Prehomogeneity on Quasi-Split Classical Groups and Poles of Intertwining Operators

Xiaoxiang Yu

Abstract

Suppose that $P=M N$ is a maximal parabolic subgroup of a quasisplit, connected, reductive classical group G defined over a non-Archimedean field and A is the standard intertwining operator attached to a tempered representation of G induced from M. In this paper we determine all the cases in which $\operatorname{Lie}(N)$ is prehomogeneous under $\operatorname{Ad}(m)$ when N is non-abelian, and give necessary and sufficient conditions for A to have a pole at 0 .

1 Introduction

In this paper we continue to study the poles of intertwining operators attached to representations induced from supercuspidal representations of maximal parabolic subgroups of quasi-split classical p-adic groups and their connection with local L functions [$1,2,9,10$].

To be more precise, let F be a non-Archimedean field of characteristic zero, G be a subgroup of F-rational points of a quasi-split connected reductive group \mathbf{G} over F and let $P=M N$ be a maximal parabolic subgroup of G.

Let $\mathfrak{N}=\operatorname{Lie}(N)$, the Lie algebra of N. When \mathfrak{N} is abelian, then it is known that \mathfrak{N} is a prehomogeneous space under the action of $\operatorname{Ad}(M)[6,11]$. The poles of some certain intertwining operators are determined in terms of orbital integrals in [10]. Even explicit generators of these orbits have been found, together with the fact that the centralizer and twisted centralizer are actually equal when G is split [12].

Throughout this paper we assume that \mathbf{G} is a quasi-split connected reductive classical group over F and P is any maximal parabolic subgroup of G. We have determined all cases when \mathfrak{N} is prehomogeneous under $\operatorname{Ad}(M)$ if \mathfrak{M} is non-abelian. Namely, except for two special cases, \mathfrak{N} is not prehomogeneous. And in these two special cases, we have shown that the centralizers have index 2 in the twisted centralizers and the poles of standard intertwining operators have been determined.

It should be pointed out that since \mathfrak{N} can be graded as $\mathfrak{N}=\mathfrak{N}_{1} \oplus \mathfrak{N}_{2}$ by α, where α is the simple root that determines P. Each $\mathfrak{R}_{i}, i=1,2$, is a prehomogeneous space under $\operatorname{Ad}(M)$, i.e., has a finite number of open orbits under $\operatorname{Ad}(M)$ by M. Sato and T. Kimura in [7]. However, it is not known whether \mathfrak{N} is prehomogeneous. In fact since \mathfrak{N} is reducible, it does not fall into the classification of prehomogeneous spaces in [7].

[^0]
2 Preliminaries

Let F be a non-Archimedean field of characteristic zero. Denote by \mathcal{O} its ring of integers and by \mathcal{P} the unique maximal ideal of \mathcal{O}. Let q be the number of elements in $\mathcal{O} / \mathcal{P}$ and fix a uniformizing element ϖ for which $|\varpi|=q^{-1}$, where $|\cdot|_{F}=|\cdot|$ denotes an absolute value for F normalized in this way.

Let \mathbf{G} be a quasisplit connected reductive classical group defined over F. For an positive integer r, let

$$
w_{r}=\left({ }_{l} . \cdot \begin{array}{l}
1 \\
1
\end{array}\right) \in M_{r}(F)
$$

And for any positive integer l, let

$$
J_{2 l}= \begin{cases}w_{2 l+1} & \text { if } \mathbf{G}=S O_{2 l+1} \\ w_{2 l} & \text { if } \mathbf{G}=S O_{2 l} \\ \left({ }_{-w_{l}}{ }^{w_{l}}\right) & \text { if } \mathbf{G}=S p_{2 l}\end{cases}
$$

Suppose \mathbf{G} is defined with respect to $J_{2 l}$, i.e., $\mathbf{G}=\left\{\left.g \in \mathrm{GL}_{k}\right|^{t} g J_{2 l} g=J_{2 l}\right\}^{\circ}$, with the superscript indicating the connected component.

Let \mathbf{T} be the maximal split torus of diagonal elements in \mathbf{G}, then we can take
if $\mathbf{G}=\mathrm{SO}_{2 l+1}$, and otherwise,

$$
\mathbf{T}=\left\{\left.\left(\begin{array}{lllllll}
x_{1} & & & & & & \\
& x_{2} & & & & & \\
& & \ddots & & & & \\
& & & x_{l} & & & \\
& & & x_{l}^{-1} & & \\
& & & & \ddots & \\
& & & & & x_{2}^{-1} & \\
& & & & & & \\
& & & & & & \\
&
\end{array}\right) \right\rvert\, x_{i} \in F^{*}, \quad i=1,2, \ldots, l\right\}
$$

Let $\mathbf{B}=\mathbf{T U}$ be a Borel subgroup of \mathbf{G}, where \mathbf{U} is the unipotent radical of \mathbf{B}. Let Δ be the set of simple roots of \mathbf{T} in the Lie algebra of \mathbf{U}. Denote by $\mathbf{P}=\mathbf{M N}$ a maximal parabolic subgroup of \mathbf{G} in the sense that $\mathbf{N} \subset \mathbf{U}$. Assume $\mathbf{T} \subset \mathbf{M}$ and let $\Theta=\Delta \backslash\{\alpha\}$ such that $\mathbf{M}=\mathbf{M}_{\theta}$. Let $\overline{\mathbf{N}}$ be the unipotent subgroup of \mathbf{G} opposed to N.

As usual, we will use $W=W(\mathbf{T})$ to denote the Weyl group of \mathbf{T} in \mathbf{G}. Given $\widetilde{w} \in W$, we use w to denote a representative for \widetilde{w}. Particularly, let $\widetilde{w_{0}}$ be the longest element in W modulo the Weyl group of \mathbf{T} in \mathbf{M}.

We will also use $G, P, M, N, \bar{N}, B, T, U$ to denote the subgroups of F-rational points of the groups $\mathbf{G}, \mathbf{P}, \mathbf{M}, \mathbf{N}, \overline{\mathbf{N}}, \mathbf{B}, \mathbf{T}, \mathbf{U}$, respectively. Let Φ be the set of roots of G, and let Φ^{+}be the positives ones. Let $\sum(\Theta)$ be the subset of Φ that are the linear combinations of the elements from Θ and $\sum^{+}(\Theta)$ be the subset consisting of its positive elements.

Let $\mathfrak{g}=\operatorname{Lie}(G)$, the Lie algebra of G. For any $g \in G$, We will use $\operatorname{Int}(g)$ to denote the inner morphism of G induced by g, i.e., for any $u \in G$, $\operatorname{Int}(g) \circ u=g u g^{-1}$. We will use $\operatorname{Ad}(g)$ to denote the adjoint action on \mathfrak{g} induced from $\operatorname{Int}(g)$.

Let $\mathfrak{N}=\operatorname{Lie}(N)$, the Lie algebra of N. Then \mathfrak{N} can be graded by α as $\mathfrak{N}=\mathfrak{N}_{1} \oplus \mathfrak{N}_{2}$, i.e., for any $t \in\{$ center of $M\}$, and for any $\mathfrak{n}_{1} \in \mathfrak{N}_{1}, \mathfrak{n}_{2} \in \mathfrak{N}_{2}$,

$$
\operatorname{Ad}(t) \circ \mathfrak{n}_{1}=\alpha(t) \mathfrak{n}_{1} \quad \operatorname{Ad}(t) \circ \mathfrak{n}_{2}=2 \alpha(t) \mathfrak{n}_{2}
$$

M acts on \mathfrak{N} by adjoint action, in particular, each $\mathfrak{N}_{i}, i=1,2$, is invariant under $\operatorname{Ad}(M)$. Notice \mathfrak{N}_{2} is the center of \mathfrak{M}. Suppose $N_{i}=\exp \left(\mathfrak{N}_{i}\right), i=1,2$, then $N=$ $N_{1} N_{2}$ with N_{2} being the center of N.

Suppose $\Delta=\left\{\alpha_{i} \mid i=1,2, \ldots, l\right\}$. Let $e_{i}(1 \leq i \leq l) \in \operatorname{Hom}\left(T, F^{*}\right)$ such that $e_{i}(T)=x_{i}$, then $\alpha_{i}=e_{i}-e_{i+1}, i=1,2 \cdots l-1$, and

$$
\alpha_{l}= \begin{cases}e_{l}, & \text { if } G=\mathrm{SO}_{2 l+1}(F) \\ e_{l-1}+e_{l}, & \text { if } G=\mathrm{SO}_{2 l}(F) \\ 2 e_{l}, & \text { if } G=\mathrm{Sp}_{2 l}(F)\end{cases}
$$

Suppose $\alpha=\alpha_{n}=e_{n}-e_{n+1}$, then $M \cong \mathrm{GL}_{n}(F) \times \mathrm{SO}_{2 m+1}(F), \mathrm{GL}_{n}(F) \times \mathrm{SO}_{2 m}(F)$ or $\mathrm{GL}_{n}(F) \times \mathrm{Sp}_{2 m}(F)$, depending on whether \mathbf{G} is of type B_{l}, D_{l}, or C_{l}, respectively. For convenience of notation, we set $G^{\prime}=\mathrm{GL}_{n}(F)$ and

$$
G_{m}= \begin{cases}\mathrm{SO}_{2 m+1}(F), & \text { if } G=\mathrm{SO}_{2 l+1}(F) ; \\ \mathrm{SO}_{2 m}(F), & \text { if } G=\mathrm{SO}_{2 l}(F) \\ \mathrm{Sp}_{2 m}(F), & \text { if } G=\mathrm{Sp}_{2 l}(F)\end{cases}
$$

3 Non-Prehomogeneity

For any $Y \in M_{n}(F)$, we set $\varepsilon(Y)=w_{n}{ }^{t} Y w_{n}^{-1}$. Then $\varepsilon(\varepsilon(Y))=Y$ since $w_{n}^{-1}=w_{n}$. We define an action ε of G^{\prime} on $M_{n}(F)$ by $\varepsilon(g) \circ A=g A \varepsilon(g), \forall g \in G^{\prime}, A \in M_{n}(F)$. And we call the group $G_{\varepsilon, A}^{\prime}=\left\{g \in G^{\prime} \mid \varepsilon(g) \circ A=A\right\}$ the ε - twisted centralizer of A in G^{\prime}.

