $kE_1h = E_1$, then $m \in M_{n_i}$; if $kE_1h = -E_1$, then $(-1, I_{2l-2}, -1)m \in M_{n_i}$. Whence, $|M_{m_i}^t/M_{n_i}| = 2$.

6 Poles of Intertwining Operators on Prehomogeneous Cases

For a connected reductive *p*-adic group *H*, we use ${}^{\circ}\mathcal{E}(H)$ to denote the collection of equivalence classes of unitarizable irreducible admissible supercuspidal representations of *H*.

Let $(\tau', V') \in {}^{\circ}\mathcal{E}(\operatorname{GL}_n(F))$ and $(\tau, V) \in {}^{\circ}\mathcal{E}(G_m)$, then $\tau' \otimes \tau$ is a unitary supercuspidal representation of M. Let

$$I(s,\tau'\otimes\tau) = \operatorname{Ind}_{MN}^{G}((\tau'\otimes |\det()|^{s})\otimes\tau\otimes 1_{N}).$$

We will use $\mathbf{V}(s, \tau' \otimes \tau)$ to denote the space of $I(s, \tau' \otimes \tau)$. In order to understand the reducibility of $I(\tau' \otimes \tau) = I(0, \tau' \otimes \tau)$, one must determine the poles of the standard intertwining operator

$$A(s,\tau'\otimes\tau,w_0)f(g)=\int_N f(w_0^{-1}ng)dn$$

associated to $\tau' \otimes \tau$ (cf. [1,3,9,10]), where $f \in \mathbf{V}(s, \tau' \otimes \tau)$. By Bruhat's theorem (cf. [4]) we may assume that $w_0(\tau' \otimes \tau) \simeq \tau' \otimes \tau$, which is equivalent to assuming $\tau' \simeq \tilde{\tau'}$ [13].

Denote by \overline{N} the unipotent radical opposed to N. Let

$$\mathbf{V}(s,\tau'\otimes\tau)_0 = \{h \in \mathbf{V}(s,\tau'\otimes\tau) | \operatorname{supp}(h) \subset \overline{N} \text{ modulo } P\}.$$

By a lemma of Rallis (cf. [9]), it is enough to compute the poles that arise when $A(s, \tau' \otimes \tau, w_0)$ is applied to functions in $\mathbf{V}(s, \tau' \otimes \tau)_0$ and evaluated at the identity.

Let ${}^{L}G' = \operatorname{GL}_{n}(\mathbb{C})$ be the *L*- group of *G'*, *r* be the adjoint action of ${}^{L}G'$ on the Lie algebra ${}^{L}\mathfrak{n}$ of ${}^{L}N$, the *L*-group of *N*. Let ρ_{n} be the standard representation of $\operatorname{GL}_{n}(\mathbb{C})$, then $\rho_{n} \otimes \rho_{n} = \Lambda \rho_{n}^{2} \oplus \operatorname{Sym}^{2}(\rho_{n})$. Let $\operatorname{SO}_{n}^{*}$ be any of the quasi-split orthogonal groups which has $\operatorname{SO}_{n}(\mathbb{C})$ as the connected component of its *L*- group if *n* is even.

6.1 *G* is Orthogonal

We will still consider the case when $G = SO_{2l+1}(F)$ and $\alpha = e_l$. Notice in this case $n = l, M = GL_n$ and $G_m = 1$.

We let $(\tau', V') \in {}^{\circ}\mathcal{E}(\operatorname{GL}_n(F))$ and

$$I(s,\tau') = \operatorname{Ind}_{MN}^G((\tau' \otimes |\det()|^s) \otimes 1_N).$$

In this special case, we will use $\mathbf{V}(s, \tau'), I(\tau'), A(s, \tau', w_0), \mathbf{V}(s, \tau')_0$ to denote the general settings $\mathbf{V}(s, \tau' \otimes \tau), I(s, \tau' \otimes \tau), A(s, \tau' \otimes \tau, w_0), \mathbf{V}(s, \tau' \otimes \tau)_0$ as defined at the beginning of this section, respectively.

