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Abstract

The aim of this article is to review the progress made in the last few years in the representation
theory of solutions of parabolic systems in the sense of Petrowskii.

1980 Mathematics subject classification (Amer. Math. Sac.): primary 35 K 30, 35 K 45; secondary 35
C 15.

1. Introduction

In theory of partial differential equations of parabolic type the notion of the
fundamental solution plays a very important role. It is widely known that most
quantitive statements concerning the solutions of parabolic differential equa-
tions and systems are derived from propeties of the fundamental solution. The
construction of the fundamental solution based on the parametrix method has
been known for a long time. The fundamental solutions for second-order
parabolic equations were constructed by M. Gevrey, F. G. Dressel, W. Pogorzel-
ski and D. G. Aronson. Subsequently the parametrix method was extended to
systems of equations parabolic in the sense of I. G. Petrowski by W. Pogorzelski,
O. A. Ladyzhenskaja, D. G. Aronson and S. D. Eidel'man.

The principal objective of this exposition is the development of the theory of
the representation of solutions, primarily of the Cauchy problem for parabolic
systems and equations and the related behaviour of the solutions near the
boundary. It is of considerable interest that all these considerations are entirely
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[21 Representations theorems for parabolic systems 247

based on properties of the fundamental solution and some results of measure
theory in Rn.

The prototype of representation theory is the following result for the heat
equation.

Let u be a solution of the heat equation

AXM - u, = 0 for (x, ( ) 6 ^ X (0, T]

such that JK\u(x, i)\Fe-p^ dx (1 < p < oo) is bounded for / e (0, T], then
there exists a unique function/such that/e"^'*'2 G LF(Rn) (1 <p < oo) and

u(x, t) =

for (x, 0 G ^ X (0, r ] . If ̂  = 1, then

u(x, t)

where ju is a Borel measure in /?„ such that

f | M | ( ) oo.

In this context non-negative solutions are of special interest since in physical
phenomena the solutions of parabolic equations usually represent positive quan-
tities such as temperatures, densities, probabilities etc. Widder (1944) discovered
that if u is non-negative solution of the heat equation then / ^ u(x, t)e~p^ dx is
bounded in (0, T], where /8 is a positive constant. Hence in the integral
representation formula ji is a non-negative Borel measure. It is worth mention-
ing here that the function (4irty/2 exp(-\x\2/4t) appearing in the representation
formula is the fundamental solution of the heat equation. The above integral
representation guarantees the existence of the limit of u almost everywhere in /?„
as t —> 0. This gives an extension of the classical Fatou theorem known for
analytic and harmonic functions, and allows the introduction of the notion of
parabolic limit which corresponds to the non-tangential limit in the case of
harmonic functions.

Section 1 provides the basic material for the study of properties of the
fundamental matrix of a parbolic system of any order.

In Section 2 we concentrate on the representation theorems of solutions in
Orlicz spaces.

In Section 3 we give the notion of a parabolic limit and prove the Fatou
property.

Section 4 is devoted to study parabolic systems of the second order. We prove
a necessary and sufficient condition for the fundamental matrix to have non-
negative elements. As a result we obtain that a parabolic system of second order
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248 J. Chabrowski (3)

having non-negative elements in its fundamental matrix must be weakly cou-
pled. A significant feature of weakly coupled parabolic systems is that the
classical maximum principal is applicable. This makes possible the investigation
of properties of non-negative solutions in greater detail.

In the preceding considerations there is a lower estimate for the diagonal
elements of the fundamental matrix which plays an essential part.

In Section 6 we proceed to apply some results on differentiation of positive
measures to investigate the behaviour of non-negative solution near the
boundary.

In Sections 7 and 8 we are concerned with the rate of spatial decay of
non-negative solutions and the local Fatou property.

Finally, in Section 9 we briefly discuss Widder's Inversion Theorem and its
connection with the initial distribution problem. The results of Section 7 are
joint with N. A. Watson. Certain results of this paper (in particular of Section 8)
are published here for the first time.

The author is indebted to H. B. Thompson for valuable and stimulating
comments on the subject.

1. Fundamental solutions for parabolic systems of the order 2m

This section provides the fundamental material required for our study of the
representation of solutions of parabolic systems in the sense of Petrowskii. We
state in this section some of the main results about fundamental solutions which
will be needed in the subsequent presentation of the subject.

Consider the N X N system of equations

3M. N

0) -JJ7 = 2 2 Aj!{x, t)Dx
kUj + gi{x, t) (/ = 1,. . . , N),

where k = (*„ . . . , kn), \k\ = *, + • • • +*„, Z>* = Dx\< • • • D<, D^ - £ .
The functions gt(x, t) and the coefficients Ag are defined on R,, X [0, T].

Let

8K. N

(lh) "a7 = 2 2 Ajl(x, t)Dk
xUj

be the corresponding homogeneous system.
Consider the determinant

(2) detf 2 A?{x,t){iZf-8rs\\
L | * | - 2 m J
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[4 ] Representations theorems for parabolic systems 249

where £ = (£„ . . . , £ , ) is a real vector with norm |£| = (2"immi £
2)1/2 = 1, Sn is

the Kronecker symbol, i = V^T, and (/£)* = (/£,)*' • • • (/£,)*". Denote the
roots of the determinant (2) by ^(1; x, t).

We say that the system (1) (or (lh)) is uniformly parabolic in R,, X [0, T] (in
the sense of Petrowskii) if there exists a constant S > 0 such that

max sup Re{\(£; x, t)\ < -8

The Cauchy problem for the system (1) consists in finding a solution for (1) in
the strip Rn X (0, T] satisfying the initial conditions

where the <£,(•*) are given functions defined on Rn.
By a fundamental solution (or a fundamental matrix) F(x, t; y, T) =

{Ty(x, t; y, T)} (i,j = 1, . . . , N) we mean an TV X TV matrix defined for (x, t),
(y, T) G R,, X [0, T], T <t, which, as a function of (x, t) (x G R,,, r < t < T),
satisfies (lh) (that is, each column is a solution of (lh)), and is such that for each
continuous and bounded function/(x) on R,,, we have

(4) hm+ j R Ty(x, t; y, r)f(y) dy = StJ f(x) (ij = 1,.. . , N)

at every point x G Rn.
Throughout we shall make the following assumptions:
(A,) The coefficients of (lh) are continuous, bounded functions on Rn X

[0, T] and, furthermore, the principal coefficients (with |A:| = 2m) are continu-
ous in /, uniformly with respect to (x, /) G R,, X [0, T].

(Aj) The coefficients of (lh) are Holder continuous of exponent a (0 < a < 1)
in x, uniformly with respect to (x, t) in bounded subsets of R,, X [0, T], and,
furthermore, the principal coefficients are Holder continuous of exponent a
(0 < a < 1) in t, uniformly with respect to (x, t) G R,, X [0, T\.

THEOREM 1.1. Assume that (1) is uniformly parabolic in R,, X [0, T] and that
(A,), (A2) holds. Then there exists a fundamental solution F(x, t; y, T) of (lh)
satisfying the inequalities

kl/(2m-l)-

\D;L\X, t;y, T)| < C{t - T) v" ' ' " ' " " " exp ' ' " "

(5)
kI/(2m-I)

\D,T(x, f, y, T)| < C(t - T)-<»+*">/*» expl - X ^ ^ - I T

for all (x, t), (y, T) G Rn X [0, T], -T < t, \k\ < 2m, where C and \ are positive
constants.
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250 J. Chabrowski [sj

With the aid of the fundamental solution we can solve the Cauchy problem
(1), (3). By a solution of the problem (1), (3) in the strip R,, X (0, T] we mean
functions {«,(*, 0} (i = I, • • • , N) which satisfy (1) for (x, t) G Rn X
(0, T](dUi/dt and D*Uj, 0 < |fc| < 2m, i = I, . . . , N) are assumed to exist and
be continuous on /?J(0, T], and which are continuous on Rn X [0, T] and satisfy
(3) for x £ Rn.

THEOREM 1.2. Assume that the system (1) is uniformly parabolic in R,, X [0, T]
and that (A,), (Aj), hold in Rn X [0, T). Let { gt(x, t)} {i = \, . . ., N) be continu-
ous functions in Rn X [0, T], Holder continuous in t uniformly in bounded subsets
of Rn X [0, T], and let {<>,(*)} (i = I,. . ., N) be continuous functions on R,,.
Moreover, suppose that,

(6) f T f 18i(x, t)\" expC-a l* ! 2 " - / ^ -» ) dx dt < oo,

(7) ( to(*)K expC-alxl2™^2"1-1)) dx < oo (i - 1, . . . . AT)

/ o r some constants 1 < / ? < o o , 0 < a < o o .

77ie/i f/iere exw/j a solution of the Cauchy problem (1), (3) in a strip R,, X
(0, 7\], T, < T, given by the formula

r N

( 8 ) r/ r ^
- / dr f 2 r s(x, /; y, r)gj(y, r) dy (i = 1, . . . , N).

Jo JKj=i

To define the adjoint system of (lh) we shall need the following assumption:
(A3) The derivatives D^AJ>{x, 0 (0 < |/i| < |A;|) are continuous bounded func-

tions in Rn X [0, T], and Holder continuous of exponent a (0 < a < 1) in x,
uniformly with respect to (x, i) in bounded subsets o f / ^ x [0, T].