Definition 3.1 For any $A \in M_{n}(F)$, we say that A is ε-symmetric if $\varepsilon(A)=A$ and skew- ε-symmetric if $\varepsilon(A)=-A$. Denote by $M_{n}^{\varepsilon}(F)$ the subspace of $M_{n}(F)$ consisting of ε-symmetric elements, and by $M_{n}^{s \varepsilon}(F)$ the subspace of $M_{n}(F)$ consisting of skew-ε-symmetric elements.

Lemma 3.2 $\quad M_{n}(F)=M_{n}^{\varepsilon}(F) \oplus M_{n}^{s \varepsilon}(F)$, and both $M_{n}^{\varepsilon}(F)$ and $M_{n}^{s \varepsilon}(F)$ are closed under $\varepsilon\left(G^{\prime}\right)$.

Proof Straightforward.

Lemma 3.3 Let $n \in N$ and suppose that

$$
n=\left(\begin{array}{ccc}
I_{n} & X & Y \\
0 & I_{k} & X^{\prime} \\
0 & 0 & I_{n}
\end{array}\right)
$$

Then we have

$$
X^{\prime}= \begin{cases}-J_{2 m}{ }^{t} X w_{n}, & \text { if } G \text { is orthogonal; } \\ J_{2 m}{ }^{t} X w_{n}, & \text { if } G \text { is symplectic } .\end{cases}
$$

And

$$
X X^{\prime}= \begin{cases}Y+\varepsilon(Y), & \text { if } G \text { is orthogonal; } \\ Y-\varepsilon(Y), & \text { if } G \text { is symplectic. }\end{cases}
$$

In particular, if $n \in N_{2}$, then $X=0$ and $Y \in M_{n}^{s \varepsilon}(F)\left(\right.$ or $\left.M_{n}^{\varepsilon}(F)\right)$ if G is orthogonal (or symplectic respectively). If $n \in N_{1}$, then $Y \in M_{n}^{\varepsilon}(F)\left(\operatorname{or} M_{n}^{s \varepsilon}(F)\right)$ if G is orthogonal (or symplectic respectively).

Proof The first part is a counterpart of [1, Lemma 2.1], the rest is straightforward.

Lemma 3.4 Use $n(X, Y)$ to denote n in Lemma 3.3. For any $n(X, Y) \in N$, write

$$
A= \begin{cases}\frac{Y+\varepsilon(Y)}{2}, & \text { if } G \text { is orthogonal; } \\ \frac{Y-\varepsilon(Y)}{2}, & \text { if } G \text { is symplectic } .\end{cases}
$$

And

$$
B= \begin{cases}\frac{Y-\varepsilon(Y)}{2}, & \text { if } G \text { is orthogonal; } \\ \frac{Y+\varepsilon(Y)}{2}, & \text { if } G \text { is symplectic }\end{cases}
$$

Then $Y=A+B$ with Y being decomposed as in Lemma 3.2.
Let $n_{1}=n(X, A), n_{2}=n(0, B)$. Then $n_{i} \in N_{i}, i=1,2$, and $n=n_{1} n_{2}$. Moreover, for any $B \in M_{n}^{s \varepsilon}(F)$ (or $M_{n}^{\varepsilon}(F)$, according to whether G is orthogonal or symplectic, respectively), $n(0, B) \in N_{2} \subset N$.

Proof Straightforward.

Let $M_{n}^{s}(F)=\left\{A \mid A \in M_{n}(F), A={ }^{t} A\right\}$ be the subspace of n-dimensional symmetric matrices, and $M_{n}^{s s}(F)=\left\{A \mid A \in M_{n}(F), A=-{ }^{t} A\right\}$ be the subspace of n-dimensional skew-symmetric matrices. Then it is clear that $M_{n}(F)=$ $M_{n}^{s}(F) \oplus M_{n}^{s s}(F)$.

Define a group action δ of G^{\prime} on $M_{n}(F)$ as $\delta(g) \circ A=g A^{t} g, \forall g \in G^{\prime}, A \in M_{n}(F)$. Then we have the following.

Lemma 3.5 $M_{n}^{s}(F)$ is a prehomogeneous space under δ.

Proof Let $\mathrm{GL}_{n}^{s}(F)=\mathrm{GL}_{n}(F) \cap M_{n}^{s}(F)$, then $\mathrm{GL}_{n}^{s}(F)$ is a dense open subset of $M_{n}^{s}(F)$. For any $A \in \mathrm{GL}_{n}^{s}(F)$, it is a basic fact in linear algebra that there is $g \in G^{\prime}$, such that $g A^{t} g=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, \alpha_{n}\right)$ for some $a_{i} \neq 0, i=1,2, \ldots, n$. Choose a complete set of representatives $S=\left\{\varepsilon_{i}, i=1,2, \ldots, \kappa\right\}$ of $F^{*} /\left(F^{*}\right)^{2}$, where $\kappa=\operatorname{card}\left(F^{*} /\left(F^{*}\right)^{2}\right)$. Suppose $a_{i}=t_{i}^{2} \varepsilon_{i}$ with $\varepsilon_{i} \in S$, let $g_{1}=\operatorname{diag}\left(t_{1}^{-1}, t_{2}^{-1}, \ldots, t_{n}^{-1}\right)$. Then $\delta\left(g_{1} g\right) \circ A=$ $\operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$. So $\mathrm{GL}_{n}^{s}(F)$ has only finite number of generators under $\delta\left(G^{\prime}\right)$, i.e., $M_{n}^{s}(F)$ is a prehomogeneous space.

Corollary 3.6 $M_{n}^{\varepsilon}(F)$ is a prehomogeneous space under $\varepsilon\left(G^{\prime}\right)$.
Proof There is an isomorphism $f: M_{n}^{\varepsilon}(F) \longrightarrow M_{n}^{s}(F)$ defined by $f(A)=A w_{n}, \forall A \in$ $M_{n}^{\varepsilon}(F)$. If we notice the fact that $\varepsilon(g)=f \circ \delta(g) \circ f^{-1}, \forall g \in G^{\prime}$, then the proof is trivial. Moreover, for any $A \in M_{n}^{\varepsilon}(F) \cap G^{\prime}$, there is $g \in G^{\prime}$, such that

$$
\varepsilon(g) \circ A=\left(\begin{array}{lll}
& \varepsilon_{2}^{\varepsilon_{1}} \tag{3.1}\\
& . &
\end{array}\right)
$$

with $\varepsilon_{i} \in S, i=1,2, \ldots, n$.
Lemma 3.7 $M_{n}^{s s}(F)$ is a prehomogeneous space under $\delta\left(G^{\prime}\right)$. More precisely, suppose

$$
B=\left(\begin{array}{ccccc}
0 & b_{1,2} & b_{1,3} & \cdots & b_{1, n} \\
-b_{1,2} & 0 & b_{2,3} & \cdots & b_{2, n} \\
-b_{1,3} & -b_{2,3} & 0 & \cdots & b_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-b_{1, n} & -b_{2, n} & -b_{3, n} & \cdots & 0
\end{array}\right)
$$

is an arbitrary element in $M_{n}^{s s}(F)$, then there is $g \in G^{\prime}$, such that

$$
\delta(g) \circ B=\left(\begin{array}{ccccc}
0 & 1 & & & \tag{3.2}\\
-1 & 0 & & & \\
& & 0 & 1 & \\
& & -1 & 0 & \\
& & & & \ddots
\end{array}\right)
$$

Moreover, such g fixes the vector $(0, \ldots, 0,1)^{t}$ by left multiplication, and consequently $\delta(g)$ will fix the element $E_{n, n}$.

Proof Let $r_{n}=2[n / 2]$, where $[n / 2]$ is the maximal integer that is no greater than $n / 2$. Let $\bar{M}_{n}^{s s}(F)=\left\{A \mid A \in M_{n}^{s s}(F), \operatorname{rank}(A)=r_{n}\right\}$, then $\bar{M}_{n}^{s s}(F)$ is a dense open subset of $M_{n}^{\text {ss }}(F)$.

If $n=1$, then the lemma is trivial.
If $n=2$, let $g=\operatorname{diag}\left(1, b_{1,2}^{-1}\right)$ if $B \neq 0$. Then g will satisfy the lemma.
Suppose the lemma is true for all $k \leq n-1$. Let $k=n$.
We can always assume $b_{1,2} \neq 0$. Otherwise, we first assume that there is one $i, 3 \leq i \leq n$, such that $b_{1, i} \neq 0$. Let $K_{2, i}=I_{n}+E_{2, i}$, where for any pair of positive integers $\{i, j\}, E_{i, j}$ is an elementary matrix in $M_{n}(F)$, whose $\{i, j\}$'s entry equals to 1 ,
all other entries are 0 . Then the $\{1,2\}^{\prime}$ s entry of $K_{2, i} B^{t} K_{2, i}$ is $b_{2, i}$, which is not 0 . On the other hand, if such i does not exist, then it will fall into the induction hypothesis.

