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On the gravity-driven shear flow of an ice-till Dlixture 
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ABSTRACT. In this wo rk , we formula te a mod el for the iso th erm a l Oow of a 
(basa l) ice- till mi x ture tha t is overl ain by a layer of pure ice . Such a mod el is releva nt 
to the case of a glacier or ice sheet possess ing a till a t i LS base . To thi s end , ice is trea ted 
as usua l as a consta nt tru e-d ensity, very visco us nuid , whi le till , which is assumed to 
consist o f sediment and bound (i. e. moving with th e sedim ent ) interstiti a l I·va ter, is a lso 
ass umed in a first approxim a tion to behave as such a Ouid. Since the mi xture is 
assumed iso therm a l, o nl y the m ass- a nd mom entum-ba la nce rela ti ons for till and ice 
need be consid ered. T o complete the mod el, no-slip and stress-free bound a ry 
conditi ons a re ass umed a t th e base a nd free surface, res pec tively. By wo rking with the 
former cond i tions, we neglec t the process of en tra i n mcn t of sed i men tin to the basa l 
layer , concentra ting ra ther on its now behav iour a nd thi ckn ess . The tra nsition 1i-om 
th e till- ice mi x ture laye r to th e ove rl ay ing pure ice laye r is ideali zed in the model as a 
movi ng interface represen ti ng in the sim plcst case the ti 11 ma terial bo u ndary, a t wh ich 
jump-ba la nce rela ti ons fo r till a nd ice a ppl y. As in the basa l laye r, till a nd ice a re 
ass umed to interact mecha nicall y a t thi s interface . In th e context of th e thin-l aye r 
a pproxim a tion , n um eri ca l solutions of th e lowes t-order form of th e model show that it 
is pred omina ntl y th e thi ckn ess of th e basal (mixture) laye r that is innuenced by th e 
ice-till mom entum interac ti on. 

1. INTRODUCTION 

Observa ti o ns in boreholes drill ed into g lac iers to their 
base (e.g. Engelh a rdt a nd o thers, 1978) ha \'e shown th a t, 
close to the rock bed , th e glacier ice is increas ing ly 

contamina ted by sediment. In the ex treme case, a basal 

laye r consisting predomina ntl y of sediment a nd bound 
(i. e. moving with the sediment ) wa ter forms, representing 
a so-call ed till , with up to a pprox ima tel y 85% till poss ible 
(persona l communica tion fro m G. Clarke), th e rema inder 
consisting of ice, free wa ter a nd /or poss ibl y caviti es . The 

sedim ent pa rt of thi s ti ll is likely erod ed from th e basal 

rock surface by th e moving ice a nd incorpora ted into the 
nea r-bo ttom ice as th e g lac ier o r ice shee t m oves. 
Ass uming , o n th e scal e of th e entire base of a glacier or 
ice shee t, th a t the fre e-wa ter constituent is negligibl e, a 
glacier or ice shee t can be id ea lized as consistin g of a 

rela tive ly thi ck pure ice laye r riding on to p of a rela ti ve ly 

thin ice- till mi xture layer at the base. 
In genera l, th e sedim ent pa rt of th e till consists of 

va ri o us-sized pa rticl es (i. e . c lay , silt , sa nd , g rave l, 
boulders a nd so on) whi ch toge th er constitute a granular 
material. 1 n the first a pprox im a ti on being treated in thi s 

work , wc ignore the (hig her-ord er) effec ts due to the 

\'olume-frac ti o n-gradi ent d epend ence of the till stress 
tensor a nd trea t the till constitu ent as vi sco us. [n oth er 
wo rds, th e c1Tec ts of vo lu lll e-frac ti o n g radi ents and 
fi' iction between the sedilll ent g ra ins on th e stress a re 
ass um ed negli gible. something tha t is perh a ps in fac t not 

\ 'C ry reali sti c for high sediment concentra ti ons; o n the 
other ha nd , interstiti a l wa ter could have a lubrica ting 
effec t, such that the effec t of interg ra nul a r fric ti on is 
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reduced. N o te, in additi on , th a t stud y of creeping Oow of 
so il conta ining va ri o us a mounts of wa ter has shown th a t 
th e ass umption of viscous behav io ur can acco unt for 
o bse rved d eforma tions bo th in th e la bo ra tory a nd in th e 
fi e ld (Hutter a nd Vulli e t, 1985; Vul li e t and HUller, 