The adjoint system of (lh) is given by

(9) l£ = -2 2 (-irD
dt y = l \k\<2m

A fundamental solution (or fundamental matrix) of (9) is an Â  X N matrix
T*(x, t; y, T) = {Tf/x, t; y, r)} defined for (x, t), (y, T) e R,,X [0, T], t < r,
which as a function of (x, i) (x e Rn, 0 < t < T) satisfies (9), and is such that
for each function/(x), that is continuous and bounded on Rn, we have

(10) lim f rf/x, t; y, r)f(y) dy = 5/(x) (i,j = 1,. . . , N).
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[6] Representations theorems for parabolic systems 251

THEOREM 13. Let the system (lh) be uniformly parabolic in R^ X [0, T], and let
the assumptions (A,), (Aj) and (A3) hold. Then there exists a fundamental solution
F* of the system (9) such that

(11) T*(y,T;x,t) = T(x,t;y,T)T

for all (x, t), (y, T) 6 Rn X [0, T], r <t, where TT denotes the transpose of T.

THEOREM 1.4. Let the system (lh) be uniformly parabolic in R,, X [0, T] and let
the assumptions (A,), (Aj) and (A3) hold. Then there exists at most one solution of
the Cauchy problem (1), (3) satisfying for some a > 0.

(T [ \u,(x, 01 exp(-a|x|2m/(2'"-1>) dx dt < oo (i = 1, . . . , N).
J0 JRn

It follows from the estimates (5) that if fj(x) exp(-P\x\2m/(2m-1)) G L^RJ
(J = 1, . . . , N), 1 < p < oo, for some positive constant /?, then

(12) u,(x,t)-( ^lTij(x,t;y,O)fj(y)dy

is a solution of (lh) in a strip /?„ X (0, 7*,], T, < r . Moreover one can prove that
for some constant B, say, we have

||H(., 0 exp(-,8| • \2m"2m-»)\\LP(K) < B 2 |J(.) exp(-/?| • l ^ 2 " - 1 ^ ! ^ )

(if/> = oo we use the supremum norm rather than / / -norm) and

H-, 0 -M-) exP(-i8| • I ^ ^ - ' ^ I U ^ ^ O (i - 1, . . ., N)
a s r ^ O , if 1 < p < oo.

Finally we note that under the assumptions (A,), (Aj) and (A3) the fundamen-
tal matrix satisfies the Kolmogorov identity

r N

ry(x, t;y,r)-l 2 r t t ( x , /; z, S)TkJ(z, 8; y, r) dz (ij = 1, . . . , N)

for all x,y e R,,, 0 < T < 8 < t < T.
The proofs of Theorems 1.1-1.4 can be found in the monographs of Eidel'-

man (1969) and Friedman (1964); see these books for their historical references.

2. Representation theorems in Orlicz spaces

In this section we establish some preliminary result about the uniqueness and
representation of solution of the Cauchy problem in Orlicz spaces. Extensive
studies of Orlicz spaces can be found in the monographs Kransnosel'skii and
Rutickii (1961) and Kufner, John, Fucik (1977).
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252 J. Chabrowski [7]

A function <j> defined on [0, oo) is a Young function if

(-y) ds for t > 0,

where the function <f> defined on [0, oo) has the following properties:
(i) # 0 ) = 0, <K0 > 0 for t > 0,
(ii) <f> is right-hand continuous on [0, oo),
(iii) <(> is non-decreasing on [0, oo),
(iv) l imM M <p(s) = oo.
Let $ be a Young function generated by the function </>, put

\p = sup s

and

f VOO ds-Jo

The function ^ is called the complementary function to $ and it is also a Young
function.

Put

p(u; 4») = f H\u(x)\) dx.

Let $ and t be a pair of complementary Young functions and let u be a
measurable function on R,,, the number

(13) IN* = sup f \u(x)v(x)\ dx,

where the supremum is taken over all measurable function v cm. R^ such that
p(v; ^ ) < 1, is called the Orlicz norm. The set of all measurable functions u on
R,, such that || M||O < oo is denoted by L^R^ and called the Orlicz space.

Analogously we can define the weighted Orlicz space L^y(R,,) with respect to
the finite measure exp(-a|jc|Y) dx, where a and y are positive constants.

Denote by L|Y(/{n) the set of all measurable functions uonR,, such that

ljcH dx < oo.

It is easy to see that / ^ $(exp(-a|x|Y)) dx < oo for all a > 0 and y > 0.
Consequently if u e L^y(R,,) then u(x) exp(-P\x\y) G Ll(Rn) for all 0 > a.
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[ 8 ] Representations theorems for parabolic systems 253

Indeed by the generalized Holder inequality and the convexity of $ we obtain

f |«(x)|exp(-/3|xPV*

(14) < f *(exp(-a|*|*)|ii(x)|) dx f *(exp(- ( fi " «)WT)) dx

< f *(|«(*)|) exp(-a|xr) dx [ *(exp(-(i8 - a)\x\>)) dx.

From now on we shall adopt the following

T H E O R E M 2.1 . Let the system ( l h ) be uniformly parabolic in J ^ X [0, T] and let
the assumptions (A,) and ( A ^ hold. Letfj G ££(/?„) (J = 1 , . . . , N), then

(15)

w a solution of the system (lh) in R,, X (0, 7\], vWtere T, < 7". Moreover, there
exists a positive constant C such that

(16)
|«,(-, t

N

< C 2 [ 4.(exp(-a|x|2mA2"-1>|J(;.(x)|)) rfx (i = 1, . . . , N)

for t e (0, r,].

PROOF. The first part of the theorem follows from the inequality (14) and
Theorem 1.2.

To establish (16) let v be an arbitrary function such that p(t>; ^ ) < 1. By (5)
we have

f |M,(X, 0| exp(-22'"/(2m-1>a|x|2m(2'"-1>)|u(x)| dx
JRn

<fR / 2 1 ^ , * ; ^ , 0)4001 dy

(17)

X exp(-22 m/ ( 2 m- »a\ - l))\v(x)\ dx.
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254 J. Chabrowski [9)

On the other hand

- 1) a|z|2rn/(2m- l),l/(2m-l)\

Combining this with (17) and the generalized Holder inequality the result
follows provided 0 < t < Tx < (x/a)2m~'2-2m.

Similarly using the estimates (5) one can prove

LEMMA 2.1. Assume that (lh) is uniformly parabolic in Rn X [0, T] and that
(A,), (A2) hold. Let {Ui(x, t)} (i = 1, . . . , N) be a solution o/(lh) in R,, X (0, T]
such that

f <t>(\u'(x, t)\) exp(-a|x|2m/(2m-'>) dx < M

for 0 < t < T, where M is a positive constant, then there exists a positive constant
8 such that for all 0 <T <T

ru,(x, t) = jR 2 tyx, /; y, r)u£y, r) ay (i = 1, .. . , N)

in /?„ X (T, min(r, T + 8)], where 8 is independent of T.

By E^iRJ we denote the closure in L^RJ of the set of all bounded
measurable functions on /?„.

In the next theorem we shall need the following property of the space L£(RJ:
every bounded sequence in L£ contains an ££-weakly convergent subsequence
(* is the complementary function to $).

Now we are in a position to establish the converse theorem to Theorem 2.1.

THEOREM 2.2. Assume that the system (lh) is uniformly parabolic in R,, X [0, T]
and that (A,), (A2) and (A3) hold. Let {«,(*, t)} (i = \, . . . , N) be a solution of
(lh) in Rn X (0, T] such that

(18) f fc(k(je, /)|) exp(-a|x|2m/(2m-1>) dx < M (i - 1 , . . . . AT)
JK

for all 0 < t < T, where M and a are positive constants. Then there exist unique
functions fj G L£(RJ such that

(19) Ui(x,t)=f IlTy(x,t;y,0)fJ(y)dy (i = 1, . . . , N)

for all (x, r ) 6 ^ , X (0, T].

https://doi.org/10.1017/S1446788700024587 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024587


[10] Representations theorems for parabolic systems 255

PROOF. It follows from (18) that {u,(-, 0. 0 < t < T) (i = 1 , . . . , N) are
bounded subsets of L^R,,). Hence there exist a sequence {tr} converging to 0
and functions/ G L|(/?J (i = \, . . . , N) such that

/ = 1, . . . , N)

for every v G E^R,,). By Lemma 2.1, Theorem 1.4 and the inequality (14) there
exists 8 > 0 such that

N

lim ( ul(x,tr)txp(-a\x\2m'clm-lv)v(x)dx

= f /•(*) expC-alxl2™^".-!))^) dx

",(*, 0 - / 2 r</(-*>'; y> ti«/(y, Q

for 0 < tv < t < 8, x G Rn. Consequently

f 2 ^(of, /; y, K)uj(y, Qdy- f 2 T^x, t; y, 0)Uj(y, Q dy

[ 2 tyx, t; y, 0)Uj(y, Q dy - \ 2 T^x, t; y, O)fj(y) dy

J2.

Since T^x, t; •, 0) exp(a\ • \2m/(2m-l)) e E^RJ (for sufficiently small 0.
lim,,^^ J2 = 0. To prove that lim,,^^ Jx = 0, let us observe by (18) we have
|/, | < A/2*!, JK n\ru(x, t;y, Q - Tu(x, t;y, 0)| exp(a|y|2'"/(2"-1>)) dy.