Now let

$$
K_{i}=I_{n}-\frac{b_{1, i}}{b_{1,2}} E_{i, 2}, \quad i=3, \ldots, n, \text { and } h_{1}=\prod_{i=3}^{n} K_{i}
$$

Then

$$
B_{1}=\delta\left(h_{1}\right) \circ B=\left(\begin{array}{ccccc}
0 & b_{1,2} & 0 & \cdots & 0 \\
-b_{1,2} & 0 & b_{2,3} & \cdots & b_{2, n}^{\prime} \\
0 & -b_{2,3} & 0 & \cdots & b_{3, n}^{\prime} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -b_{2, n}^{\prime} & -b_{3, n}^{\prime} & \cdots & 0
\end{array}\right)
$$

Let $P_{i}=I_{n}+\frac{b_{2, i}^{\prime}}{b_{1,2}} E_{i, 1}, 3<i \leq n$, and set

$$
h^{\prime}=\prod_{i=3}^{n} P_{i}, \quad h^{\prime \prime}=\operatorname{diag}\left(b_{1,2}^{-1}, 1, \cdots, 1\right), \quad h_{2}=h^{\prime \prime} h^{\prime}
$$

Then

$$
B_{2}=\delta\left(h_{2}\right) \circ B_{1}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
-1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & b_{3,4}^{\prime \prime} & \cdots & b_{3, n}^{\prime \prime} \\
0 & 0 & -b_{3,4}^{\prime \prime} & 0 & \cdots & b_{4, n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & -b_{3, n}^{\prime \prime} & -b_{4, n}^{\prime \prime} & \cdots & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & \\
-1 & 0 & \\
& & B^{\prime}
\end{array}\right)
$$

with $B^{\prime} \in M_{n-2}^{s s}(F)$.
By induction hypothesis, there is $g_{1} \in \mathrm{GL}_{n-2}(F)$, such that $\delta\left(g_{1}\right) \circ B^{\prime}$ satisfies equation (3.2) when $k=n-2$.

Let $h_{3}=\operatorname{diag}\left(I_{2}, g_{1}\right), g=h_{3} h_{2} h_{1}$, then $\delta(g) \circ B$ satisfies equation (3.2). Therefore there is only one generator of $\bar{M}_{n}^{s s}(F)$ under $\delta\left(G^{\prime}\right)$ which automatically implies that $M_{n}^{s s}(F)$ is a prehomogeneous space under $\delta\left(G^{\prime}\right)$. The property that $g(0, \ldots, 0,1)^{t}=$ $(0, \ldots, 0,1)^{t}$ is obvious from the construction of g, thus, $\delta(g) \circ E_{n, n}=E_{n, n}$.

Corollary 3.8 $M_{n}^{s \varepsilon}(F)$ is prehomogeneous under $\varepsilon\left(G^{\prime}\right)$. Moreover, for any $B \in M_{n}^{s \varepsilon}(F)$ there is $g \in G^{\prime}$ such that

$$
\varepsilon(g) \circ B=\left(\begin{array}{ccccc}
& & & 1 & 0 \tag{3.3}\\
& & & 0 & -1 \\
& 1 & 0 & & \\
& 0 & -1 & & \\
. & & & &
\end{array}\right)
$$

In addition, such g fixes $(0, \ldots, 0,1)^{t}$ by left multiplication, and consequently, $\varepsilon(g)$ fixes $E_{n, 1}$.

Proof This is a direct result of Lemma 3.7, and the proof is similar to Corollary 3.6.

Let $\mathrm{GL}_{n}^{s \varepsilon}(F)=\mathrm{GL}_{n}(F) \cap M_{n}^{s \varepsilon}(F)$, then $\mathrm{GL}_{n}^{s \varepsilon}(F)$ is a dense open subset of $M_{n}^{s \varepsilon}(F)$ when n is even and is an empty set when n is odd. For this reason and the purpose of further use, we let B_{n} be the matrix which has a form as the right side of equation (3.3) with rank r_{n}. Then from Lemma 3.7 and Corollary $3.8, B_{n}$ is a generator of the unique dense open orbit of $M_{n}^{s \varepsilon}(F)$ under $\varepsilon\left(G^{\prime}\right)$. We then define:

$$
E_{n}= \begin{cases}B_{n}, & \text { if } n \text { is even } \\ B_{n}+E_{n, 1}, & \text { if } n \text { is odd }\end{cases}
$$

We can define a map f from $M_{n \times k}(F)$ to $M_{n}^{\varepsilon}(F)\left(\right.$ or $\left.M_{n}^{s \varepsilon}(F)\right)$ by $f(X)=X X^{\prime}$. Notice f is a polynomial function in terms of the entries of X.
Lemma 3.9 If $n \leq m$, then f is surjective. In particular, if $n \geq 2$ and $m \geq 1$, then for almost all $X, \operatorname{rank}\left(X X^{\prime}\right) \geq 2$.
Proof Suppose first that G is orthogonal, let $A=\left(a_{i, j}\right)_{n \times n}$ be an arbitrary element in $M_{n}^{\varepsilon}(F)$. Let $X=\left(I_{n}, 0, X_{1}\right)$ where $X_{1}=-A / 2$. Then

$$
X^{\prime}=\left(\begin{array}{c}
\varepsilon\left(X_{1}\right) \\
0 \\
I_{n}
\end{array}\right)
$$

and $X X^{\prime}=-\left(X_{1}+\varepsilon\left(X_{1}\right)\right)=A$ as desired.
If G is symplectic, then the proof is similar. The rest of the lemma is straightforward.

For any $m=\left(g, h, \varepsilon\left(g^{-1}\right)\right) \in M$, where $g \in G^{\prime}$ and $h \in G_{m}$, we have $\operatorname{Int}(m) \circ$ $n(X, Y)=n\left(g X h^{-1}, g Y \varepsilon(g)\right)$, (see also [1,2]). Moreover, if we decompose $M_{n}(F)$ (as Y is concerned) into subspaces as in Lemma 3.2, then both $M_{n}^{\varepsilon}(F)$ and $M_{n}^{s \varepsilon}(F)$ are invariant under $\operatorname{Int}(M)$.
Lemma 3.10 There is an open dense subset O in N, such that for any $n(X, Y) \in \mathrm{O}$, $\operatorname{det}(Y) \neq 0$.
Proof Write $Y=A+B$ as in Lemma 3.4. By Lemmas 3.3 and 3.4, $\operatorname{det}(Y)$ is a polynomial function in terms of the entries of X and B. So we only need to show that $\operatorname{det}(Y) \not \equiv 0$.

If G is symplectic, let $X=0$ and $B=Y \in \mathrm{GL}_{n}^{\varepsilon}(F)$. If G is orthogonal and n is even, choose $X=0$ and $B=Y=E_{n}$. In both cases, $\operatorname{det}(Y) \neq 0$.

If G is orthogonal and n is odd, let $B=B_{n}$, where B_{n} is defined as before. And let

$$
X=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & -1
\end{array}\right) \in M_{n \times(2 m+1)}(F)
$$

Then $Y=B_{n}+E_{n, 1}=E_{n}$, and obviously $\operatorname{det}(Y) \neq 0$.
Thus, the subset of N satisfying $\operatorname{det}(Y)=0$ is a closed subset (in Zariski topology).

Remark. The above lemma can also be used to prove the fact that up to a closed subset of $N, w_{0}^{-1} n(X, Y) \in P \bar{N}$ by applying Lemma 2.2 in [1] where \bar{N} is the unipotent subgroup opposite to N.

Theorem 3.11 If $n>1$ and $m \neq 0$, then N does not have a finite number of open orbits under $\operatorname{Int}(M)$, i.e., \mathfrak{M} is not a prehomogenous space under $\operatorname{Ad}(M)$.

Proof Suppose $\mathrm{O}=\bigcup \mathrm{O}_{i}$ is a dense open subset of N where each O_{i} is an orbit of N under $\operatorname{Int}(M)$. Let $n\left(X_{i}, Y_{i}\right)$ be a representative of O_{i} under $\operatorname{Int}(M)$. Write $Y_{i}=A_{i}+B_{i}$ as in Lemma 3.4. By Lemma 3.4 and Corollaries 3.6 and 3.8, we can always assume B_{i} has a same form as the right side of equation (3.1) or (3.3) depending on whether G is symplectic or orthogonal, respectively. If G is orthogonal, we can even fix B_{i} as B_{n} by Corollary 3.8.

Suppose $n(X, Y) \in O$ with $Y=A+B$ being decomposed as in Lemma 3.4, then there is an i such that $n(X, Y) \in \mathrm{O}_{i}$. Thus, there exists an $m=\left(g, h, \varepsilon\left(g^{-1}\right)\right) \in M$, such that $\operatorname{Int}(m) \circ n(X, Y)=n\left(X_{i}, Y_{i}\right)$. Consequently, $g Y \varepsilon(g)=Y_{i}, g B \varepsilon(g)=B_{i}$, by the uniqueness of the decomposition in Lemma 3.2.

Therefore, if G is symplectic or if G is orthogonal and n is even, then

$$
\begin{equation*}
\frac{\operatorname{det}(B)}{\operatorname{det}(Y)}=\frac{\operatorname{det}\left(B_{i}\right)}{\operatorname{det}\left(Y_{i}\right)}, \tag{3.4}
\end{equation*}
$$

since by Lemma 3.10, we can always assume that both $\operatorname{det}(Y)$ and $\operatorname{det}\left(Y_{i}\right)$ are nonzero. The left side of equation (3.4) is a rational function in terms of the entries of X and B. By Corollaries 3.6 and 3.8 and Lemma 3.9, it is obviously nonconstant. Therefore, the set of $n(X, Y)$ satisfying equation (3.4) is only a closed subset of N, a contradiction!