Let $h \in \mathbf{V}(s, \tau')_0$. Fix open compact subsets $L \subset M_n(F)$ and $L' \subset M_{n \times 1}(F)$. We assume that for some $\nu' \in V'$, *h* satisfies:

$$h\begin{pmatrix} I_n & 0 & 0\\ (Y^{-1}X)' & 1 & 0\\ Y^{-1} & Y^{-1}X & I_n \end{pmatrix} = \xi_L(Y^{-1})\xi_{L'}(Y^{-1}X)(\nu'),$$

where ξ_L and $\xi_{L'}$ are the characteristic functions of L and L', respectively. Let $\widetilde{\mathbf{V}}'$ be the dual spaces of \mathbf{V}' . Choose $\widetilde{v}' \in \widetilde{\mathbf{V}}'$ and let $\psi_{\tau'}$ be the matrix coefficient of τ' given by pair (v', \widetilde{v}') . Then, from Lemma 5.1, $\langle \widetilde{v}', A(s, \tau', w_0)h(e) \rangle$ is equal to

(6.1)
$$\int_{(X,Y)} \psi_{\tau'}(Y) |\det(Y)|^{-s - \langle \rho, \bar{\alpha} \rangle} \xi(X,Y) d(X,Y),$$

where the integral is over the collection of *F*-rational solutions (X, Y) satisfying Lemmas 3.3 and 5.1. Here

$$\rho = \frac{1}{2} \sum_{\beta \in \Phi^+ \setminus \sum^+(\Theta)} \beta, \quad \xi(X, Y) = \xi_L(Y^{-1})\xi_{L'}(Y^{-1}X), \quad \widetilde{\alpha} = \langle \rho, \alpha \rangle^{-1} \rho,$$

and d(X, Y) is a choice of Haar measure on N.

By Theorem 4.1, there is only one orbit O of N under Int(G'). For any $n(X, Y) \in$ O, define $d^*(X, Y) = |\det(Y)|^{-\langle \rho, \bar{\alpha} \rangle} d(X, Y)$, then $d^*(X, Y)$ is an invariant measure on O (see [1]). Therefore, the integral in (6.1) will be changed to:

(6.2)
$$\int_{(X,Y)} \psi_{\tau'}(Y) |\det(Y)|^{-s} \xi(X,Y) d^*(X,Y).$$

Prehomogeneity on Quasi-Split Classical Groups and Poles of Intertwining Operators 703

Moreover, the representative of this orbit can be chosen as $n(X_1, B_n)$, where $X_1 = (1, 0, ..., 0)^t \in M_{n \times 1}(F)$ and B_n as the right side of equation (3.3). Hence, the unique dense open subset O can be expressed as $n(gX_1, g(B_n - \frac{1}{2}E_{n,1})\varepsilon(g))$ as g runs through G'. Thus, $d^*(X, Y)$ induces an invariant measure on G'/M_{n_i} . Furthermore, by [10, Lemma 2.3], it also induces an invariant measure on the quotient $G'/M_{m_i}^t$ since $M_{m_i}^t/M_{n_i} = 2$ by Theorem 5.3. Therefore, if we let $Y_1 = B_n - \frac{1}{2}E_{n,1}$, then equation (6.2) can be expressed as:

(6.3)
$$2\int_{G'/G'_{\varepsilon,Y_1}}\psi_{\tau'}(gY_1\varepsilon(g))|\det(gY_1\varepsilon(g))|^{-s}\xi(gX_1,gY_1\varepsilon(g))d\dot{g}$$

where $M_{m_i}^t = G_{\varepsilon, Y_1}'$ by definition.