It is easy to show, using (5), that the last integrand converges uniformly to 0
on Rn, provided 8 is sufficiently small. To prove that formula (19) holds on
Rn X (0, T] suppose that (x, t) G R,, X (8, 28]. Thus by Lemma 2.1 and
Kolmogorov's identity

I1T0(x,t;y,8)uj(y,8)dy
i

= [ f 2 Tg(x, t; y, 8) 2 TJk(y, 8; z, 0)fk(z) dz
-'/!„[ JRnj=\ k~\

= f 2 r,*(x, /; z, 0)/,(z) dz (i - 1,. . . , N).
JKk-i

dy
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256 J. Chabrowski [11]

We can now proceed step by step to prove that formula (19) holds in R,, X
(0, T\. The uniqueness of fj is a consequence of the Fatou property which will be
stated in the next section.

As a particular case we obtain

COROLLARY 2.1. Suppose that the hypotheses (A,), (Aj) and (A3) hold. Let
{Uj(x, t)} (j = \,. . . ,N)be a solution of (lh) in F^ X (0, T] such that

\\u/-, t) exp(-a| • \2m/(2n-l))\\LW < M (j = 1,. . . , N)

for all 0 < t < T, where M and a are positive constants, 1 <p < oo. Then there
exist unique functions fj (j = \,. . . , N) such that fy exp(-a|x|2m/(2m~1)) e
L'W (J=h...,N)and

«,(*,') = f S r ^ r ^ . O ) ^ ) * (i=l,...,N)
JRnj-\

for (x, t) G (0, T] X /?„.

The case/? = 1 is not contained in Theorem 2.2, but using a similar argument
one can prove

THEOREM 2.3. Suppose that the hypotheses (A,), (A^ and (A3) hold. Let

{uj(x, /)}(/ = \, . . . , N) be a solution of the system (lh) in 1^ X (0, T] such that

||«,(-, /) exp(-a| • |2'"/<2"-1))|| i.(JO < M (i = 1, . . . , N)

for all 0 < t < M, where a and M are positive constants. Then there exist unique
Bore! measures { ty} 0 = I, • • • , N) such that

(20) f exp(-a\x\2m/(2m-»)\ fy\(dx) < oo (/ - 1, . . . , N)

and

for all (x, t)(E R,,X (0, T].

3. Global Fatou property

We shall derive an analogue of the well known Fatou property for bounded
harmonic functions in an open disc. Roughly speaking, this property asserts that
a bounded harmonic function in an open disc admits a non-tangential limit
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1121 Representations theorems for parabolic systems 257

almost everywhere on the boundary. In this section we establish the existence of
a parabolic limit for solutions of the system (lh).

Given y > 0, h > 0 and a point x0 e /?„, let

r*r(*0) = {(*. 0 G *« + i ; o < I* - *ol < Y'1/(2m). o < t < h)
denote a truncated parabolic region in Rr,+V

We shall say that a function u defined o n ^ , X (0, h] has a parabohc limit at
x0 if there exists a number 1 such that for all y > 0, we have

lim u(x, t) = 1,
O ( O )

We shall briefly express this by writing p- lim(jc>/j_+(jCo>O) u(x, t) = 1.
Further, given a Borel measure ju. on Rn and a point x e ^ , , we define the

symmetric derivative Dp of ju at x, by

where m denotes the Lebesgue measure on R,,, and B{x, 8) = {>>; |>> — x| < 8}.
It is known that Dp exist a.e. [m].

THEOREM 3.1. Suppose that (A,) and (Aj) hold. Let fj G L%(Rn) (J =
I, . . . ,N) and let {M,(X, 0} {i = \, . . . ,N) be a solution of (lh) in R,, X (0, T]

given by

",(*> 0 = fR 2 ^ ( x , ' ; >>, 0 ) ^ 0 ) ^ ( / = ! , . . . , N),

then
p - l i m M , ( X , r ) = / ( x 0 ) ( i = l , . . . , N )

exists a.e. [m] in Rn. Moreover, if { ty) (J = 1, . . . , N) are Borel measures
satisfying condition (20) and

N

Ui(x, 0 = f 2 Tyix, t; y, O)ju,(a» (i = 1, . . . , W),

p-lim ut(x, t) = DHJ(X0) (i = \, . . . , N)

ists a.e. [m] in Rn.

PROOF. It suffices to prove the second part of the theorem. Write the Lebesgue
decomposition of the measures

C/ - 1. • • • > > 0 .
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258 J. Chabrowski [ 1 3 J

where the functions gj belong (locally) to LX(R^) and Vj are singular with respect
to the Lebesgue measure. We then have that

Hm ±f _x [\gj{y) - gj(*)\ dy + 0 (j = l , . . . , N)

a.e. [m] in R,,. Hence for fixed x and (for any) e > 0 there exists a number S > 0
such that

(22) a'" f [\gj(y) - gj(x)\ dy + \vj\{dy)] <e (j - I,.. ., N)
J\y-x\<a

for all 0 < a < 28. For each 0 < t < min(26, T) choose a non-negative integer
P(t) such that

2p~1yt1 /(2m) < S < 2pyti/(2m).

It is clear that

2 f\y-xl<ytl'2m
v(z, t;y, 0)\[\gj(y) - gj(x)\ dy

^ ) - g/*)| dy + \pj\(dy)]

2 /* lri,(^ '! >̂ 0)| | gj(x)\ dy+jtf \Tv(z, t; y, 0)1 I p,\{dy)

In view of (22) we have

J<cc
/ ; j

X
N

< NCe(2y)n.

Note that the inequalities \z - x\ < y/'/am) and \x - y\ > 2'~lyt1/(2m) imply
\z - y\ > 2( '-2V1 / ( 2"" for / = 2, . . . , / > hence

/=2

< CNe f 2"V" exp[-X(2/-2y)2 m / ( 2 m-1 )] .
1-2

Now using the estimate (5) and the condition (20) it is easy to show that
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Finally, noting that

f V

the result follows.

4. Parabolic systems of second order, non-negativity of the fundamental matrix

The purpose of this section is to formulate a necessary and sufficient condi-
tion for the fundamental matrix to have non-negative elements. We obtain the
result that a parabolic system of the second order having non-negative elements
in its matrix must be weakly coupled.

We shall first establish theorems dealing with changes of sign of the elements
of the fundamental matrix.

Let us consider the second order system of partial differential equations of the
form

3M N

(23) -g/ = 2 2 4?(*> *)»& ( i = h - . . , N )

on the strip /?„ X (0, T].
Introduce the following notation. By k"* we denote the sequence (it,, . . . , kn)

of non-negative integers such that
_ i 0, p T^ m and p ¥=l, .

p \ 1, p = m or p = I,

k1""1 denotes the sequence (2Sjm) (j' = 1, . . ., n) and finally km denotes the
sequence (8Jm) (J = 1, . . . , n).

S e t ^ ( x , 0 = Ag(x, t), whenever |it| = 0, i,j =\,...,N.
We shall need the following lemma proved by Milicer-Gruzewska (1960),

(1963).

LEMMA 4.1. Suppose that (A,), (A2) and (A3) hold. Then for every (x, t) G Rn X
[0, T] we have

1 f
r - * l 2 { t — T ) JRn { / ' ' ' m m

l i m W t v

lim f Tyix, t; y, r)(ym - xj dy = Aj>m(x, t),

lim f Ty(x, t; y, r) dy = Ag(x, t), m, I = 1, . . . , n, i ¥*j.
T _ , t - T JR
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LEMMA 4.2. Let (A,), (A^) and (A3) hold. Then for every function <j> G C3(RJ
(with bounded derivatives of the third order) we have

lim —!— f Tyix, t;y, r)4+y) dy=

for i =£j, x e R,,.

The result follows easily from Lemma 4.1 and Taylor's formula.
On the basis of the above lemma, we can now establish the following result.

THEOREM 4.1. Suppose the hypotheses (A,), (Aj) and (A3) hold. If for fixed i ¥^j
and multi-index (k), \k\ = 2, Ag(x, i) ^ 0, then the element TtJ{x, t; y, T) of the
fundamental matrix changes sign.

PROOF. Let us consider the case (k) = (k"""). According to the assumption
there exists a point (x1, t') such that Aj>~»(x', t') =£ 0. Let Ag~~(x', t') > 0. If we
assume, contrary to the theorem, that Ty < 0, then by Lemma 4.1

lim } f Tyix', t';y, r)(ym - x'J dy = A^(x\ t') < 0,
t-*f 2(t — T) Jj^

which is impossible. Similarly, if Ty is non-negative, then by Lemma 4.2 we have
in the case Atf(x', t') < 0

5™ 7 ^ 7 7 / Tu(x'> l';y> T)[! + <xxKym -<)]&

- 2AH(X\ t') - 2Ag-(x', t') < 0

and in the case A$(x', t') > 0

lim — l — f Ty(x', t';y, r)f(yj dy = -Ag-{x', f) > 0,
T->t I T JR.

where

2Aym) i}, ,

Here <K.Vm) is a cut-off function such that </> e C3(/?), 0 < <j> < 1, <K^m) = 1 for
I*™ ~ ym\ < ^/2> <K>'m) = 0 f ° r l-̂ m ~ ^ml ** ^ a n d a positive 5 is chosen such
that

https://doi.org/10.1017/S1446788700024587 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024587


[161 Representations theorems for parabolic systems 261

for \ym - x'm\ < 8. It is clear that in both cases we have arrived at the
contradiction. Clearly, the same method can be applied in the case Aj{m(x', t')
< 0 and subsequently when (k) = {kmi).