If G is orthogonal and n is odd, let $B^{\prime}=g^{-1} E_{n, 1} \varepsilon(g)^{-1}$. Then $g\left(B+B^{\prime}\right) \varepsilon(g)=E_{n}$, and consequently, we will have:

$$
\frac{\operatorname{det}\left(B+B^{\prime}\right)}{\operatorname{det}(Y)}=\frac{\operatorname{det}\left(E_{n}\right)}{\operatorname{det}\left(Y_{i}\right)} .
$$

By the proof of Lemma 3.7 and Corollary 3.8, the entries of g are rational functions of that of B, so are the entries of B^{\prime}. Now the same argument of the above paragraph applies which will lead to a contradiction.

Remark. We use E_{n} and $B+B^{\prime}$ because the determinants of both B and B_{i} are 0 when G is orthogonal and n is odd.

4 Cases When \mathfrak{N} is Prehomogeneous

By Theorem 3.11, \mathfrak{N} has a finite number of open orbits under $\operatorname{Ad}(M)$ only when $n=1$ or $m=0$. Since the prehomogeneity of \mathfrak{M} has been studied in $[6,7,11]$ when \mathfrak{N} is abelian, we will only study the prehomogeneity when \mathfrak{N} is non-abelian.

When $m=0$, the only case that \mathfrak{N} is non-abelian is $G=\mathrm{SO}_{2 l+1}(F)$. While if $n=1$, the unique case that \mathfrak{N} is non-abelian is $G=\mathrm{Sp}_{2 l}(F)$.

Theorem 4.1 If $G=\mathrm{SO}_{2 l+1}(F)$ and $m=0$, then N is a prehomogeneous space under $\operatorname{Int}(M)$.

Proof Suppose $n(X, Y) \in N$, in this case $M=G^{\prime}$ and

$$
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in M_{n \times 1}(F)
$$

By restricting to a dense open subset, we can assume that $X \neq 0$, then there is $g \in G^{\prime}$ such that $g X=(0, \ldots, 0,1)^{t}=X_{1}$. Therefore, $X^{\prime} \varepsilon(g)=(g X)^{\prime}=(-1,0, \ldots, 0)$, and consequently, $g X X^{\prime} \varepsilon(g)=-E_{1, n}$.

Write $Y=A+B$ as in Lemma 3.4, let $B^{\prime}=\varepsilon(g) \circ B$. By Corollary 3.8, there is $g^{\prime} \in G^{\prime}$ such that $\varepsilon\left(g^{\prime}\right) \circ B^{\prime}=B_{n}$ by restricting B to a dense open subset of $M_{n}^{s \varepsilon}(F)$. Moreover, $g^{\prime} X_{1}=X_{1}$ and $\varepsilon\left(g^{\prime}\right)$ fixes $E_{n, 1}$. Therefore $\operatorname{Int}\left(g^{\prime} g\right) \circ n(X, Y)=$ $n\left(X_{1}, B_{n}-\frac{1}{2} E_{n, 1}\right)$, in other words, there is only one dense open orbit of N under $\operatorname{Int}(M)$.

Theorem 4.2 If $G=\mathrm{Sp}_{2 l}(F)$ and $n=1$, then N is a prehomogeneous space under $\operatorname{Int}(M)$.

Proof Suppose $n(X, Y) \in N$, then $X \in M_{1 \times(2 m-2)}(F)$ and $X X^{\prime}=0$. Also in this case $M=\mathrm{GL}_{1} \times \mathrm{Sp}_{2 m}(F), G^{\prime}=\mathrm{GL}_{1}=F^{*}$, and $Y \in M_{1}(F)=F$.

Assume $a=Y \neq 0$, this assumption will apply to a dense open subset of N. Write $a=b^{2} \varepsilon_{i}$ for a suitable $\varepsilon_{i} \in S$, let $g_{1}=\left(b^{-1}, I_{2 m}, b\right)$. Then $\operatorname{Int}\left(g_{1}\right) \circ n(X, Y)=$ $n\left(X_{1}, \varepsilon_{i}\right)$, where $X_{1}=b^{-1} X$.

Suppose $X_{1}=\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{2 m}\right)$. We can assume $x_{1} \neq 0$, by doing so, it will only amount to a closed subset of N. Let $X_{1}^{\prime}=\left(x_{1}, \ldots, x_{m}\right)$, then there exists a $g \in \mathrm{GL}_{m}(F)$ such that $X_{1}^{\prime} g=(1,0, \ldots, 0) \in M_{1 \times m}(F)$. Let
$h^{\prime}=\operatorname{diag}\left(g, w_{m}{ }^{t} g^{-1} w_{m}^{-1}\right) \in S p_{2 m}(F), \quad h_{1}=\operatorname{diag}\left(1, h^{\prime}, 1\right) \in M, \quad$ and $X_{2}=X_{1} h^{\prime}$.
Then $\operatorname{Int}\left(h_{1}^{-1}\right) \circ n\left(X_{1}, \varepsilon_{i}\right)=n\left(X_{2}, \varepsilon_{i}\right)$, where

$$
X_{2}=\left(1,0, \ldots, 0, x_{m+1}^{\prime}, \ldots, x_{2 m}^{\prime}\right) \in F
$$

for some suitable $x_{m+1}^{\prime}, \ldots, x_{2 m}^{\prime} \in F$.
Let

$$
Q=\left(\begin{array}{cccc}
-x_{m+1}^{\prime} & \cdots & -x_{2 m-1}^{\prime} & -x_{2 m}^{\prime} \\
0 & \cdots & 0 & -x_{2 m-1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & -x_{m+1}^{\prime}
\end{array}\right) \in M_{n}^{s \varepsilon}(F)
$$

and

$$
h "=\left(\begin{array}{cc}
I_{m} & Q \\
0 & I_{m}
\end{array}\right) \in \operatorname{Sp}_{2 m}(F)
$$

Then $X_{1} h^{\prime} h^{\prime \prime}=X_{2} h^{\prime \prime}=(1,0, \ldots, 0) \in M_{1 \times 2 m}(F)$.
Denote $E_{1}=(1,0, \ldots, 0) \in M_{1 \times 2 m}(F)$, let $h_{2}=\operatorname{diag}\left(1, h^{\prime \prime}, 1\right)$ and $h=h_{2}^{-1} h_{1}^{-1} g_{1}$, then $\operatorname{Int}(h) \circ n(X, Y)=n\left(E_{1}, \varepsilon_{i}\right)$. Therefore, there are only finitely many generators for a dense open subset of N under $\operatorname{Int}(M)$. i.e., \mathfrak{M} is a prehomogeneous space under $\operatorname{Ad}(M)$. In particular, the number of open orbits is $\operatorname{card}(S)$.

5 Centralizers and Twisted Centralizers on Prehomogeneous Cases

We now suppose $G=\mathrm{SO}_{2 l+1}(F), \alpha=e_{l}$; or $G=\mathrm{Sp}_{2 l}(F)$, and $\alpha=e_{1}-e_{2}$. Then

$$
M= \begin{cases}\mathrm{GL}_{l}(F) \times 1, & \text { if } G \text { is orthogonal } ; \\ \mathrm{GL}_{1}(F) \times \mathrm{Sp}_{2 l-2}(F), & \text { if } G \text { is symplectic }\end{cases}
$$

And

$$
G_{m}= \begin{cases}1, & \text { if } G \text { is orthogonal } ; \\ \operatorname{Sp}_{2 l-2}(F), & \text { if } G \text { is symplectic }\end{cases}
$$

by definition.
By Theorems 4.1 and 4.2, N is prehomogeneous under $\operatorname{Int}(M)$.
We choose w_{0} as follows:

$$
w_{0}= \begin{cases}\left(\begin{array}{ccc}
0 & 0 & I_{n} \\
0 & 1 & 0 \\
I_{n} & 0 & 0
\end{array}\right), & \text { if } G \text { is orthogonal; } \\
\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & I_{2 l-2} & 0 \\
1 & 0 & 0
\end{array}\right), & \text { if } G \text { is symplectic. }\end{cases}
$$

Lemma 5.1 Suppose $G=\mathrm{SO}_{2 l+1}(F)$ and $n=n(X, Y) \in N$. Then $w_{0}^{-1} n \in P \bar{N}$ if and only if $Y \in \mathrm{GL}_{n}(F)$, in which case

$$
w_{0}^{-1} n=\left(\begin{array}{ccc}
\varepsilon\left(Y^{-1}\right) & -Y^{-1} X & I_{n} \tag{5.1}\\
0 & 1-X^{\prime} Y^{-1} X & X^{\prime} \\
0 & 0 & Y
\end{array}\right)\left(\begin{array}{ccc}
I_{n} & 0 & 0 \\
\left(Y^{-1} X\right)^{\prime} & 1 & 0 \\
Y^{-1} & Y^{-1} X & I_{n}
\end{array}\right)
$$

with $X^{\prime} Y^{-1} X=0$.
Proof This is [1, Lemma 2.2]. The proof is straightforward.
Lemma 5.2 Suppose $G=\operatorname{Sp}_{2 l}(F)$ and $n=n(X, Y) \in N$. Then $w_{0}^{-1} n \in P \bar{N}$ if and only if $Y \in \mathrm{GL}_{n}(F)$, in which case

$$
w_{0}^{-1} n=\left(\begin{array}{ccc}
-\varepsilon\left(Y^{-1}\right) & -Y^{-1} X & I_{n} \tag{5.2}\\
0 & I_{2 m}-X^{\prime} Y^{-1} X & X^{\prime} \\
0 & 0 & -Y
\end{array}\right)\left(\begin{array}{ccc}
I_{n} & 0 & 0 \\
\left(Y^{-1} X\right)^{\prime} & I_{2 m} & 0 \\
Y^{-1} & Y^{-1} X & I_{n}
\end{array}\right)
$$

and $I_{2 m}-X^{\prime} Y^{-1} X \in \operatorname{Sp}_{2 m}(F)$.
Proof This is also [1, Lemma 2.2], but since we chose a different $J_{2 l}$, the right side of equation (5.2) is a little bit different from the expression there.