Let ω' be the central character of τ' . Since we are assuming that τ' is self-dual, ω'^2 is trivial. We then can choose $f \in C^{\infty}_c(G')$ such that

$$\psi_{\tau'}(g') = \int_{Z(G')} f(zg')\omega'(z^{-1})d^{\times}z.$$

Substitute the above equation into (6.3), then the expression will be:

(6.4)
$$2\int_{G'/G'_{\varepsilon,Y_1}}\int_{Z(G')}f(zgY_1\varepsilon(g))\omega'(z^{-1})d^{\times}z|\det(gY_1\varepsilon(g))|^{-s}\xi(gX_1,gY_1\varepsilon(g))dg.$$

By making a substitution $gz \rightarrow g$, we can rewrite expression (6.4) as:

(6.5)
$$2\sum_{\gamma\in S}\omega'(\gamma)\int_{G'/G'_{\varepsilon,Y_1}}\int_{Z(G')}f(\gamma gY_1\varepsilon(g))|\det z|^{-2s}|\det(gY_1\varepsilon(g))|^{-s}$$
$$\xi_L(z^{-2}\varepsilon(g)^{-1}Y_1^{-1}g^{-1})\xi_{L'}(z^{-1}\varepsilon(g)^{-1}Y_1^{-1}X_1)d^{\times}zd\dot{g}.$$

Now we have the following.

Lemma 6.1 The intertwining operator $A(s, \tau', w_0)$ is convergent for s > 0 and has a pole at s = 0 if and only if

(6.6)
$$\sum_{\gamma \in S} \omega'(\gamma) \int_{G'/G'_{\varepsilon,Y_1}} f(\gamma g Y_1 \varepsilon(g)^{-1}) d\dot{g} \neq 0.$$

Proof This has been proved in [9], and a more general result has also been established in [1]. Here we will use the finiteness of orbits to give a shorter proof.

We can use a similar argument as that of [1, Lemma 4.5] to prove our lemma. Namely, the integrand inside (6.5) is nonzero only when

$$gY_1\varepsilon(g) \in \gamma^{-1}\operatorname{supp}(f) \cap z^2\operatorname{supp}(\xi_L)^{-1} = \mathbf{C},$$

where $\operatorname{supp}(\xi_L)^{-1}$ is the subset of \overline{N} consisting of the inverse elements of $\operatorname{supp}(\xi_L)$. Thus, g must belong to a compact subset of $G'/G'_{\varepsilon,Y_1}$ and $z^{-2} \in \operatorname{supp}(\xi_L) \cdot \mathbb{C}$. Consequently, |z| must be bounded from below.

Therefore, there exists μ such that when $|z|_F > \mu$, the order of the integrals in (6.5) can be interchanged. By the fact that $f, \xi_L, \xi_{L'}$ are all bounded, the conclusion of the lemma follows immediately.

Moreover, Shahidi in [9] has shown that the orbital integrals appearing in equation (6.6) are all equal, *i.e.*, for any $\gamma \in S$,

$$\int_{G'/G'_{\varepsilon,Y_1}} f(\gamma g Y_1 \varepsilon(g)^{-1}) d\dot{g} = \int_{G'/G'_{\varepsilon,Y_1}} f(g Y_1 \varepsilon(g)^{-1}) d\dot{g}.$$

We thus obtain the following.

Theorem 6.2 The intertwining operator $A(s, \tau', w_0)$ has a pole at s = 0 or equivalently $I(\tau')$ is irreducible if and only if $\omega' = 1$ and

(6.7)
$$\int_{G'/G'_{\varepsilon,Y_1}} f(gY_1\varepsilon(g)^{-1}) d\dot{g} \neq 0.$$

In that case:

(a) if n is odd, then $A(s, \tau', w_0)$ has a pole at s = 0;

(b) if n is even, then $A(s, \tau', w_0)$ has a pole at s = 0 if and only if τ' comes from $SO_n^*(F)$.

Proof If ω' is nontrivial, then equation (6.6) is zero. Part (a) is [9, Proposition 3.10], and part (b) is Corollary 10.6 from the same paper. We give here a shorter proof for part (b).