Using the above technique we may prove

THEOREM 4.2. Suppose the hypotheses (Aj), (A2) and (A3) hold. If for fixed i =£j
and multi-index (jfc), \k\ = 1, Ag(x, t) ^ 0, then the element Ty changes sign.

As an immediate consequence of Theorems 4.1 and 4.2 we obtain

COROLLARY 4.1. Let (A,), (Aj) and (A3) hold. If for fixed i ¥=j and multi-index
(k) with \k\ = 2 or \k\ = 1, Ag(x, t) 5* 0, then the element Ty changes sign.

To prove the main result of this section we shall need the following maximum
principle, due to Besala (1972), for weakly coupled parabolic systems:

N gu

(24) 2 A»(x, t)Dx\ + 2 Aj((x, t)Uj - -rj- = 0 (i = 1, . . ., N).
1*1-1,2 7 = 1 dt

By Lj we denote the operator which is defined by the left-hand side of (24).
It is easily seen that parabolicity in the sense of Petrowskii means that
(P) there is a positive number 8 such that

(r=\,...,N)

for all I e R,,, (x, t) e Rn X [0, T].

THEOREM 4.3. Let the coefficients of the system (24) satisfy the assumptions (A,),
(A2), (A3) and (P) and moreover let

(25) A8(x, 0 > 0 for all (x, t) £ Rn X [0, T], i *j.

Assume that the functions {ut(x, t)} {i = \, . . ., N) satisfy the differential inequal-
ities

L»(Ml, . . . , « „ ) < 0 (1 = 1, . . . , N)

in R,, X (0, T], are continuous on Rn X [0, T], and

fT[ ur(x, t) exp(-fe|x|2) dx dt < 00 (» = 1, . . . , N),
Jo •>*„

where b > 0, uj~(x, t) = max(0, ~ut{x, t)) and

u,(x,0)>0 (/ = ! , . . . , N)
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for all x G R,,, then

u,(x, t)>0 (i = 1, . . . , N)

for all (x, O E ^ X [0, T],

THEOREM 4.4. Assume that the system (23) is uniformly parabolic in R,, X [0, 7"]
and that (A,), (Aj) and (A3) hold in R,, X [0, T). All elements Tv(x, t; y, T) of the
fundamental matrix of the system (23) are non-negative if and only if

(26) AH(x, t) = 0, |*| = 1, 2, i *j,

and
(27) AK(x, t) > 0, / *j,

for all (x, t)eRnX [0, T].

PROOF. First, let us suppose that (26) and (27) hold. Then the system (23)
takes the form (24). Fix an index i (i = I, . . . , N) and consider the Cauchy
problem for the system (24) with the initial data

(28) Uj(x, T ) = S0<Kx) 0 = 1 , . . . , N ) ,

where <£ is a continuous, non-negative bounded function in Rn. Theorem 1.2
(formula (8)) implies that the solution of the Cauchy problem (24), (28) is given
by the formula

U j ( x , t ) = f Tj,(x, t; y , r ) < t f > > ) ay 0 = 1 , . . . , N ) .

By Theorem 4.3

\(x, t; y, r)<S>(y) dy > 0 (J = 1, . . . , N)

for any non-negative continuous bounded function <j>, hence TJt(x, f,y,r)>0
for (x, t), (y, r) G Rn X [0, T], r < t.

To prove the converse assume that TtJ(x, t; y, T) > 0 for (x, t), (y, r) G R,, X
[0, T], t > T. Then Corollary 4.1 implies (26). The non-negativity of Atf(x, t) is a
consequence of Lemma 4.1.

REMARK 4.1. It follows from Theorem 4.4 that the fundamental solution of a
single parabolic equation of the second order is nonnegative. However the
non-negativity of the fundamental solution will break down for a parabolic
equation of higher order. As an example, due to Kondrat'ev and Eidel'man
(1974), consider the parabolic equation with constant coefficients

37 = 2 AkD*u, m>\.
0 t \k\~2m
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Using the Fourier transform we easily find that the fundamental solution is
given by

N
T(x, t) = (2ir)"" f exp «• 2

2m

It follows directly from the above formula that F(0, t) > 0. Let

u(x, t)=jRT(x-y,t)<t>(y)dy,

where <f> is a non-negative infinitely differentiable function equal to x\ +
{-\)mxf" in a neighborhood of the origin. Then u(x, t) is also infinitely differen-
tiable right up to the hyperplane t = 0. Calculating the derivative in / and using
the parabolicity condition we obtain

9/ JC-0./-0
| K| ae 2ftl ;£VQ/BK0 I ^ | M 2/tt

(2/n)!(-l)m>t2 m A.. . j 0<0.
x-0

But M(0, 0) = 0 and hence w(0, t) > 0 for sufficiently small t, which is impossi-
ble if T(x, t) > 0.

We conclude this section by finding a lower bound of the fundamental
solution of the weakly coupled parabolic system (24). Fix an index / and let
T/(x, t; y, T) be the fundamental solution the parabolic equations

(29) | - 2 A!i{x,t)D^.

THEOREM 4.5. Suppose that the coefficients of the system (24) satisfy the
assumptions (A,), (A2), (A3), (P) and (27). Let T,(x, t; y, T) (I = 1, . . . , N) be the
fundamental solution of (29). Then

(30) r,(x, /; y, T) < Tu{x, t; y, r) (/ = 1, . . . , N)

for all (x, t), (y, T) e Rn X [0, T], r < t.

PROOF. Let <j> be a bounded, non-negative, continuous function on R,, and set

r,(x, t) = f [Tu(x, t;y, T) - T,(x, t;y, T)]</>(^) dy.

By (4) we have lim,_T r,(x, t) = 0 (ji = 1, . . . , N). Note that r, satisfies the
equation

, - 5 = - 2 ̂ (*> , r; y,
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Since the right hand side of the last equation is non-positive it follows from
Theorem 4.3 that rt(x, t) > 0 for (x, t) e Rn X (T, T] (I: = I, . . . , N) and con-
sequently

f T,(x, t; y, r)4(y) dy < f Ta(x, t; y, r)<j>(y) dy

for any non-negative, continuous, bounded function on R,,, and the proof is
complete.

COROLLARY 4.2. Under the assumptions of Theorem 4.5 we have

r,(*, t;y, r) (i - 1, . . . , N)

for all (x, t), O, T) e R,, X [0, T], T < ?, w/iere C, anJ Xi are positive constants.

The result follows from (30) and the lower estimate for F, established by
Aronson (1968)

Ct(t - T)-"/Z exp - X l ' _ ' I < T,(x, t;y, T)

for (x, t), (y, T ) e i ^ , X [0, T), T < t.

5. Representation of non-negative solutions of weakly coupled parabolic systems

Theorem 4.4 shows that the investigation of non-negative solutions makes
sense only for weakly coupled parabolic system (24), whose coefficients Aj( are
non-negative for i ¥=j.

Throughout this section it will be assumed that the system (24) is uniformly
parabolic and satisfies (A,), (Aj), (A3) and (27).

THEOREM 5.1. Let (M,(X, t)} (/ = \, . . . , N) be a non-negative solution of (24)

in Rn X (0, T]. Then there are unique non-negative Borel measures {/*,} (J =
1, . . . , N) such that

(31) /

(32) f expi-plxfMdx) < oo (/ = 1, . . . , N)

for (x, f) E. Rn X (0, 7"], where /8 is a positive constant.
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PROOF. Let hR(x) be a non-negative cut-off function such that 0 < hR(x) < 1
in Rn, hR(x) = 1 for \x\ < R, and hR(x) = 0 for \x\ > R + 1. For fixed T G
[0, T) consider the Cauchy problem for the system (24) in RnX (r, T] with the
initial data

©,.(*, T) = hR{x)u,(x, T) (/ = 1, . . . , N)

for x G /*„. It follows from Theorem 1.2 that

t>i(x, 0 - / 2 IV*, f; * T)M.V)!$(.V, T) 4> (i = 1, . . . , N)

for (x, t) e Rn X (T, T]. Note that functions {«,(*> 0 ~ «,(•*> 0} (' =
I, . . . , N) are bounded below and

Urn [ Uj(x, t) - «,(*, 0 ] = "/(*> T)(1 - hR(x)) > 0 (i = 1, . . . , N)
t—>T

for x G Rn. By Theorem 4.3

«,(x, 0 > «,(*> 0 (/ = 1, • • •, N),
for (x, / ) £ i ^ x (T, T]. The last inequality can be written in the form

2 IV(x, t; y, r)uj(y, r)hR(y) dy < «,(*, 0 (» = 1, • • •, N)

Letting R -* oo and using (30) we obtain

f T,(x, t;y, r)u,(y, r) cfy < f Tu(x, t;y, r)ut{y, r) dy < ut(x, t)

(/ = 1, . . . , N), for (x, 0 G Rn X (T, T]. NOW set (x, /) = (0, T) and let 0 < T

< Tu where T, < T. It follows from Corollary 4.2 that

fR exp^-y^-b|2)«,.(j, T) ^ < r-z^rvo, r) (/ - 1,..., N)

for 0 < T < T,. The representation formulae (31) and (32) in Rn X (0, 71,] are
the immediate consequence of Theorem 2.3. The Kolmogorov identity allows the
extension of the validity of his representation formula to Rn X (0, T].