Write equations (5.1) and (5.2) as $w_{0}^{-1} n_{i}=m_{i} n_{i} n_{i}^{-}$, where m_{i}, n_{i}, n_{i}^{-}belong to M, N and \bar{N}, respectively. Define

$$
M_{n_{i}}=\operatorname{Cent}_{M}\left(n_{i}\right)=\left\{m \in M \mid \operatorname{Int}(m) \circ n_{i}=n_{i}\right\}
$$

as the centralizer of n_{i} in M, and

$$
M_{m_{i}}^{t}=\operatorname{Cent}_{m_{i}}^{t}=\left\{m \in M \mid w_{0}(m) m_{i} m^{-1}=m_{i}\right\}
$$

as the twisted (by means of w_{0}) centralizer of m_{i} in M. Then $M_{n_{i}} \subset M_{m_{i}}^{t}$ by [10, Lemma 2.1].

Theorem 5.3 Suppose G, M, α as above, then for any $n_{i} \in \mathrm{O}$, where O has the same meaning as in Theorem 4.1 or $4.2,\left|M_{m_{i}}^{t} / M_{n_{i}}\right|=2$.
Proof We only need to prove the lemma for any generator of each orbit, since any two elements in a same orbit are $\varepsilon\left(G^{\prime}\right)$ conjugate to each other, their centralizers and twisted centralizers are therefore $\varepsilon\left(G^{\prime}\right)$ conjugate to each other.

First suppose G is orthogonal, then by Theorem 4.1, there is only one orbit of N under $\operatorname{Int}(M)$. We can also choose a representative of this orbit as $n=n\left(X_{1}, B_{n}-\right.$ $\left.\frac{1}{2} E_{n, 1}\right)$, where $B_{n}, E_{n, 1}$ and $X_{1}=(0, \ldots, 0,1)^{t} \in M_{n \times 1}(F)$ are as in Theorem 4.1. Then in this case $m_{i}=B_{n}-\frac{1}{2} E_{n, 1}$ if we identify $\left(\varepsilon\left(G^{\prime-1}\right), 1, G^{\prime}\right)$ with G^{\prime}.

Suppose $g \in M_{m_{i}}^{t} \subset G^{\prime}$ such that $\varepsilon(g) \circ m_{i}=m_{i}$. Then by Lemma 3.2, $\varepsilon(g) \circ$ $B_{n}=B_{n}$ and $\varepsilon(g) \circ\left(-E_{n, 1}\right)=\varepsilon(g) \circ\left(X_{1} X_{1}^{\prime}\right)=\left(g X_{1}\right)\left(g X_{1}\right)^{\prime}=-E_{n, 1}$. Thus $g X_{1}= \pm X_{1}$. If $g X_{1}=X_{1}$, then $g \in M_{n i}$; if $g X_{1}=-X_{1}$, then $-g \in M_{n_{i}}$. Therefore $\left|M_{m_{i}}^{t} / M_{n_{i}}\right|=2$.

Now suppose G is symplectic, then by Theorem 4.2, there are finitely many open orbits of N under $\operatorname{Int}(M)$. The generator of each orbit can be chosen as $n_{i}=n\left(E_{1}, \varepsilon_{i}\right)$ with $\varepsilon_{i} \in S$. If $m=\left(k, h, k^{-1}\right) \in M_{m_{i}}^{t}$, with $k \in F^{*}$ and $h \in \operatorname{Sp}_{2 l-2}(F)$. Then $\operatorname{Int}(m) \circ m_{i}=m_{i}$, where $m_{i}=\left(-\varepsilon_{i}, I_{2 l-2}+E_{2 l-2,1},-\varepsilon_{i}\right)$ is determined by Lemma 5.2.

Thus $k^{2} \varepsilon_{i}=\varepsilon_{i}$ and $\left(k E_{1} h\right)^{\prime}\left(k E_{1} h\right)=E_{2 l-2,1}=E_{1}^{\prime} E_{1}$. Therefore, $k E_{1} h= \pm E_{1}$. If $k E_{1} h=E_{1}$, then $m \in M_{n_{i}}$; if $k E_{1} h=-E_{1}$, then $\left(-1, I_{2 l-2},-1\right) m \in M_{n_{i}}$. Whence, $\left|M_{m_{i}}^{t} / M_{n_{i}}\right|=2$.

6 Poles of Intertwining Operators on Prehomogeneous Cases

For a connected reductive p-adic group H, we use ${ }^{\circ} \mathcal{E}(H)$ to denote the collection of equivalence classes of unitarizable irreducible admissible supercuspidal representations of H.

Let $\left(\tau^{\prime}, V^{\prime}\right) \in{ }^{\circ} \mathcal{E}\left(\mathrm{GL}_{n}(F)\right)$ and $(\tau, V) \in{ }^{\circ} \mathcal{E}\left(G_{m}\right)$, then $\tau^{\prime} \otimes \tau$ is a unitary supercuspidal representation of M. Let

$$
I\left(s, \tau^{\prime} \otimes \tau\right)=\operatorname{Ind}_{M N}^{G}\left(\left(\tau^{\prime} \otimes|\operatorname{det}()|^{5}\right) \otimes \tau \otimes 1_{N}\right) .
$$

We will use $\mathbf{V}\left(s, \tau^{\prime} \otimes \tau\right)$ to denote the space of $I\left(s, \tau^{\prime} \otimes \tau\right)$. In order to understand the reducibility of $I\left(\tau^{\prime} \otimes \tau\right)=I\left(0, \tau^{\prime} \otimes \tau\right)$, one must determine the poles of the standard intertwining operator

$$
A\left(s, \tau^{\prime} \otimes \tau, w_{0}\right) f(g)=\int_{N} f\left(w_{0}^{-1} n g\right) d n
$$

associated to $\tau^{\prime} \otimes \tau$ (cf. $[1,3,9,10]$), where $f \in \mathbf{V}\left(s, \tau^{\prime} \otimes \tau\right)$. By Bruhat's theorem (cf. [4]) we may assume that $w_{0}\left(\tau^{\prime} \otimes \tau\right) \simeq \tau^{\prime} \otimes \tau$, which is equivalent to assuming $\tau^{\prime} \simeq \tau^{\prime}$ [13].

Denote by \bar{N} the unipotent radical opposed to N. Let

$$
\mathbf{V}\left(s, \tau^{\prime} \otimes \tau\right)_{0}=\left\{h \in \mathbf{V}\left(s, \tau^{\prime} \otimes \tau\right) \mid \operatorname{supp}(h) \subset \bar{N} \text { modulo } P\right\}
$$

By a lemma of Rallis (cf. [9]), it is enough to compute the poles that arise when $A\left(s, \tau^{\prime} \otimes \tau, w_{0}\right)$ is applied to functions in $\mathbf{V}\left(s, \tau^{\prime} \otimes \tau\right)_{0}$ and evaluated at the identity.

Let ${ }^{L} G^{\prime}=\mathrm{GL}_{n}(\mathbb{C})$ be the L - group of G^{\prime}, r be the adjoint action of ${ }^{L} G^{\prime}$ on the Lie algebra ${ }^{L} \mathfrak{N}$ of ${ }^{L} N$, the L-group of N. Let ρ_{n} be the standard representation of $\mathrm{GL}_{n}(\mathbb{C})$, then $\rho_{n} \otimes \rho_{n}=\Lambda \rho_{n}^{2} \oplus \operatorname{Sym}^{2}\left(\rho_{n}\right)$. Let SO_{n}^{*} be any of the quasi-split orthogonal groups which has $\mathrm{SO}_{n}(\mathbb{C})$ as the connected component of its L - group if n is even.

6.1 G is Orthogonal

We will still consider the case when $G=\mathrm{SO}_{2 l+1}(F)$ and $\alpha=e_{l}$. Notice in this case $n=l, M=\mathrm{GL}_{n}$ and $G_{m}=1$.

We let $\left(\tau^{\prime}, V^{\prime}\right) \in{ }^{\circ} \mathcal{E}\left(\mathrm{GL}_{n}(F)\right)$ and

$$
I\left(s, \tau^{\prime}\right)=\operatorname{Ind}_{M N}^{G}\left(\left(\tau^{\prime} \otimes|\operatorname{det}()|^{s}\right) \otimes 1_{N}\right)
$$

In this special case, we will use $\mathbf{V}\left(s, \tau^{\prime}\right), I\left(\tau^{\prime}\right), A\left(s, \tau^{\prime}, w_{0}\right), \mathbf{V}\left(s, \tau^{\prime}\right)_{0}$ to denote the general settings $\mathbf{V}\left(s, \tau^{\prime} \otimes \tau\right), I\left(s, \tau^{\prime} \otimes \tau\right), A\left(s, \tau^{\prime} \otimes \tau, w_{0}\right), \mathbf{V}\left(s, \tau^{\prime} \otimes \tau\right)_{0}$ as defined at the beginning of this section, respectively.