By Theorem 4.1, there is only one orbit of *N* under Int(*M*). Moreover, by the proof of Theorem 4.1, we can choose $n_i(kX_1, B_n - \frac{1}{2}k^2E_{n,1})$ as a generator of this orbit for any $k \in F^*$. Let $Y_i = B_n - \frac{1}{2}k^2E_{n,1}$, then (6.7) will be changed to:

$$\int_{G'/G'_{\varepsilon,Y_i}} f(gY_i\varepsilon(g)^{-1})d\dot{g} \neq 0.$$

Because *n* is even, both B_n and Y_i belong to G'. Since $f \in C_c^{\infty}(G')$, it is clear that $gY_i \varepsilon(g)^{-1} \in \text{supp}(f)$ if and only if \overline{g} belongs to a compact set \mathbb{C}_i of $G'/G'_{\varepsilon,Y_i}$, where \overline{g} is the representative of g in $G'/G'_{\varepsilon,Y_i}$. Moreover, when |k| is small enough, these \mathbb{C}_i will be independent of k. We will use \mathbb{C} to denote such uniform \mathbb{C}_i .

For each $\bar{g} \in \mathbb{C}$, there is a neighborhood O(g) of g such that for any $g' \in O(g)$, there is a positive number u_g , such that $f(g'B_n\varepsilon(g')^{-1}) = f(g'Y_i\varepsilon(g')^{-1})$ when $|k| < u_g$. By the compactness of \mathbb{C} , we can choose k small enough such that for any $gY_i\varepsilon(g)^{-1} \in \operatorname{supp}(f)$, $f(gB_n\varepsilon(g)^{-1}) = f(gY_i\varepsilon(g)^{-1})$. Therefore, the determining condition (6.7) will be changed to:

$$\int_{G'/G'_{\varepsilon,B_n}} f(gB_n\varepsilon(g)^{-1})d\dot{g}\neq 0.$$

But this is the determining condition of the same intertwining operators for SO_n^{*} if we take $M = GL_n(F)$ there. Thus, $A(s, \tau', w_0)$ has a pole at s = 0 if and only if τ' comes from SO_n^{*}(F) by means of the definition in [9].

6.2 *G* is Symplectic

We now consider the case $G = \text{Sp}_{2l}(F)$ and $\alpha = e_1 - e_2$. Notice $M = \text{GL}_1(F) \times \text{Sp}_{2l-2}(F) = F^* \times G_m$.

Let χ be a character of $F^* = GL_1(F)$ to the unit circle in the complex plane and V' be the space of χ . Since we may assume χ is self-dual, $\chi^2 = 1$. Let $(\tau, V) \in {}^{\circ}\mathcal{E}(G_m)$ and

$$I(s, \chi \otimes \tau) = \operatorname{Ind}_{MN}^G((\chi \otimes |\cdot|^s) \otimes \tau \otimes 1_N).$$

Let $h \in \mathbf{V}(s, \chi \otimes \tau)_0$. Fix open compact subsets $L \subset F$ and $L' \subset M_{1 \times 2m}(F)$. We assume that for some $\nu' \in V', \nu \in V$, *h* satisfies:

$$h\begin{pmatrix} I_n & 0 & 0\\ (Y^{-1}X)' & I_{2m} & 0\\ Y^{-1} & Y^{-1}X & I_n \end{pmatrix} = \xi_L(Y^{-1})\xi_{L'}(Y^{-1}X)(\nu' \otimes \nu),$$

where ξ_L and $\xi_{L'}$ are the characteristic functions of L and L', respectively. Let $\widetilde{\mathbf{V}}', \widetilde{\mathbf{V}}$ be the dual spaces of \mathbf{V}' and \mathbf{V} , respectively. Choose $\widetilde{\mathbf{v}}' \in \widetilde{\mathbf{V}}'$ and $\widetilde{\mathbf{v}} \in \widetilde{\mathbf{V}}$, let ψ_{χ} and f_{τ} be the matrix coefficient of χ and τ given by pairs (v', \widetilde{v}') and (v, \widetilde{v}) , respectively. Then from Lemma 5.2, $\langle \widetilde{v}' \otimes \widetilde{v}, A(s, \chi \otimes \tau, w_0)h(e) \rangle$ is equal to