COROLLARY 5.1. Under the assumption of Theorem 5.1 i^idx) = ut(x, 0) dx
(i = 1, . . . , N) provided the solution {«,(*, 0} (» = 1> • • • »-W) is continuous on

K x [o, n

We shall now extend Theorems 2.2 and 2.3 to the solutions of (24) satisfying
the growth condition

(33) / $(M/(X, /)) exp(-a|x|2) dx < M (i = 1, . . . , N)
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for all 0 < t < T, where <I> denotes a Young function, a and M are positive
constants.

THEOREM 5.2. Let {ut(x, t)} (/ = 1, . . . , N) be a solution of (24) in /?„ X (0, T]
such that (33) holds.

Then there exist functions fj G L^{R^) {J = \, . . . ,N) and non-negative Borel
measures /*,- 0 = !>•••> Af) such that

< 00 (7 = 1 , . . . , N),

where /3 is a positive constant, and
. N N

«,(*, 0 = J 2 Ty(x, t; y, 0)ii,(dy) - J 2 ^(JC, f; >>, O^O) ^

(1 - 1, . . . . A/)

for all (x, l ) 6 ^ X (0, T].

PROOF. The proof is similar to that of Theorem 2.2, so we shall merely sketch
the details. By the estimates (5) and Theorem 4.3 there is a constant 8 > 0
independent of T such that

r N

«,(*> 0 + / 2 r<,(*. '; y, r)ur(y, r)dy>0 (i = 1, . . . , N)

for (x, t) G R,, X (T, min(r, T + 8)]. On the other hand repeating the argument
of Theorem 2.2 there exist a sequence tp converging to 0 and functions fj G
L%,(R^) such that

jkn J 2 Ty(x> *\ y> O " / ^ . Qdy=J 2 ^(JC, r; 7, 0).£(>>) ay

(1 - 1,. . . , A/).

Now the result follows from Theorem 5.1.

Similarly one can prove

THEOREM 5.3. Let {«,(*, 0} (' = \, • . • , N) be a solution of the system (24) in
R,, X (0, T] such that

f uj(x, t) exp(-a|x|2) dx < M (i = 1,. . . , N)

for all t G (0, T], where M and a are positive constants.
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Then there exist signed measures { ty} (J = I, . . ., N) and nonnegative Borel
measures {vj} (J = I, . . . , N) satisfying (20) (with m = 1) such that

«,(*. ') = [ 2 ^.(x, /; >>, 0)^(40 - f 2 ty*. f; * O)

(i

for all (x, t)GRnX (0, T).

6. Differentiation of measures and initial values of non-negative solutions

First we state some facts on differentiation of Borel measures, due to Watson
(1977), which play an essential part in the treatment of the pointwise estimation
of non-negative solutions.

For each Borel measure (lon/^, and each point x G /?„, we define the upper
symmetric derivative (Dju,)(x) of (i at x by

and the lower symmetric derivative (Dn)(x) of /t at x by

(Du)(x) = lim mf
m(B(x,8))'

where m denotes the Lebesgue measure on R^. When (Dji\x) = (Dp)(x) we say
that the symmetric derivative of /x at x exists and denote it by (DJU)(X) (see also
Section 3).

LEMMA 6.1. Suppose that JU is a positive measure on R^, and that n is singular
with respect to the Lebesgue measure. Then (Dp)(x) = <x> a.e. [ju].

LEMMA 6.2. Let n be a positive measure on R,,. If (D[i)(x) < oo for all x at
which it exists, then ft is absolutely continuous with respect to the Lebesgue
measure.

LEMMA 6.3. If n is a positive measure on R^ and (Dfi)(x) < oo for all x G R^,
then n is absolutely continuous with respect to the Lebesgue measure.

Suppose that v is a positive Borel measure such that

(34) f cxp(-a\x\2)p(dx) < oo
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for some positive constant a. Let p be a positive constant and define

v^x, t) = r"/ f
It follows from (34) that vp „ is finite for t sufficiently small.

LEMMA 6.4. Let /x and v be a positive Borel measure satisfying (34) and let
x £ R,,. If there exists 8 > 0 such that v(B(x, r)) > Ofor r G (0, 8], then

.. . , (ijBjx, /•)) v^jx, t) v (x, t)
hm inf , ) £ < lim inf -J-L-. r- < hm sup -^—. -

r^o v(B(x,r)) r-̂ o vSr(x, t) ,^0 %,(•«» 0

r KB(x, r))
limsup r ; ; ^

PROOF. It is easy to show that for every e > 0

(36) f r»

as f -» 0. We shall prove only the first inequality. Let X be any real number such
that

x<liminf q .
r^o v(B(x, r))

Then there exists 8^0 such that

(i(B(x, r)) > ̂ ( 5 ( x , r))
whenever r e (0, 5,]. We write

«W(*. 0 - / r"/2 e x p ( - p J ^
•/|JC-^.|>S1 \ '

^ ) J(t)./
J\x-y\<8,

By (36) 7(0 = o(vpv(x, t)) as t -> 0. Consider /(/) and put

'\*-y\<y

Then

f dM{r) = M(y), f dN(p) = A'(y)

and consequently M(y) > XN(y) for all y G (0, SJ. For all y > 0 we write
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so that

•/( ')=/ V,(y)dM(y).

Integrating by parts, we obtain

/(/) = Ftffi,)^*,) - (8iV,'(y)M(y) dy.Jo
Therefore, since V, > 0 and V't < 0, we have

NiSi) - fo
SlV;(y)N(y) dy)

V,(y) dN(y) [[
J\x-y\<si

The last inequality implies

- ^ - r > A —L-rr f r*<* exp(-p

— A 1 ,
c-y\>8,

Now letting / -> 0 and using (36) we deduce the desired result.

Throughout this section we shall assume that the system (24) is uniformly
parabolic i n / J , X [0, T] and satisfies (A,), (A^, (A3) and (27).

THEOREM 6.1. Let {u({x, t)} (i = 1, . . . , N) be a non-negative solution of (24)
given by the formulae (31), (32). If vt are positive Borel measures satisfying (34)
and such that v^B^x, r)) > 0 (i = \, . . ., N) for all r G (0, 8] for some positive
constant S, then

( 3 7 ) l i

/-o

(38)
, t)

C,Cvx
 an<i Xi a r e the constants appearing in the estimates (5) (with m = 1)

and Corollary 4.2.

PROOF. The formulae (37) and (38) follow from the estimates (5), Corollary 4.2
and Lemma 6.4.
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REMARK 6.1. In the special case of Theorem 6.1, where »»,( /= I, . . . , N) is

n-dimensional Lebesgue measure, we have

vx v(x, t) = I — I and vx (x, t) =

In this case Theorem 6.1 can be stated as follows
N

A",(Z)/i,)(;t) < hm inf M,(JC, t) < lim sup ut(x, t) < ^ 2 2
'-»° <—o j - \

where Kx and K2 are positive constants depending on C, C,, x> Xi an<i n-
Now we give some applications indicating the utility of Theorem 6.1.
Let h be a positive, non-decreasing, differentiable function on (0, oo). Put

A(0) = limM0 h(r).
If h(0) > 0, we put uh(t) = rn/2h(0), whilst if h(0) = 0, we put

"A,x(0 = ' (-n / 2 )-7°VVOexP(-f
and

We assume that the above integrals exist for all small positive t.

THEOREM 6.2. Let h( (i = I, . . . , N) be Junctions as described above and let
{t4j(x, t)} (i = I, . . . , N) be a non-negative solution of (24) given by (31) and
(32).

>0,then

Hi(B(x, r)) uXx, t) U:(x, i)
C, lim inf ^'v , ' " < lim inf |V / / < lim sup lV . /

r-̂ o ht(r) <-»o w^(0 ,^0 w^(/)

< C 2 , lim sup

= 0,

(40) hm sup -—- <CX2l hm sup
c->0

0 ^x,(x' 0 '
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PROOF. We shall only consider the case A,(0) = 0. Since A, is differentiate on
(0, oo) we have

where y = x> Xi- Hence, if an denotes the surface area of the unit ball in Rn

where

v^dy) = a-ty(|* - y\)\x - y\x-n dy.

Furthermore, for any r > 0

vt{B{x, r)) = f a-^Qx - y\)\x - y\l~n dy = f\(p) dp = ht{r).

Applying Theorem 6.1 with v^ (x, i) = X^yCO an^ vh,x,(x> 0 = Xiw^Xl(0 w e

obtain (40) and (41).
As an immediate consequence of Theorem 6.2 we obtain the following result

on the rate of growth of ut(x, t) (i = 1,. . . , N) as t —* 0.

COROLLARY 6.1. Let {«,(*> 0} {i = \, . • ., N) be a non-negative solution of
(24) given by (31) and (32). Let 0 <a <nand define

° — T((n - a)/2
Then for each x G R,,

im inf l^B<<X'H
rj>} < lim inf ta>\{x, i) < lim sup ta'\{x, i)

r0 Vr <0

< ^ , 2 lim sup — ^ ^ - (i = 1, . . . , N),

where AT,, Aj are positive constants depending on a, x» Xi» C and C{.