Let $h \in \mathbf{V}\left(s, \tau^{\prime}\right)_{0}$. Fix open compact subsets $L \subset M_{n}(F)$ and $L^{\prime} \subset M_{n \times 1}(F)$. We assume that for some $v^{\prime} \in V^{\prime}, h$ satisfies:

$$
h\left(\begin{array}{ccc}
I_{n} & 0 & 0 \\
\left(Y^{-1} X\right)^{\prime} & 1 & 0 \\
Y^{-1} & Y^{-1} X & I_{n}
\end{array}\right)=\xi_{L}\left(Y^{-1}\right) \xi_{L^{\prime}}\left(Y^{-1} X\right)\left(v^{\prime}\right)
$$

where ξ_{L} and $\xi_{L^{\prime}}$ are the characteristic functions of L and L^{\prime}, respectively. Let $\widetilde{\mathbf{V}}^{\prime}$ be the dual spaces of \mathbf{V}^{\prime}. Choose $\widetilde{v}^{\prime} \in \widetilde{\mathbf{V}}^{\prime}$ and let $\psi_{\tau^{\prime}}$ be the matrix coefficient of τ^{\prime} given by pair $\left(v^{\prime}, \widetilde{v}^{\prime}\right)$. Then, from Lemma 5.1, $\left\langle\widetilde{v}^{\prime}, A\left(s, \tau^{\prime}, w_{0}\right) h(e)\right\rangle$ is equal to

$$
\begin{equation*}
\int_{(X, Y)} \psi_{\tau^{\prime}}(Y)|\operatorname{det}(Y)|^{-s-\langle\rho, \tilde{\alpha}\rangle} \xi(X, Y) d(X, Y) \tag{6.1}
\end{equation*}
$$

where the integral is over the collection of F-rational solutions (X, Y) satisfying Lemmas 3.3 and 5.1. Here

$$
\rho=\frac{1}{2} \sum_{\beta \in \Phi^{+} \backslash \Sigma^{+}(\Theta)} \beta, \quad \xi(X, Y)=\xi_{L}\left(Y^{-1}\right) \xi_{L^{\prime}}\left(Y^{-1} X\right), \quad \widetilde{\alpha}=\langle\rho, \alpha\rangle^{-1} \rho,
$$

and $d(X, Y)$ is a choice of Haar measure on N.
By Theorem 4.1, there is only one orbit O of N under $\operatorname{Int}\left(G^{\prime}\right)$. For any $n(X, Y) \in$ O, define $d^{*}(X, Y)=|\operatorname{det}(Y)|^{-\langle\rho, \tilde{\alpha}\rangle} d(X, Y)$, then $d^{*}(X, Y)$ is an invariant measure on O (see [1]). Therefore, the integral in (6.1) will be changed to:

$$
\begin{equation*}
\int_{(X, Y)} \psi_{\tau^{\prime}}(Y)|\operatorname{det}(Y)|^{-s} \xi(X, Y) d^{*}(X, Y) \tag{6.2}
\end{equation*}
$$

Moreover, the representative of this orbit can be chosen as $n\left(X_{1}, B_{n}\right)$, where $X_{1}=(1,0, \ldots, 0)^{t} \in M_{n \times 1}(F)$ and B_{n} as the right side of equation (3.3). Hence, the unique dense open subset O can be expressed as $n\left(g X_{1}, g\left(B_{n}-\frac{1}{2} E_{n, 1}\right) \varepsilon(g)\right)$ as g runs through G^{\prime}. Thus, $d^{*}(X, Y)$ induces an invariant measure on $G^{\prime} / M_{n_{i}}$. Furthermore, by [10, Lemma 2.3], it also induces an invariant measure on the quotient $G^{\prime} / M_{m_{i}}^{t}$ since $M_{m_{i}}^{t} / M_{n_{i}}=2$ by Theorem 5.3. Therefore, if we let $Y_{1}=B_{n}-\frac{1}{2} E_{n, 1}$, then equation (6.2) can be expressed as:

$$
\begin{equation*}
2 \int_{G^{\prime} / G_{\varepsilon}^{\prime}, Y_{1}} \psi_{\tau^{\prime}}\left(g Y_{1} \varepsilon(g)\right)\left|\operatorname{det}\left(g Y_{1} \varepsilon(g)\right)\right|^{-s} \xi\left(g X_{1}, g Y_{1} \varepsilon(g)\right) d \dot{g}, \tag{6.3}
\end{equation*}
$$

where $M_{m_{i}}^{t}=G_{\varepsilon, Y_{1}}^{\prime}$ by definition.
Let ω^{\prime} be the central character of τ^{\prime}. Since we are assuming that τ^{\prime} is self-dual, $\omega^{\prime 2}$ is trivial. We then can choose $f \in C_{c}^{\infty}\left(G^{\prime}\right)$ such that

$$
\psi_{\tau^{\prime}}\left(g^{\prime}\right)=\int_{Z\left(G^{\prime}\right)} f\left(z g^{\prime}\right) \omega^{\prime}\left(z^{-1}\right) d^{\star} z
$$

Substitute the above equation into (6.3), then the expression will be:

$$
\begin{equation*}
2 \int_{G^{\prime} / G_{\varepsilon}^{\prime}, Y_{1}} \int_{Z\left(G^{\prime}\right)} f\left(z g Y_{1} \varepsilon(g)\right) \omega^{\prime}\left(z^{-1}\right) d^{\times} z\left|\operatorname{det}\left(g Y_{1} \varepsilon(g)\right)\right|^{-s} \xi\left(g X_{1}, g Y_{1} \varepsilon(g)\right) d \dot{g} . \tag{6.4}
\end{equation*}
$$

By making a substitution $g z \rightarrow g$, we can rewrite expression (6.4) as:

$$
\begin{gather*}
2 \sum_{\gamma \in S} \omega^{\prime}(\gamma) \int_{G^{\prime} \mid G_{\varepsilon}^{\prime} Y_{1}} \int_{Z\left(G^{\prime}\right)} f\left(\gamma g Y_{1} \varepsilon(g)\right)|\operatorname{det} z|^{-2 s}\left|\operatorname{det}\left(g Y_{1} \varepsilon(g)\right)\right|^{-s} \tag{6.5}\\
\xi_{L}\left(z^{-2} \varepsilon(g)^{-1} Y_{1}^{-1} g^{-1}\right) \xi_{L^{\prime}}\left(z^{-1} \varepsilon(g)^{-1} Y_{1}^{-1} X_{1}\right) d^{\times} z d \dot{g} .
\end{gather*}
$$

Now we have the following.
Lemma 6.1 The intertwining operator $A\left(s, \tau^{\prime}, w_{0}\right)$ is convergent for $s>0$ and has a pole at $s=0$ if and only if

$$
\begin{equation*}
\sum_{\gamma \in S} \omega^{\prime}(\gamma) \int_{G^{\prime} / G_{\varepsilon}^{\prime}, Y_{1}} f\left(\gamma g Y_{1} \varepsilon(g)^{-1}\right) d \dot{g} \neq 0 \tag{6.6}
\end{equation*}
$$

Proof This has been proved in [9], and a more general result has also been established in [1]. Here we will use the finiteness of orbits to give a shorter proof.

We can use a similar argument as that of [1, Lemma 4.5] to prove our lemma. Namely, the integrand inside (6.5) is nonzero only when

$$
g Y_{1} \varepsilon(g) \in \gamma^{-1} \operatorname{supp}(f) \cap z^{2} \operatorname{supp}\left(\xi_{L}\right)^{-1}=\mathbf{C},
$$

where $\operatorname{supp}\left(\xi_{L}\right)^{-1}$ is the subset of \bar{N} consisting of the inverse elements of $\operatorname{supp}\left(\xi_{L}\right)$. Thus, g must belong to a compact subset of $G^{\prime} / G_{\varepsilon, Y_{1}}^{\prime}$ and $z^{-2} \in \operatorname{supp}\left(\xi_{L}\right) \cdot \mathbf{C}$. Consequently, $|z|$ must be bounded from below.

Therefore, there exists μ such that when $|z|_{F}>\mu$, the order of the integrals in (6.5) can be interchanged. By the fact that $f, \xi_{L}, \xi_{L^{\prime}}$ are all bounded, the conclusion of the lemma follows immediately.

Moreover, Shahidi in [9] has shown that the orbital integrals appearing in equation (6.6) are all equal, i.e., for any $\gamma \in S$,

$$
\int_{G^{\prime} / G_{\varepsilon, Y_{1}}^{\prime}} f\left(\gamma g Y_{1} \varepsilon(g)^{-1}\right) d \dot{g}=\int_{G^{\prime} / G_{\varepsilon, Y_{1}}^{\prime}} f\left(g Y_{1} \varepsilon(g)^{-1}\right) d \dot{g}
$$

We thus obtain the following.
Theorem 6.2 The intertwining operator $A\left(s, \tau^{\prime}, w_{0}\right)$ has a pole at $s=0$ or equivalently $I\left(\tau^{\prime}\right)$ is irreducible if and only if $\omega^{\prime}=1$ and

$$
\begin{equation*}
\int_{G^{\prime} / G_{\varepsilon, Y_{1}}^{\prime}} f\left(g Y_{1} \varepsilon(g)^{-1}\right) d \dot{g} \neq 0 \tag{6.7}
\end{equation*}
$$

In that case:
(a) if n is odd, then $A\left(s, \tau^{\prime}, w_{0}\right)$ has a pole at $s=0$;
(b) if n is even, then $A\left(s, \tau^{\prime}, w_{0}\right)$ has a pole at $s=0$ if and only if τ^{\prime} comes from $\mathrm{SO}_{n}^{*}(F)$.