$$\int_{(X,Y)} \psi_{\chi}(-Y) f_{\tau}(I_{2m} - X'Y^{-1}X) |Y|^{-s - \langle \rho, \bar{\alpha} \rangle} \xi(X,Y) d(X,Y),$$

which is proportional to

(6.8)
$$\int_{(X,Y)} \chi(Y) f_{\tau}(I_{2m} - X'Y^{-1}X) |Y|^{-s - \langle \rho, \bar{\alpha} \rangle} \xi(X,Y) d(X,Y),$$

where the integral is over the collection of *F*-rational solutions (X, Y) satisfying Lemmas 3.3 and 5.2. Here ρ , $\xi(X, Y)$, d(X, Y) have a same meaning as in Subsection 6.1.

By Theorem 4.2, there are only a finite number of open orbits O of N under Int(G'). For any $n(X,Y) \in O$, define $d^*(X,Y) = |Y|^{-\langle \rho, \tilde{\alpha} \rangle} d(X,Y)$, then $d^*(X,Y)$ is an invariant measure on O (cf [1]). Therefore, the integral in (6.8) will be changed to:

(6.9)
$$\int_{(X,Y)} \chi(Y) f_{\tau}(I_{2m} - X'Y^{-1}X) |Y|^{-s} \xi(X,Y) d^{*}(X,Y).$$

Moreover, the representative of each orbit can be chosen as $n(E_1, \varepsilon_i)$, where $X_1 = (1, 0, ..., 0) \in M_{1 \times n}(F)$ and $\varepsilon_i \in S$. Hence, each open subset of O can be expressed as $n(gX_1h, g^2\varepsilon_i)$ as g and h run through G' and G_m , respectively. Thus, $d^*(X, Y)$ induces an invariant measure on G'/M_{n_i} . Furthermore, by the same reason as before, it also induces an invariant measure dm on the quotient $M/M_{m_i}^t$ since $M_{m_i}^t/M_{n_i} = 2$ by Theorem 5.3. Therefore, if we let $Z_i = I_{2m} - \varepsilon_i^{-1} E_{2m,1}$, then $M_{m_i}^t = \{\pm 1\} \times C(Z_i)$ where $C(Z_i)$ is the centralizer of Z_i in G_m . Then equation (6.9) can be expressed as:

$$2\int_{F^*/\{\pm 1\}}\int_{G_m/C(Z_i)}\sum_{\varepsilon_i\in S}\chi(g^2\varepsilon_i)f_{\tau}(hZ_ih^{-1})|g^2\varepsilon_i|^{-s}\xi(gE_1,g^2\varepsilon_i)d\dot{h}d\dot{g}$$

where $d\dot{g}, d\dot{h}$ are invariant measures on $G'/\{\pm 1\}$ and $G_m/C(Z_i)$, respectively, induced from $d\dot{m}$.

Then we have the following.

Lemma 6.3 The intertwining operator $A(s, \chi \otimes \tau, w_0)$ is convergent for s > 0 and has a pole at s = 0 if and only if

(6.10)
$$\int_{G_m/C(Z_i)} \sum_{\varepsilon_i \in S} \chi(\varepsilon_i) f_\tau(hZ_ih^{-1}) d\dot{h} \neq 0.$$

Proof The proof is similar to that of Lemma 6.1. Actually, it can be regarded as an improvement of the results in [1, 10] in these two special cases.

Since $G_m = \operatorname{Sp}_{2m}(F)$, we will fix $T, e_i, i = 1, 2, \ldots, m$ as in Section 2. Let $\beta = e_1 - e_2$ and choose a maximal parabolic subgroup P = MN with $M = M_\beta$. Then $M = \operatorname{GL}_1(F) \times \operatorname{Sp}_{2m-2}(F) = M_1 \times M_2$. Let $T_1 = \{\operatorname{diag}(t_1, 1, \ldots, 1, 1, \cdots, 1, t_1^{-1}) | t_1 \in F^*\} \cong F^*$ be a torus in M.