PROOF. Put ^(r) = vn_ar"-a. If a = n, then /»,(0) = v0 = 2"TT"/2 and «^
rn/2t>0. If a < n, then /i,(0) = 0 and

Now we shall construct a non-negative solution of the form (31), (32) of the
system (24), which has a prescribed maximum rate of growth as t —> 0.
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THEOREM 6.3. Let {/i,} (i = 1, . . . , N) be positive, increasing and differentiable
functions on R,,. Suppose that ht(r)-»0andr~nht{r) as r —> 0 (/ = 1, . . . , N). Then
there exist non-zero, singular measures vt (i = I, . . ., N) on Rn, which are positive
and have compact support, such that if

S M * . t; y, O)vj(dy) (i = 1, . . . , N),

then lim,^, ut(x, t) = oo, for almost every [i»J x G Rn, and ut(x, t) = 0 (w,(0)
/ -> 0 (/ = 1, . . . , N),for all x e R,,, where w, = w^ J/ 6,(0) > 0 and w, = w ^

PROOF. We sketch essential ideas. Let fî  denote the Hausdorff measure
constructed from h{. A theorem of Dvoretsky (1971) implies that there exists a
compact set A, c /?„ such that 0 < ju^(A,) < oo. By the lemma of Hayman and
Kennedy (1976) page 223; there exists a positive measure vt on Â  such that
0 < v^Kj) < oo, and for each x and all r e (0, 1),

r,(B(x, r)) < Bh,(r),

where B is a positive constant. Since r"/hi{r) - » 0 as r -> 0 and ^(Aj) < oo
(/ = 1, . . . , iV) the M-dimensional Lebesgue measure of A, is zero (see Hayman,
Kennedy (1976), p. 221). Therefore vf are singular with respect to the Lebesgue
measure. Put

",(*, 0 = f 2 M * , /; >-, 0 ) ^ ^ ) (i = l , . . . , JV),
JR.j-i

the result follows from Lemma 6.1, Remark 6.1.

In Theorem 6.4 below we estimate the size of the singularities of solution
given by (31), (32) in terms of Hausdorff measure and dimension. For a
bounded set in Rn, the Hausdorff dimension is defined in Hayman and Kennedy
(1976) page 222. For an arbitrary set S, we define the Hausdorff dimension of S
to be inf{y; m^S) = 0}, where m^ is the Hausdorff measure constructed from
h(t) =t\y> 0.

LEMMA 6.5. Let 0 < a < n, 1 < j < N, let n be a positive Borel measure on Rn

satisfying (34), and let

«,(*, /) = f Tv(x, t; y, 0)/i(<60 (i = 1,. . . , N),
JRn

Si - f x G R,,; lim sup ta>\{x, i) = oo) (i = 1, . . . , N)
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for 0 < a < n, and

Ta = (x G ̂ , ; lim sup ta'\{x, i) > o) (/ = 1,. . . , N)

for 0 < a < n, then mn_a{S^) = 0 (i = I, . . ., N) and the Hausdorff dimension
of T'a does not exceed n — a.

PROOF. We can assume that S'a and T'a are bounded. We shall consider only
the case 0 < a < n. By Corollary 6.1

lim sup t"'\{x, t) < K2 lim sup ^ g ( * ^ ) ) ,
t-+0 r->0 Vn-ar

for all x e R^. Furthermore, if I(x, r) denotes the closed cube with centre x,
edges of length 2r, and sides orthogonal to the coordinate axes, then

n(B(x, /•)) . . . . M M * > r))
lim sup —— n_a < >1 lim sup —

r^o vn_ar r^0 (2rVn)"-"
< A lim

where / denotes any non-trivial interval, d(I) is the diameter of /, and h(s) =
s"~". Therefore, if Z denotes the set where this last upper limit is infinite, we
have Si c Z. Since mn^a(Z) = 0 (see Roger and Taylor (1961), Lemma 4),
Wn-cXSa) = 0 as required. If 0 < y < a < n, then T'a c S^ so that mn_y(T'a) =
0. Therefore the Hausdorff dimension of T'a is at most inf{« — y; 0 < y < a) =
n — a.

THEOREM 6.4. Let 0 < a < n and {M,(X, t)} (i = I, . . ., N) be a non-negative
solution of (24) given by (31), (32). / /

S'a = ix e Rn; lim sup ta/\(x, *) = <

for 0 < a < n, and

ra = ix G «„; lim sup M,(*, 0 > 0) (/ = 1, . . . , N)

for 0 < a < n, then wn_a(5J) = 0 (/ = 1, . . . , N) and the Hausdorff dimension
of T'a does not exceed n — a.

PROOF. Put

uj(x, t) = [ I\(x, t;y, O^idy) (ij = 1, . . . , N),

«, (* , / ) = u[(x, t)+ • • • +u'/(x, t) (/ = ! , . . . , N).
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Now define

S'j = f x e R,,; l im sup / o / 2 u / ( x , / ) -
1 r-»0

TaJ = f x G /?„; lim sup /-/^'(*. ') > °) (U =1 <->o '
The result follows from Lemma 6.5 and from the fact that

N N

S' = U S'j, T- = U T'r

Finally, we give mild conditions under which the measures {«,} (J =
1, . . . , N) in (31) are supported by singletons, are null or are absolutely
continuous with respect to the Lebesgue measure.

THEOREM 6.5. Let {M,(JC, t)} (i = I, . .. , N) be a non-negative solution of (24)
given by (31), (32) and let

E, = [x e R,,; lim M,(X, t) exists) (i = 1, . . . , JV).

If lim,_0 ut(x, 0 = 0 almost everywhere on Et (/ = 1, . . . , N), and
\wa.,_lM ut(x, t) < 00 on Et - {x'o} (/ = 1,. . . , W), then

N

"i(x, 0 = 2 /* (*O) IV(X, t; xj,, 0) (1 = 1, . . . , N)

on /?„ X (0, 71.

PROOF. By the Lebesgue decomposition theorem we can write JU, = /1/1 + /1/,
where /V, ju,̂  are positive measures, ju," is absolutely continuous and fif is singular
with respect to the Lebesgue measure. If (Dju/)(x) = 00, then since ft" > 0, we
have

00

and hence (Dj^Xx) = 00. Therefore

{x; (Dtf)(x) = ^}c{x^Rn; (Z>ft)(x) = 00}
and hence by Lemma 6.1, /*/(/?„ - /•}) = 0. Further on Ei -

K2{Dtf)(x) < K2{D^){x) < lim «,(*, 0,
/—»o

by Remark 6.1, and hence Lemma 6.1 implies that iil'(Ei - {x^}) = 0. By
Remark 6.1 F,, c Et, so that ^'(1^ - Et) = 0 and hence p? is supported by {x^}.
Further, (D^Xx) exists and is finite almost everywhere and tfidx) =

dx. Hence (£>JU,X*) = lim/_>0 u,(*, 0 abnost everywhere, by Theorem
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3.1, so that (iia(dx) ~ l im , .^ ut(x, t) dx, which implies that nf = 0. Hence /f, is
supported by {XQ} and the result follows.

THEOREM 6.6. Let {K,(X, t)} (i - 1, . . . , TV) be a non-negative solution of (24)

and let

E,: = (x G Rn; lim u,(x, t) exists) (i = 1, . . . , TV).

If lim,_>0 Uj(x, t) < oo everywhere on Et and hm,_<0 «,.(*, 0 = 0 almost every-
where on Et (/ = 1, . . . , JV), /Ae/J M,, = 0 on R,, X (0, T] (/ = 1, . . . , JV).

PROOF. Let {x,j} e £, (; = 1, . . . , N). By Theorem 6.5 we have

o n i ^ x (0, T\. Since Hm,^,, «,(xo, /) < oo and r/7 has a pole at x = x^ we must
have |U,(x̂ ) = 0 (/ = 1, . . . , N) and therefore H , H 0 on /?„ X (0, T] (i -

THEOREM 6.7. Let (w,(x, /)} (i = 1, . . . , TV) be a non-negative solution of (24)
given by (31), (32) such that

lim sup M,(X, t) < oo (/ = 1, . . . , TV)

for all x G R,,, then there exist non-negative measurable functions ft (i =
1, . . . , TV) such that n,(dx) = / (x) dx (i = 1, . . . , TV).

PROOF. In view of Corollary 4.2 we have

' ra(x,f;.y,O)ft'
i

N

f Sr
and the result follows from Lemma 6.3.

7. The rate of special decay of non-negative solutions
of weakly coupled parabolic system

The main aim of this section is to prove that if {M,(X, t)} (i = 1, . . . , N) is
non-negative solution of the system (24) such that «,(x, /Q) = O(exp(-< |̂xj2)) for
some positive constant <f> depending on t0, then u, = 0 (/ = 1,. . . , TV). In the
sequel we assume that the system (24) satisfies (A,), (A^), (A3) and (27).
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THEOREM 7.1. Let {w,O> 0} (» = \, . . ., N) be a non-negative solution of the
system (24) and

Mk(r) = max uk(x, t0) (k = 1, . . . , N).
\x\-r

If, for some index j ,

lirn̂ inf { r~l log M/r) + Xl j } < 0,

//ie measure ^ is concentrated at 0. (/^ denotes the measure appearing in the
representation formulae (31), (32).)

PROOF. Suppose that ^ is not concentrated at 0, then there is a closed ball
B c Rn, with centre a and radius p, such that 0 £ B (so that |a| > p) and

> 0. Then it follows from (31) that

Since \x - y\ < \x - a\ + p, for all>> e B,

y0-"/2 f exp(-^( |x - a| + p)2) i^dy) < Uj(x, t0)
J B \ '0 /

It is easy to see that

min{|jc — a\ + p;\x\ = r) = r — {\a\ — p)

and hence

Therefore, wherever r > \a\ + p

r'1 ^ ( - 2(|fl| - p) ] < r"1 log A//r

and hence

2 — (\a\ - p) < lim inf I r~x log Mj(r) + — J.