1988a, b ). On this basis, we foll ow Hutter and o th ers 

( 1994), a nd Svendsen a nd others ( 1995) in treating th e 
ice-ti ll sys tem as a mix ture of two consta nt true-d ensity, 
viscous nuids. In additi on , we ass ume for simpli city tha t 
thi s mi xture is satura ted , i.e . the mix ture volum e is a lways 
equa l to th a t of till p lus ice in the mixture, i. e. no caviti es 

or voids a ri se during th e fl ow. Analogo us to the constra int 

of constant density in a Ouid , this constraint is m a inta in ed 
by a pressure, the so-ca ll ed sa turatio n press ure, 

Since the mo tion of th e laye r is ex tre mel y slow, S to kes ' 
now is ass umed. The till a nd ice momentum ba la nces 
reduce th en to force ba la nces between the constituent 

stresses, gravitation a nd th e momentum-exchange forces . 

The bound a ry conditions a t th e base a re ass um ed to be 
no-slip lor both constitu ents, whil e th e li'ee surface is 
ass um ed to be stress free . As such, we neglec t the process 
of entra inm ent of sedim ent a t th e base into th e now a nd 

con centra te o n th e mecha nical aspec ts of the basa l laye r. 

Since we a re prim a ril y interes ted a t thi s point in the 

mecha nica l beha l'iour a nd thi ckn ess o f this laye r, thi s 
seems not unreasona ble for simplicity in a first a pprox
imation . In any case, th e process or entra inment can be 
incorpo ra ted into th e model by wo rking with jump 
balan ce rela ti ons a t th e base of the mi x ture laye r a nd will 

be th e subj ec t of future work. 
Ass uming for simplicity tha t th e sediment in the 

sys tem is confin ed sole ly to th e basa l laye r, the interface 
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be twee n th e till a nd oyerl ying pure ice m o\'('s with the ti ll 
m a terial veloc ity a nd is no n-mate rial with respec t to ice. 

As such , th e jump-ba la nce rela tions fo r bo th till a nd ice 

a ppl y a t thi s interface . In addition. as recogni zed b y 

Hutter a nd o th e rs (1994) , ice a nd till can inrera ct 
mec ha nica ll y with each o th e r a t thi s interface, just a s 
th ey do via, e .g . drag fo rces in the bulk . The majo r 
purpose of th e c urrent work is to inves tiga te qu a lita tively 

\·ia numeri ca l solution o r th e gO\-erning equ a tions th e 

e ffec t o f thi s interface interac ti on be t\\'een ice a nd till on 

th e m ec ha nica l beha\'iour a nd thi ckn ess oC th e b asal 
la ye r , model led as a till- ice mi x ture. 

To beg in , th e governin g field equa ti ons, a long with 
bo undary a nd tra nsitio n co nditions, a re fo rmul a ted 

(section 2 ) . .\Tex t, a sca ling a n a lysis fo r g ra \·ity-dri\·en 

shea r fl ow d own a n inclin ed curved surface is ca rri ed o ut 

(section 3). Ass uming th a t th e geometry is slowl y \'a rying , 
th e gove rnin g eq ua tions a rc th en simplifi ed (sec tion 3) . 
Las tl y, nume ri ca l so lu tio ns o f th e lowes t-o rd e r fo rm o f th e 
res ultin g m od el a re obtained, a nd th eir implica ti ons fo r 

th e m echani ca l beha \'i o ur a nd thi ckn ess o f th e basa l la ye r 

a re di sc ussed (sect ion 4 ) . 

2. GOVERNING EQUATIONS 

C onsid e r th e iso th e rmal fl ow of an ice- till mixture 

ove rl a in by a pure ice la ye r down an inc lin ed pla ne 

(Fig . I ) . As di sc ussed a bove, th e lower laye r is mod ell ed 
as a mi x ture o f two \T ry \' isco us, consta nt true-d ensity 
fluid s; simila rl y, th e upper laye r is ass um ed to beha\'e as a 
ve ry \'isco us, co nstant-d ensit y sing le fluid. I n additi on , 

th e lower mixture laye r is ass umed lo be sa tura ted , i. e . 

(2.1) 

ho lds, where 1/" represents th e co nstituent vo lum e fra ction 
(n = T , I fo r till a nd ice, res peni\ 'e1 y) . In o th er words, we 

ass ume that no "cavities" o r ' ", 'o id " can arise in thi s la ye r 

during its fl ow. D efinin g 1/ = I/T, we then hel\T 1/1 = 1 - 1/. 