For each $i, 1 \le i \le m$, we choose a root vector of $-2e_i$ as: $g_{-2e_i} = E_{2l+1-i,i}$. Let $U_{-2e_i}(x) = \exp(xg_{-2e_i})$ be the unipotent subgroup of G_m attached to $-2e_i$. Then $Z_i = U_{-2e_i}(-\varepsilon_i)$. Since $\bar{N}PN$ is a dense subset of G_m , (6.10) can be changed to:

(6.11)
$$\int_{\bar{N}PN/\bar{N}PN\cap C(Z_i)} \sum_{\varepsilon_i \in S} \chi(\varepsilon_i) f_{\tau}(hZ_ih^{-1}) d\dot{h} \neq 0$$

But it can be easily shown that $\bar{N}PN \cap C(Z_i) = \bar{N}M_2$, thus, (6.11) is equivalent to:

(6.12)
$$\int_{M_1N} \sum_{\varepsilon_i \in S} \chi(\varepsilon_i) f_\tau(hZ_ih^{-1}) d\dot{h} \neq 0$$

We state our main result in this case as follows.

Theorem 6.4 The intertwining operator $A(s, \chi \otimes \tau, w_0)$ has a pole at s = 0; equivalently, $I(\chi \otimes \tau)$ is irreducible if $\chi = 1$.

Proof For any fixed $v \in \mathbf{V}$, $\tilde{v} \in \widetilde{\mathbf{V}}$, let $K_{v,\tilde{v}}$ be a minimal compact subgroup of U_{-2e_1} such that $K_0 = \operatorname{supp}(f_{\tau}) \cap U_{-2e_1} \subset K_{v,\tilde{v}}$. Let $\phi \colon \mathbf{V} \longrightarrow \mathbf{V}$ be defined by

$$\phi(v_1) = \operatorname{vol}(K_{v,\widetilde{v}})^{-1} \int_{K_{v,\widetilde{v}}} \tau(k) v_1 dk, \quad \forall v_1 \in \mathbf{V}.$$

Then $\mathbf{V} = \mathbf{V}^{K_{\nu,\tilde{\nu}}} \oplus \text{Ker } \phi$, with Ker ϕ being the orthogonal complement of $\mathbf{V}^{K_{\nu,\tilde{\nu}}}$ and ϕ is a projection from \mathbf{V} to $\mathbf{V}^{K_{\nu,\tilde{\nu}}}$. We will use $\nu_{1}^{K_{\nu,\tilde{\nu}}}$ to denote $\phi(\nu_{1})$.

Since $(\tau, V) \in {}^{\circ} \mathcal{E}(G_m)$, $\widetilde{\mathbf{V}}$ can be identified with \mathbf{V} through the Hermitian inner product $\langle \cdot, \cdot \rangle$. Let $\widetilde{\tau}$ be the contragredient representation of τ on $\widetilde{\mathbf{V}}$, then $\widetilde{\tau}(g) = \tau(g)$ for all $g \in G_m$ under the above identification. The left side of inequality (6.12) will be changed to

$$\begin{split} \int_{M_1N} \sum_{\varepsilon_i \in S} f_{\tau}(hZ_i h^{-1}) d\dot{h} &= \int_N \int_{F^*} \sum_{\varepsilon_i \in S} \langle \tau(u \cdot U_{-2e_1}(-\varepsilon_i t^2) \cdot u^{-1}) v, \widetilde{v} \rangle d\dot{t} d\dot{u} \\ &= \int_N \int_{F^*} \sum_{\varepsilon_i \in S} \langle \tau(U_{-2e_1}(-\varepsilon_i t^2)) \tau(u^{-1}) v, \tau(u^{-1}) \widetilde{v} \rangle d\dot{t} d\dot{u}, \end{split}$$