Proof If ω^{\prime} is nontrivial, then equation (6.6) is zero. Part (a) is [9, Proposition 3.10], and part (b) is Corollary 10.6 from the same paper. We give here a shorter proof for part (b).

By Theorem 4.1, there is only one orbit of N under $\operatorname{Int}(M)$. Moreover, by the proof of Theorem 4.1, we can choose $n_{i}\left(k X_{1}, B_{n}-\frac{1}{2} k^{2} E_{n, 1}\right)$ as a generator of this orbit for any $k \in F^{*}$. Let $Y_{i}=B_{n}-\frac{1}{2} k^{2} E_{n, 1}$, then (6.7) will be changed to:

$$
\int_{G^{\prime} / G_{\varepsilon, Y_{i}}^{\prime}} f\left(g Y_{i} \varepsilon(g)^{-1}\right) d \dot{g} \neq 0
$$

Because n is even, both B_{n} and Y_{i} belong to G^{\prime}. Since $f \in C_{c}^{\infty}\left(G^{\prime}\right)$, it is clear that $g Y_{i} \varepsilon(g)^{-1} \in \operatorname{supp}(f)$ if and only if \bar{g} belongs to a compact set \mathbb{C}_{i} of $G^{\prime} / G_{\varepsilon, Y_{i}}^{\prime}$, where \bar{g} is the representative of g in $G^{\prime} / G_{\varepsilon, Y_{i}}^{\prime}$. Moreover, when $|k|$ is small enough, these \mathbb{C}_{i} will be independent of k. We will use \mathbb{C} to denote such uniform \mathbb{C}_{i}.

For each $\bar{g} \in \mathbb{C}$, there is a neighborhood $\mathrm{O}(g)$ of g such that for any $g^{\prime} \in \mathrm{O}(g)$, there is a positive number u_{g}, such that $f\left(g^{\prime} B_{n} \varepsilon\left(g^{\prime}\right)^{-1}\right)=f\left(g^{\prime} Y_{i} \varepsilon\left(g^{\prime}\right)^{-1}\right)$ when $|k|<u_{g}$. By the compactness of \mathbb{C}, we can choose k small enough such that for any $g Y_{i} \varepsilon(g)^{-1} \in \operatorname{supp}(f), f\left(g B_{n} \varepsilon(g)^{-1}\right)=f\left(g Y_{i} \varepsilon(g)^{-1}\right)$. Therefore, the determining condition (6.7) will be changed to:

$$
\int_{G^{\prime} / G_{\varepsilon, B_{n}}^{\prime}} f\left(g B_{n} \varepsilon(g)^{-1}\right) d \dot{g} \neq 0
$$

But this is the determining condition of the same intertwining operators for SO_{n}^{*} if we take $M=\mathrm{GL}_{n}(F)$ there. Thus, $A\left(s, \tau^{\prime}, w_{0}\right)$ has a pole at $s=0$ if and only if τ^{\prime} comes from $\mathrm{SO}_{n}^{*}(F)$ by means of the definition in [9].

6.2 G is Symplectic

We now consider the case $G=\operatorname{Sp}_{2 l}(F)$ and $\alpha=e_{1}-e_{2}$. Notice $M=\mathrm{GL}_{1}(F) \times$ $\mathrm{Sp}_{2 l-2}(F)=F^{*} \times G_{m}$.

Let χ be a character of $F^{*}=\mathrm{GL}_{1}(F)$ to the unit circle in the complex plane and V^{\prime} be the space of χ. Since we may assume χ is self-dual, $\chi^{2}=1$. Let $(\tau, V) \in{ }^{\circ} \mathcal{E}\left(G_{m}\right)$ and

$$
I(s, \chi \otimes \tau)=\operatorname{Ind}_{M N}^{G}\left(\left(\chi \otimes|\cdot|^{s}\right) \otimes \tau \otimes 1_{N}\right)
$$

Let $h \in \mathbf{V}(s, \chi \otimes \tau)_{0}$. Fix open compact subsets $L \subset F$ and $L^{\prime} \subset M_{1 \times 2 m}(F)$. We assume that for some $v^{\prime} \in V^{\prime}, v \in V, h$ satisfies:

$$
h\left(\begin{array}{ccc}
I_{n} & 0 & 0 \\
\left(Y^{-1} X\right)^{\prime} & I_{2 m} & 0 \\
Y^{-1} & Y^{-1} X & I_{n}
\end{array}\right)=\xi_{L}\left(Y^{-1}\right) \xi_{L^{\prime}}\left(Y^{-1} X\right)\left(v^{\prime} \otimes v\right)
$$

where ξ_{L} and $\xi_{L^{\prime}}$ are the characteristic functions of L and L^{\prime}, respectively. Let $\widetilde{\mathbf{V}}^{\prime}, \widetilde{\mathbf{V}}$ be the dual spaces of \mathbf{V}^{\prime} and \mathbf{V}, respectively. Choose $\widetilde{v}^{\prime} \in \widetilde{\mathbf{V}}^{\prime}$ and $\widetilde{v} \in \widetilde{\mathbf{V}}$, let ψ_{χ} and f_{τ} be the matrix coefficient of χ and τ given by pairs $\left(v^{\prime}, \widetilde{v}^{\prime}\right)$ and (v, \widetilde{v}), respectively. Then from Lemma 5.2, $\left\langle\widetilde{v}^{\prime} \otimes \widetilde{v}, A\left(s, \chi \otimes \tau, w_{0}\right) h(e)\right\rangle$ is equal to

$$
\int_{(X, Y)} \psi_{\chi}(-Y) f_{\tau}\left(I_{2 m}-X^{\prime} Y^{-1} X\right)|Y|^{-s-\langle\rho, \tilde{\alpha}\rangle} \xi(X, Y) d(X, Y)
$$

which is proportional to

$$
\begin{equation*}
\int_{(X, Y)} \chi(Y) f_{\tau}\left(I_{2 m}-X^{\prime} Y^{-1} X\right)|Y|^{-s-\langle\rho, \tilde{\alpha}\rangle} \xi(X, Y) d(X, Y) \tag{6.8}
\end{equation*}
$$

where the integral is over the collection of F-rational solutions (X, Y) satisfying Lemmas 3.3 and 5.2. Here $\rho, \xi(X, Y), d(X, Y)$ have a same meaning as in Subsection 6.1.

By Theorem 4.2, there are only a finite number of open orbits O of N under $\operatorname{Int}\left(G^{\prime}\right)$. For any $n(X, Y) \in \mathrm{O}$, define $d^{*}(X, Y)=|Y|^{-\langle\rho, \tilde{\alpha}\rangle} d(X, Y)$, then $d^{*}(X, Y)$ is an invariant measure on O (cf [1]). Therefore, the integral in (6.8) will be changed to:

$$
\begin{equation*}
\int_{(X, Y)} \chi(Y) f_{\tau}\left(I_{2 m}-X^{\prime} Y^{-1} X\right)|Y|^{-s} \xi(X, Y) d^{*}(X, Y) \tag{6.9}
\end{equation*}
$$

Moreover, the representative of each orbit can be chosen as $n\left(E_{1}, \varepsilon_{i}\right)$, where $X_{1}=$ $(1,0, \ldots, 0) \in M_{1 \times n}(F)$ and $\varepsilon_{i} \in S$. Hence, each open subset of O can be expressed as $n\left(g X_{1} h, g^{2} \varepsilon_{i}\right)$ as g and h run through G^{\prime} and G_{m}, respectively. Thus, $d^{*}(X, Y)$ induces an invariant measure on $G^{\prime} / M_{n_{i}}$. Furthermore, by the same reason as before, it also induces an invariant measure $d \dot{m}$ on the quotient $M / M_{m_{i}}^{t}$ since $M_{m_{i}}^{t} / M_{n_{i}}=2$ by Theorem 5.3. Therefore, if we let $Z_{i}=I_{2 m}-\varepsilon_{i}^{-1} E_{2 m, 1}$, then $M_{m_{i}}^{t}=\{ \pm 1\} \times C\left(Z_{i}\right)$ where $C\left(Z_{i}\right)$ is the centralizer of Z_{i} in G_{m}. Then equation (6.9) can be expressed as:

$$
2 \int_{F^{*} /\{ \pm 1\}} \int_{G_{m} / C\left(Z_{i}\right)} \sum_{\varepsilon_{i} \in S} \chi\left(g^{2} \varepsilon_{i}\right) f_{\tau}\left(h Z_{i} h^{-1}\right)\left|g^{2} \varepsilon_{i}\right|^{-s} \xi\left(g E_{1}, g^{2} \varepsilon_{i}\right) d \dot{h} d \dot{g}
$$

where $d \dot{g}, d \dot{h}$ are invariant measures on $G^{\prime} /\{ \pm 1\}$ and $G_{m} / C\left(Z_{i}\right)$, respectively, induced from din.

Then we have the following.

Lemma 6.3 The intertwining operator $A\left(s, \chi \otimes \tau, w_{0}\right)$ is convergent for $s>0$ and has a pole at $s=0$ if and only if

$$
\begin{equation*}
\int_{G_{m} / C\left(Z_{i}\right)} \sum_{\varepsilon_{i} \in S} \chi\left(\varepsilon_{i}\right) f_{\tau}\left(h Z_{i} h^{-1}\right) d \dot{h} \neq 0 \tag{6.10}
\end{equation*}
$$

Proof The proof is similar to that of Lemma 6.1. Actually, it can be regarded as an improvement of the results in $[1,10]$ in these two special cases.