S ince th e tru e d ensit y Po of eac h co nstituent is ass umed 

y gy.: 

se~ent YB~I 
Ice 'Y 

---------------------
:;; 

Fig . I. T H'o-dimensiollal 1Il0de! geol77etl]. Yf3 . YI, alld YF 
represent the po:,itiolls oj the base, inte1f ace andfree sllIface 
~I the ~)ste ll1 as a j Ullctioll if x alld t . 
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co nstant , th e co rres ponding pa rtial d ensit y Pn = 1.1" Pn 
n U'ies onl y with th e till \ 'o lume fra c ti on 1/. Ass uming no 

m ass exchange be t\\ 'Ce n ice a nd till. th e m ass a nd 

mom entum ba la nces fo r till a nd ice then ta ke th e fo rms 

01/ . 
Dt +C!JV( I/VT) = 0 , 

01/ 
- !l + cliv( ( l - 1/ ) VI) = O. 

ut 
divTT + PT 1/9 + m = O. 

di v TJ + PI (1 - 1/ ) 9 - m = O. (2.2) 

H ere, V T a nd VI represe nt th e till a nd ice \'el oc iti es, 
res pec ti\'e ly; TT a nd TI th e co nstilLI ent pa rti a l stress 

tensors a nd m th e m ech a nica l inte rac ti on fo rce be t\\Te n 

till a nd ice . In th e upper pure-i ce la yer , th e gO\'ernin g 

eq uali ons ta ke th e sta ndard fo rms 

div vl = O. 

cliv TI + PI 9 = O . (2. 3) 

where 9 is th e vec tor o f' g ra vit y accelerati o n. :'\ote th a t 
th e till and ice m ass-ba la nce rel a ti o ns (2 .2 )1.2, whi c h 
we re orig ina lly evoluti o n re la ti o ns fo r th e /zeo ind e pe n

d ent \ 'a ri a bl es PT = I/T PT a nd Pr = 1/1 P I, res p eCli n' ly, 
redu ce to two equati o ns in th e two unknown s I/T a ncl 

l.![ , respeni\T ly , \·ia th e cons ta n l tru e-d e nsi t y ass um p

lion , a nd furth e r to two equa ti o ns in olle unkno wn 1/ in 

the context o f' th e sa tura ti o n constra int (Equ a ti o n 
(2 .1 )) . C o nsequ entl y, thi s la tte r constra int lead s to th e 
loss of an ind e p end e lll \·a l"ia bl e . Su c h a cons tra int is 
a n a logo us to th e cl ass ica l co nsta nt-d e nsit y (" incomp

ress ibilit y" ) constra int fo r a fluid , in whi c h case ih e 

m ass d ensit y is los t as s uc h a \ 'a ri a ble , to b e " re pl acecl" 
by th e press ure maint a ining th e constra int as a new 
unkno wn . By a na logy, in Ihe curre nt mi x ture co ntex t, 
thi s ne\\' unknO\\'Il press ure p r e pl aces th e \ 'o lum e 

frac tion los t vi a the sa turation co nstra int (Equati o n 

(2 .1 )) as a n unknown in th e m odel and m a intains thi s 

cons tra int. H e nce , w c re fe r to p as th e sa tura ti o n 
press ure. As in the c lass ica l incompress ibl e fluid case, p 
e nters the ba la nce re la ti o ns via the s tress co nstitut i\ 'C 
re la tion ; in a ddition , in th e c urre nt mixture context , 
th e till ice m o m entum intc rac tion a lso d e pe nds o n p 

(sce, e .g . Svendse n a nd Hulte r , 1995, a nd be lo \\) As 

suc h , (Equ a ti o n (2 .2 )) , whic h o ri g inall y represented 

eig ht equ a ti o ns in the e ig ht unknowns PT, PI , V T a nd 
VI , become o n ce aga in ei g ht equati o ns in e ight 
unkno \vns, i. e. v , p , V T a nd VJ. 

Since \\'C a rc m od elling ice a nd till as \ 'iscous fluid s, 

th e co rres ponding stress tensors la ke th e fo rms 

T " = - ])(1 I + 8 (1 , (2.4) 

wh ere I is th e three-dimcnsiona l unit tenso r. p" represents 

th e co nstitu ent \equilibrium ) press ure a nd 8 0 th e \ 'isco us 

(non-equilibrium ) pa rt of T {\ . Th e co nstitu ent pressures 

a rc re la tecl to th e mixture saturation press ure p by th e 
co nstituti\'C ass umptio n 