where $d\dot{u}, d\dot{t}$ are the restriction measures of $d\dot{h}$ on N, M_1 , respectively. For any $u \in N$, let $v_u = (\tau(u^{-1})v)^{K_{v,\tilde{v}}}$ and $\tilde{v}_u = (\tau(u^{-1})\tilde{v})^{K_{v,\tilde{v}}}$. Then

$$\int_{F^*} \sum_{\varepsilon_i \in S} \langle \tau(U_{-2e_1}(-\varepsilon_i t^2)) \tau(u^{-1}) \nu, \tau(u^{-1}) \widetilde{\nu} \rangle dt = \operatorname{vol}(K_0) \langle \nu_u, \tau(u^{-1}) \nu \rangle$$
$$= \operatorname{vol}(K_0) \langle \nu_u, \widetilde{\nu}_u \rangle.$$

In particular, if we choose $\tilde{v} = v$, then the right side of the above equation is nonnegative. We can also choose such v that $v^{K_{v,\tilde{v}}} \neq 0$, then if u belongs to a small neighborhood of $1, \tau(u^{-1})v = v$. Thus $\langle v_u, \tilde{v}_u \rangle > 0$.

Therefore, for some $v \in \mathbf{V}$ and $\tilde{v} \in \tilde{\mathbf{V}}$, the left side of (6.10) is non-zero and $A(s, \chi \otimes \tau, w_0)$ has a pole at s = 0.

Remark. If $\sigma = \chi \otimes |\det(\cdot)|^{s_1}$ is a self-dual representation of M_1 , then by the results in [8], $A(s, \sigma \otimes \tau, w_0)$ has a pole at $s = s_1$ if and only if $A(s, \chi \otimes \tau, w_0)$ has a pole at s = 0. For this reason, we have simplified our assumption on χ .

References

- D. Goldberg and F. Shahidi, On the tempered spectrum of quasi-split classical groups. Duke Math. J. 92(1998), no. 2, 255–294.
- [2] D. Goldberg and F. Shahidi, On the tempered spectrum of quasi-split classical groups. II. Canad. J. Math. 53(2001), no. 2, 244–277.
- [3] Harish-Chandra, Harmonic Analysis on Real Reductive Groups, III. Ann of Math. 104 (1976), 117–201.
- [4] Harish-Chandra, Harmonic analysis on reductive p-adic groups. In: Proc. Sympos. Pure Math. 26, American Mathematical Society, Providence, RI, 1973, pp. 167–192.
- [5] J. Humphreys, Introduction to Lie Algebras and representation theory. Second printing, revised,
- Graduate Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1978.
 I. Muller, Décomposition orbitale des espaces préhomogènes réguliers de type para
- [6] I. Muller, Décomposition orbitale des espaces préhomogènes réguliers de type parabolique commutatif et application. C. R Acad. Sci. Paris Sér. I Math. 303(1986), no. 11, 495–498.
- [7] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector space and their relative invariants. Nagoya Math. J. **65**(1977), 1-155.
- [8] F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups. Ann of Math. 132(1990), no. 2, 273–330.
- [9] _____, Twisted endoscopy and reducibility of induced representation for p-adic groups. Duke Math. J. **66**(1992), no. 1, 1–41.
- [10] _____, Poles of intertwining operators via endoscopy: the connection with prehomogeneous vector spaces. Compositio Math. 120(2000), no. 3, 291–325.
- [11] Ě. B. Vinberg, The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR Ser. Mat. 40(1976), no. 3, 488–526, 709. (1976),463-495.
- [12] X. Yu, Centralizer and twisted centralizers: application to intertwining operators. Canad. J. Math. 58(2006), no. 3, 643–672.
- [13] I. N. Bernstein and A. V. Zelevinskii, Representation of the group GL(n, F) where F is a local non-archimedean field. Russian Math. Surveys 31(1976), no. 3, 1–68.

Department of Mathematics, Xuzhou Normal University, 29 Shanghai Road, Xuzhou, China, 221116 e-mail: tianyuanwing@yahoo.com