Since $G_{m}=\operatorname{Sp}_{2 m}(F)$, we will fix $T, e_{i}, i=1,2, \ldots, m$ as in Section 2. Let $\beta=$ $e_{1}-e_{2}$ and choose a maximal parabolic subgroup $P=M N$ with $M=M_{\beta}$. Then $M=$ $\mathrm{GL}_{1}(F) \times \mathrm{Sp}_{2 m-2}(F)=M_{1} \times M_{2}$. Let $T_{1}=\left\{\operatorname{diag}\left(t_{1}, 1, \ldots, 1,1, \cdots, 1, t_{1}^{-1}\right) \mid t_{1} \in\right.$ $\left.F^{*}\right\} \cong F^{*}$ be a torus in M.

For each $i, 1 \leq i \leq m$, we choose a root vector of $-2 e_{i}$ as: $\mathfrak{g}_{-2 e_{i}}=E_{2 l+1-i, i}$. Let $U_{-2 e_{i}}(x)=\exp \left(x g_{-2 e_{i}}\right)$ be the unipotent subgroup of G_{m} attached to $-2 e_{i}$. Then $Z_{i}=U_{-2 e_{1}}\left(-\varepsilon_{i}\right)$. Since $\bar{N} P N$ is a dense subset of $G_{m},(6.10)$ can be changed to:

$$
\begin{equation*}
\int_{\bar{N} P N / \bar{N} P N \cap C\left(Z_{i}\right)} \sum_{\varepsilon_{i} \in S} \chi\left(\varepsilon_{i}\right) f_{\tau}\left(h Z_{i} h^{-1}\right) d \dot{h} \neq 0 . \tag{6.11}
\end{equation*}
$$

But it can be easily shown that $\bar{N} P N \cap C\left(Z_{i}\right)=\bar{N} M_{2}$, thus, (6.11) is equivalent to:

$$
\begin{equation*}
\int_{M_{1} N} \sum_{\varepsilon_{i} \in S} \chi\left(\varepsilon_{i}\right) f_{\tau}\left(h Z_{i} h^{-1}\right) d \dot{h} \neq 0 \tag{6.12}
\end{equation*}
$$

We state our main result in this case as follows.
Theorem 6.4 The intertwining operator $A\left(s, \chi \otimes \tau, w_{0}\right)$ has a pole at $s=0$; equivalently, $I(\chi \otimes \tau)$ is irreducible if $\chi=1$.

Proof For any fixed $v \in \mathbf{V}, \widetilde{v} \in \widetilde{\mathbf{V}}$, let $K_{v, \widetilde{v}}$ be a minimal compact subgroup of $U_{-2 e_{1}}$ such that $K_{0}=\operatorname{supp}\left(f_{\tau}\right) \cap U_{-2 e_{1}} \subset K_{v, \tilde{v}}$. Let $\phi: \mathbf{V} \longrightarrow \mathbf{V}$ be defined by

$$
\phi\left(v_{1}\right)=\operatorname{vol}\left(K_{v, \tilde{v}}\right)^{-1} \int_{K_{v, \tilde{v}}} \tau(k) v_{1} d k, \quad \forall v_{1} \in \mathbf{V}
$$

Then $\mathbf{V}=\mathbf{V}^{K_{v, \tilde{v}}} \oplus \operatorname{Ker} \phi$, with $\operatorname{Ker} \phi$ being the orthogonal complement of $\mathbf{V}^{K_{v, \tilde{v}}}$ and ϕ is a projection from \mathbf{V} to $\mathbf{V}^{K_{v, \tilde{v}}}$. We will use $v_{1}^{K_{v, \tilde{v}}}$ to denote $\phi\left(v_{1}\right)$.

Since $(\tau, V) \in{ }^{\circ} \mathcal{E}\left(G_{m}\right), \widetilde{\mathbf{V}}$ can be identified with \mathbf{V} through the Hermitian inner product $\langle\cdot, \cdot\rangle$. Let $\widetilde{\tau}$ be the contragredient representation of τ on $\widetilde{\mathbf{V}}$, then $\widetilde{\tau}(g)=$ $\tau(g)$ for all $g \in G_{m}$ under the above identification. The left side of inequality (6.12) will be changed to

$$
\begin{aligned}
\int_{M_{1} N} \sum_{\varepsilon_{i} \in S} f_{\tau}\left(h Z_{i} h^{-1}\right) d \dot{h} & =\int_{N} \int_{F^{*}} \sum_{\varepsilon_{i} \in S}\left\langle\tau\left(u \cdot U_{-2 e_{1}}\left(-\varepsilon_{i} t^{2}\right) \cdot u^{-1}\right) v, \widetilde{v}\right\rangle d \dot{t} d \dot{u} \\
& =\int_{N} \int_{F^{*}} \sum_{\varepsilon_{i} \in S}\left\langle\tau\left(U_{-2 e_{1}}\left(-\varepsilon_{i} t^{2}\right)\right) \tau\left(u^{-1}\right) v, \tau\left(u^{-1}\right) \widetilde{v}\right\rangle d \dot{t} d \dot{u}
\end{aligned}
$$

where $d \dot{u}, d \dot{t}$ are the restriction measures of $d \dot{h}$ on N, M_{1}, respectively. For any $u \in N$, let $v_{u}=\left(\tau\left(u^{-1}\right) v\right)^{K_{v, \tilde{v}}}$ and $\widetilde{v}_{u}=\left(\tau\left(u^{-1}\right) \widetilde{v}\right)^{K_{v, \tilde{v}}}$. Then

$$
\begin{aligned}
\int_{F^{*}} \sum_{\varepsilon_{i} \in S}\left\langle\tau\left(U_{-2 e_{1}}\left(-\varepsilon_{i} t^{2}\right)\right) \tau\left(u^{-1}\right) v, \tau\left(u^{-1}\right) \widetilde{v}\right\rangle d \dot{t} & =\operatorname{vol}\left(K_{0}\right)\left\langle v_{u}, \tau\left(u^{-1}\right) v\right\rangle \\
& =\operatorname{vol}\left(K_{0}\right)\left\langle v_{u}, \widetilde{v}_{u}\right\rangle
\end{aligned}
$$

In particular, if we choose $\widetilde{v}=v$, then the right side of the above equation is nonnegative. We can also choose such v that $v^{K_{v, \tilde{v}}} \neq 0$, then if u belongs to a small neighborhood of $1, \tau\left(u^{-1}\right) v=v$. Thus $\left\langle v_{u}, \widetilde{v}_{u}\right\rangle>0$.

Therefore, for some $v \in \mathbf{V}$ and $\widetilde{v} \in \widetilde{\mathbf{V}}$, the left side of (6.10) is non-zero and $A\left(s, \chi \otimes \tau, w_{0}\right)$ has a pole at $s=0$.
Remark. If $\sigma=\chi \otimes|\operatorname{det}(\cdot)|^{s_{1}}$ is a self-dual representation of M_{1}, then by the results in [8], $A\left(s, \sigma \otimes \tau, w_{0}\right)$ has a pole at $s=s_{1}$ if and only if $A\left(s, \chi \otimes \tau, w_{0}\right)$ has a pole at $s=0$. For this reason, we have simplified our assumption on χ.

References

[1] D. Goldberg and F. Shahidi, On the tempered spectrum of quasi-split classical groups. Duke Math. J. 92(1998), no. 2, 255-294.
[2] D. Goldberg and F. Shahidi, On the tempered spectrum of quasi-split classical groups. II. Canad. J. Math. 53(2001), no. 2, 244-277.
[3] Harish-Chandra, Harmonic Analysis on Real Reductive Groups, III. Ann of Math. 104 (1976), 117-201.
[4] Harish-Chandra, Harmonic analysis on reductive p-adic groups. In: Proc. Sympos. Pure Math. 26, American Mathematical Society, Providence, RI, 1973, pp. 167-192.
[5] J. Humphreys, Introduction to Lie Algebras and representation theory. Second printing, revised, Graduate Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1978.
[6] I. Muller, Décomposition orbitale des espaces préhomogènes réguliers de type parabolique commutatif et application. C. R Acad. Sci. Paris Sér. I Math. 303(1986), no. 11, 495-498.
[7] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector space and their relative invariants. Nagoya Math. J. 65(1977), 1-155.
[8] F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups. Ann of Math. 132(1990), no. 2, 273-330.
[9] , Twisted endoscopy and reducibility of induced representation for p-adic groups. Duke Math. J. 66(1992), no. 1, 1-41.
[10] Poles of intertwining operators via endoscopy: the connection with prehomogeneous vector spaces. Compositio Math. 120(2000), no. 3, 291-325.
[11] E. B. Vinberg, The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR Ser. Mat. 40(1976), no. 3, 488-526, 709. (1976),463-495.
[12] X. Yu, Centralizer and twisted centralizers: application to intertwining operators. Canad. J. Math. 58(2006), no. 3, 643-672.
[13] I. N. Bernstein and A. V. Zelevinskii, Representation of the group $G L(n, F)$ where F is a local non-archimedean field. Russian Math. Surveys 31(1976), no. 3, 1-68.

Department of Mathematics, Xuzhou Normal University, 29 Shanghai Road, Xuzhou, China, 221116
e-mail: tianyuanwing@yahoo.com

[^0]: Received by the editors June 26, 2006; revised February 12, 2007.
 This work was partially supported by Distinguished Youth Grant number Q200715001 of Hubei Education Bureau

 AMS subject classification: Primary: 22E50; secondary: 20 G 05.
 (C)Canadian Mathematical Society 2009.