The result now follows at once.
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COROLLARY 7.1. If {u,(x, 0} (' = \, • • . , N) is a non-negative solution of the
system (24) such that

lim inf { r-' log M/r) + Xl-£ } < 0 (j - I, . .., N),

then there exist constants Ak (k = I, . . ., N) such that
N

«,(*> 0 = 2 4 r^x, r; o, o)

for all (x, 0 G l^X (0, f0]-

THEOREM 7.2. / / (ty(*, 0} (' = 1> • • • > ^ ) « « non-negative solution of the
system (24) /n /?„ X (0, f0] an</

U,(x, /0) < X exp(-a|x|2) (i = 1, . . . , N)

for x G R,,, for some positive constant a > Xi/ 'o ana" X > 0, then w, = 0 (j =
1, . . . , N).

PROOF. In this situation, we have

log MJr) r Ytr
/ + X,f < o(l) -ar + ^->-«>
r 'o 'o

as r -» oo. It follows from Corollary 7.1 that
N

«,(*, 0 = 2 4 IV(x, /; 0, 0),
i

for some positive constants z^. By Corollary 4.2

Ht(x, f0) «fc(-y»^o)

' ^ V 0 o >
Aexp(-q|x|2)

(J
as |JC| -» oo, from which it follows that Ay = 0 (J = 1, . . . , TV), and therefore
u, = 0 (i = 1, . . . , N).

8. Local Fatou property

Consider the weakly coupled parabolic system (24) whose the coefficients are
independent of /, that is,

L,(«,, . . . , « „ ) - 2 4?(*)J>& + 2 AS(x)Uj - - ^ = 0
(42) |* | -u y-o dt

(i - 1, . . . , AT).

We shall prove a local version of Theorem 3.1.

https://doi.org/10.1017/S1446788700024587 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024587


278 J. Chabrowski [33)

Throughout this section we will assume that the coefficients satisfy the
following conditions:

(I) The coefficients A?(x) (\k\ = 1, 2, i = 1, . . . , N), A$(x) (ij = 1 N),
and the derivatives DhAl'(x) (\k\ = 1, 2, \h\ < \k\, i = 1, . . . , N) are Holder
continuous on compact subsets of Rn.

(II) For each / the matrix {A£(x)} (\k\ = 2) is symmetric and positive definite
for any x G /?„.

It follows from (II) that each operator L, is uniformly parabolic in every
cylinder 5(0, a) X [0, T]. It is clear that for every a > 0 there exists an operator
La = m, ..., L°), where

N fo

1*1-U y-i Ol

satisfy the following conditions
(la) The coefficients A£,, A&, (\k\ = 1, 2, i,j = 1,. . . , N) and the derivatives

DhAHa (\h\ < \k\, \k\ - 1, 2, i = 1, . . . , N) are bounded and Holder continuous
in/?n.

(Ha) There exists a positive constant 5(a) such that

2 4£(*)** > «(a)|€|2 (i = 1, . . ., N)
1*1-2

for all x G R,, and £ G /?„.

(i,j = 1, . . . , N, |*| - 1, 2), for all |JC| < a.
Under the assumptions (la), (Ila) and (Ilia) the fundamental matrix

m(x, t; y, /•)} iij =l,...,N) for the system L,>,., . . . , uN) = 0 (i -
1, . . . , N) exists. By Corollary 4.2 all the functions r£ are nonnegative and

C,(a)(t - T)-"/2 exp(-X l (a)^—^) < rfcx, t; y, r)

for (JC, o, iy, T) e ^ x [0, n o < T < * < r .
As in Section 3 we introduce the truncated parabolic region

r;(*0) = {(*, 0; o < I* - -xol < TV* . o < / < h).
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We shall say that the function u(x, t) defined in RnX (0, h] is parabolically
bounded at x0 if for some /? > 0

sup \u(x, t)\ < oo.

Notice that the parabolic boundedness at x0 requires a condition on only one
truncated parabolic region whose vertex is at XQ, while the existence of the
parabolic limit (see Section 3) at x0 requires a condition on all parabolic regions
atx0.

LEMMA 8.1. Let u(x, t) be a continuous function in R,, X (0, T] parabolically
bounded at each point of a measurable set E, then for every e > 0 there is a
compact set El C E such that

(1) m(E - £,) < e,
(2) for any a > 0, there is a positive number M = M(a, e) such that \u(x, i)\ <

Mfor all (x, t) e rj(xo), x0 e Ev

The proof is a simple modification of that of the lemma on page 201 in Stein
(1970).

THEOREM 8.1. Suppose (I), (II) and (III) hold. If {Ui(x, t)) (i = 1, . . . , N) is a
solution of the system (42) in R,, X (0, T], parabolically bounded at each point x of
a measurable set E c Rn, then for almost all x G E the limits, p-lirn^ ,^x 0)

u,(y, t) exist.

PROOF. Fix a > 0 and define the set

R= U rJK).

It follows from Lemma 8.1 that it suffices to prove the theorem when E is a
compact set and |K,(X, 01 < 1 for (x, /) G /? (i = 1, . . . , N). Clearly it suffices
to prove that the limits, lim «,.(*, t\xjy<x^0%(xl)eR (i = 1, . . . , N) all x0 G E.
For any m > 0 (sufficiently large) define

A / v\ _ I ",(x, — I for I x, — I G R,
9im(x) - ' \ m) \ m)

[ 0 elsewhere.
Choose a > 0 such that

R cB(0,a) x(0,r].

Set

<U*> 0 - f 2 r-.(x, *; y , 0)<j>Jm(y) dy
JRj-\
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and

(44) ut[x, t + ^)= <flm(x, t) + %m(x, t)

The functions {<#>,„,(*)} are uniformly bounded in Loo(/?n) norm, and thus we
can extract a subsequence which converges weakly to a function <£,(•*)• Clearly
\<f>i(x)\ < 1 a.e. in R,,. For simplicity we again denote this subsequence by

Introducing

2 (/ = 1, . . . , N)

and letting m —» oo in (44) one easily verifies that limm_>O0 ¥lm(x, t) (i =
I, . . . , N) exists and hence

u,(x, t) = * , ( * , t) + * , ( * > 0 (i = l...,N).

It follows from Theorem 3.1 that the limit lin\Ii(Wj(>o),(i,oe« ^i(x ' 0 e x i s t s f ° r

almost all JC0 €E if (/ = 1, . . . , A )̂.
To prove the existence of the limits of ¥ , we shall construct functions {Ht(x, t))
(/ = 1, . . . , N) satisfying the following conditions

2)Hi(x, t) > Ofor(;c, t) G J^ X (0, T] (i - 1, . . . , N),
3) |*,(x, 01 < Ht(x, t) for (x, ( ) 6 / i ( / = l , . . . , N),
4) p-lim^>r)_^Xo>O) ^ i ( ; t ' 0 = 0 f ° r almost all x0 e £ (/ = 1, . . . , TV).

We construct H^x, i) in the form

r N

H^x, t) = K\ 2 rj(jc, f;>>, O)J?r(y) ^ (i = 1, . . . , N), (/ = 1, . . . , N),

where X(y) denotes the characteristic function of the complement of E and the
positive constant K will be chosen later. The properties 1) and 2) are obvious.
Let dR be a part of the boundary of R defined by

dR = E X {0} u {(*, 0; (x,t)GR-R,0<t <T).

Note that if (x, t) e dR - E X {0}, then {y; \y - x\ < aVt } c R^,- E.
Hence it follows from (43) that

Ht(x, t) = K( 2 ty*, /;y, 0)X(y) dy
JKj-\

exp(

>Cl(a)Kf exp(-Xl(a)|z|2)^.
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It is clear that

\%(x, 01 < H,(x, t) (i - 1, . . . , N)

for (x, 0 G dR - E X {0} provided ^ is sufficiently large. To establish 3) we
first prove that

*,m(x, 0 < Ht{x, 0 (i - 1,. . . , N)

for (x, 0 S >̂ for every w (sufficiently large). If this were not so there would
exist an e > 0 and an index j such that

siP [*>.(*. 0 - H,{x, 0 ] = max sup [*,„,(*, 0 - #,(*- t)] > e.
R ' R

The maximum cannot be attained on dR — E X {0}. Applying the maximum
principle (see Szarski (1975)) we can conclude that there exists a sequence of
points (xk, tk) converging to (x0, 0) G E X {0} such that

(45) *,m(x\ tk) > Hj{xk, tk) + e.

On the other hand &Jm(x) is equal to Uj(x, \/m) on an open set containing E,
therefore

Um [u,(xk, t k + ^ ) - ^ . ( * * . '* ) ] = ̂  *>,(**. *k) = 0,

this contradicts to (45). Analogously we prove ^im(x, t) > -H({x, t) in R, for
any m (i = 1, . . . , rri).

Let E be a compact set in RJ1. Choose a > 0 such that £ c 5(0, a).

THEOREM 8.2. Suppose the assumptions (I), (II) and (III) hold. Let {«,(*, 0}
(/ = 1, . . . , N) be a solution of the system (42) in Rn X (0, T] parabolicalfy
bounded at each point x of a compact set E c R,,- Then there exists a unique
decomposition

«,(*, 0 = / 2 m*, t; y, O)fj(y) dy + *,(*, 0 (/ = l, • • •, A0,

where f, G L^RJ, supp/ c E and p - h ^ 0Mxo,0) *,(*> 0 = 0/or almost x0 G
E(i=l,..., N).

PROOF. From the proof of Theorem 8.1 it follows that such a decomposition
exists. To prove the uniqueness suppose there is a second decomposition

«,(*, 0 - / 2 r*(x, /; y, O)fj(y) dy + *,(*. 0 0 - L • • •, N)
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with properties f, G L°°(RJ, suppfcE, p-Un^^,0^Xo,0) *,(*> 0 = ° (' =
1, . . . , TV) for almost all x0 G E. The relation

p-lim %(x, t) = p-lim ¥,(*> /) = 0 (i = I,. . . , N)

for almost all x0 G E, implies

p-lim f 2lTl(x,t;y,0)fj(y)dy= p-lim f ^T^(x, 1^,0)/^) ay.

for almost all x0 G £\ From Theorem 3.1 and the fact that supp/, supp^ c E
it follows that fi=fi almost everywhere in Rn and consequently ¥, = $,- in

Rn x (o, n

9. Initial distribution problem

To motivate the results of this section (Theorems 9.4 and 9.5) we now consider
the heat equation

(46) £>> - D,u = 0

for (x, t) G (-oo, oo) X (0, T). We can interpret u(x, t) physically as represent-
ing the temperature in an infinite rod. Moreover, /* u(x, t)dx, a < b, is the
quantity of heat at time t in the portion (a, b) of the rod. Recently Wilcox (1980)
proposed the problem of constructing a non-negative solution of the heat
equation (46) whose initial heat distribution exists and is equal to a given Borel
measure ju on (-oo, oo).

More precisely a non-negative solution u of (46) is said to have a non-negative
Borel measure ft on (-oo, oo) as its initial heat distribution if

(47) lim fb u(x, t)dx = n{a, b)

for all a < b such that n{a) = n{b) = 0.
C. H. Wilcox gave a complete solution to the initial distribution problem.

THEOREM 9.1. There exists a non- negative solution u of (46) whose initial heat
distribution is the non-negative Borel measure fi if and only if

for all t G (0, T). If n satisfies (47), then u is given by

(48) «(x, t) = (4^r'

for all (x, i) G (-oo, oo) X (0, T) and is unique.
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The above theorem is a consequence of Widder's Inversion Theorem:
If a non-negative solution u of (46) has the representation (48) then for all real

a and b with a < b

lim f u(x, t) dx = n(a, b) + - n(a) + - n(b).
f-,0 Ja 1 Z

D. G. Aronson has extended Widder's Inversion Theorem and Wilcox's result
to the heat equation in Rn X (0, T)

(49) Axu - D,u = 0.

Let B denote a-field of Borel subset of Rn. For each A E B define

yA(x, t) = / {^tyn/> exp l - ^ / J - ) dy.

Since

it follows that

0 < yA(x, t) < 1

for (JC, t) G R,, X (0, T). Therefore

yf{x) = lim sup yA(x, t) and yA(x) = lim inf yA(x, t)
/->o »-»o

both exist in [0, 1] for all x G Rn.
Let

A* = {xeRn;yA+(x)*yA-(x)}

and define yA: R,, — A * —• [0, 1] by yA(x) = yA(x). It is obvious that

(1 foTx G intA,
yA (x) - | Q {OTxGRn_ j

Consequently A * c dA = A — Int A. D. G. Aronson gave an example of a
bounded, open set A c Rj, for « > 2 such that 4̂ * ^ 0 .

By Widder's representation theorem (see Theorem 5.1) if u is a non-negative
solution of (49) then there exists a unique non-negative Borel measure p o n / i ,
such that

(50) u(x, t) = ( 4 ^ f

On the other hand, it follows from the proof of Theorem 5.1 that

(51) j^ u(x, t) exp(-^) dx

for all (x, 0 G Rnx (0, T/2).
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The following Theorem (due to Aronson (1981)) is a generalization of
Widder's Inversion Theorem.

THEOREM 9.2. Let u be a non-negative solution of (49) given by (50). If A EL B
is bounded and p(A *) = 0, then
(52) lim [ u{x, t)dx = p(Int A) + f

SKETCH OF THE PROOF. Using the explicit formula (50) one can show that
there exists a constant K > 0 such that

0 < yA(x, t)

for all (x, l ) e ^ , x (0, J/2). By Fubini's Theorem we have

f u{x, t)dx = f yA(x, t)p(dx).
JA JR,,

Therefore by the Dominated Convergence Theorem

lim f u(x, t)dx= f yA(x) p{dx)
t->o JA J^

and (52) follows from R,, = Int A u $A u (R,, - A).

For a set Q c (-oo, oo) we define

IQ = {(a, b\, a,, 6, e g, i - 1, . . . , » } ,

where (a, 6] = {x G /?„; a, < x, < 6,-, / = 1, . . . , « } .
Let M be a non-negative solution of (49) o n i i , x (0, T) and let n be a

non-negative Borel measure on B. The function u will be said to have initial
distribution ju if there exists a countable dense subset Q c (-oo, oo) such that

lim j u(x, t) dx = fi(a, b) and [i(d(a, b]) = 0

for all {a, b] e /g.
It follows from the estimation (51) that if fi is an initial distribution of u then

it must be a-finite.
The following theorem is due to Aronson (1981).

THEOREM 9.3. Let u be a non-negative solution of (49) in RnY.(0,T) and let p
be a non-negative Borel measure on B. Then u has initial distribution fi if and only
if

(53) u(x,t) = {4wtyj

for (x, 0 G *„ X (0, T).
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SKETCH OF THE PROOF. Suppose that u is given by (53) and define the Borel
measure

v(A)= f e-WV

for A G B.
Since v(RJ < oo one can prove that there exists a countable set E c

(-oo, oo) such that

/) = f e-W
JHI

= 0

for / = 1, . . . , n, t G (-oo, oo) — E, where

H,' = {x G *„; x, = *}.

In particular, it follows that

(54) M(S) = 0

for each bounded, measurable subset S of any hyperplane Hj, I = 1, . . . , n,
t e (-oo, oo) — E. Since £ is countable, there is a countable dense set Q c
(-oo, oo) - E. If (a, b] G /G then 3(a, Z>] is a finite union of bounded subsets of
hyperplanes Hj for / = 1, . . . , n and l £ g . Consequently it follows from (54)
that fi(d(a, b]) = 0. On the other hand, it is easy to show that (a, 6]* = 0 and
by Theorem 9.2

lim / u(x, t) dx = ju(a, fe)
'-»0 J(a,b]

for all (a, Z>] e IQ. Therefore /x is the initial distribution of u.
Conversely, suppose that /x is initial distribution of u. By Widder's represen-

tation theorem u must be of the form (50), where p is non-negative Borel
measure. It is clear that p is a-finite. By Theorem 9.2

lim [ u(x, t) dx = p(a, b) + [ yA(x) p(dx)
'-»0 J(a,b] Jd(a, b]

for all (a, b] G IQ. Since /x is the initial distribution of u one can prove, using the
above formula, that

p(a, b) = [i(a, b)

for all (a, b] G IQ. The family of sets {IQ, 0 } is a 7r-system, which generates B
and therefore \i = p (see Billingsley (1979), Theorem 10.3, p. 135).

Theorems 9.2 and 9.3 can be extended to non-negative solutions of the weakly
coupled parabolic systems defined by (24) satisfying assumptions (A,), (Aj), (A3)
and (27). For A G B define

JA/X, t) = ( Ta(x, t; y,0)dy (i - 1, . . . , N).
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It follows from (5) that the yAi are bounded on Rn X (0, T). Thus

yAi(x) — lim sup yA ,(x, t) and yAi(x, t) = lim inf yA ,(x, /)

are well defined on Rn. Set

and define yA/x) = yf/x) for x G Rn - A *, i = 1, . . . , N. Using (4) and (5)
it is easy to show that

lim JT0(x, t;y, 0) dy = 0

for x G R,,, A G B and i ^j. Moreover

1 forx G Inty4,

0 for x G Rn - A.

The proof of the next theorem is essentially the same as the proof of Theorem
9.2.

THEOREM 9.4. Let («,(x, t)} (i = I, . . . , N) be a non-negative solution of (24)
in Rn X (0, T) given by the formulae (31) and (32). / / A G B is bounded and
jUj(y4,#) = 0 (/ = I, . . . , N) then

lim I U;(x, t) dx = jUf(Int A) + I yA i(x)fti(dx), i = 1, . . . , N.
<->o JA

 JdA '

Let {M,} (/' = 1, . . . , N) be a non-negative solution of (24) in/? , X (0, T) and
let {jU)} (i = I, . . . , N) be non-negative Borel measures on B. The solution {«,}
will be said to have initial distribution {/i,} if there exist countable dense subsets
Qt C (-oo, oo) (/ = 1, . . . , N) such that

lim I Uj(x, t) dx = ju,(a, b)

and ^(9(0, b]) = 0 for all (a, ft] G / G (/ = 1, . . . , TV).

THEOREM 9.5. A non-negative solution {M,} (/ = 1, . . . , N) of (24) in R,, X

(0, T) has initial distribution { JU,} (/ = 1, . . . , N) if and only if
N

«i(x, 0 = f 2 Tv(x, t; y, 0) %(dy) (1 = 1, . . . , N)

for all (x, t) G R,, X (0, T).
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This result follows from Theorems 9.4 and 5.1 in the same way that Theorem
9.3 follows from Theorem 9.2 and Widder's representation theorem; the details
of the proof are therefore omitted.
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