(2. 5) 

in th e contex t o f Eq ua ti on (2.1 ) . Clea rh' , wc ha \'e PI i:- PT 
in ge ne ral. Ass uming th e bulk \iscosity o f the till a nd ice 
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const ituents is negligible, we a lso ha\'e the usua l form 

So = Met D~ (2 .6) 

for S", where D o is the symm etri c pa rt orthe constituent 
velocity gradi ent \lv'l> D~ its d ev iato ri c pa rt a nd Mo the 
shea r viscosity. Las tl y, we assume th a t the interacti on 

force m takes a n isotrop ic, linea l' form 

m = mvv(l - v)v + ml/(\lv) (2.7) 

where v = VT - Vj is the difTerence ve locity . As usua l, th e 
coeffi cient mv is associa ted with drag interac ti ons, a nd is 
proportional to the ill\'e rse of th e so-ca ll ed D arcian 

perm ea bility. As for m l/, it has th e unit of pressure and 
th e simplest form m l/ = bp is taken here. As shown in the 
ge nera l th ermod yna mi c formul a ti on of Svendsen a nd 
H utter ( 1995) for a mix ture of iso tropi c visco-elas ti c 
materials, thi s last coeffi cient ta kes the usual form ml/ = P 
(i.e. {) = 1; e.g . MacK enzie, 1984) onl y when one assumes 

that the mixture inner free energy' depends negligibly on 
(in th e current contex t) v , something th a t will no t in 
ge nera l be the case . Beyond this, Hutter and o thers ( 1994) 
showed that, for such a choice (i. e. b = 1), there ex ist no 
non- tr ivial solutions for the stead y shea r Oow of a mixture 
o[ two viscous Ouids ove rl a in by a single visco us Ouid layer 

in the contex t o[ a simple parallel-slab geometry. 

Th e bound a ry conditions used in this work a re as 
foll ows: 

Th e free surface Y = YF (X, t ) is ass umed stress free, i.e. 
TIn = 0 , where n is the unit no rm a l to the surface. 

At the base Y = YB(X, t) , no-slip is ass umed , i. e . 
V et = O. 

Since the upper layer contains no till , the interface 
Y = YT(X, t) is ma teri a l with respec t to till , yielding the 
kinematic condition 

(2.8) 

where U a a nd Vu represent the x a nd y components of 
V et. The mass and momen tu m-j u mp condi tions a re 

[Po (vo - VT)] . n = 0 ) 

p! {(v! - VT)' n} [Vet] - [T ,,] n = 'Wn ) (2.9) 

where Equa tion (2.9)1 was used [0 write Equa ti o n 
(2.9h, [~] = ~+ - ~- (+ [or the upper, pure-i ce 
layer, and - for th e till- ice layer) a nd 'Wo represents a 

constituent interaction force conceptua ll y analogous 
to m as given in Equa tion (2.7 ), but one on tlte interface 
between the lower till- ice layer a nd th e upper pure-i ce 
laye r, rather than in th e bulk. In the till case (a = T ), 
the first term in Equa tion (2.9h vani shes; as for ice, 
dimensional considerations show it to be negli gible. 

Consequ ently , we have 

(2. 10) 

In genera l, the sum of th e constitu ent interface 
mom entum-exchange terms is zero, i. e. 'WT + 'Wr 

This is the pa rt of th e mixture free energy no t 
d epending on d iffusion . 
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= 0 , ensuring momentum balance In th e mixture as 
a whole a t the interface . 

The presence of a non-zero consti tuen t interface interac tion 
force 'Wet in Equation (2. 10) can be moti va ted as foll ows. 
Consider a pillbox with its upper surface in the pure ice a nd 

its lower surface in till- ice mixture, with both of these 

surfaces pa rall el to the interface . Ass ume for simplicity a 
state a t res t with no shear stresses. Surface forces from the 
pillbox sid es can be ignored (or van ish in this simple case 
when the force balance in the direction of the pillbox 
thi ckness is considered , which we do here for the sake of 

simplicity). With the top as the + side, and the bottom as 
the - side, Equa tions (2.4) and (2. 10) then imply 

(1 - v- )p- - p+ = W 1 ice, 

v - P- = WT till, 

p- - p+ = 0 mixture (2.11) 

with Wo = 'Wc> . n . Now, sin ce p- = p+ follows from 
Equation (2. Il h, and p+ i- 0, se tting 'WO' = 0 in Equation 
(2. 11 )2 implies v - = 0, i.e. no jump of till volume frac tion 
across the interface in this case . As such , for a given value of 
p- , Equation (2.11 h couples the " magni tude" of the jump 

in the till vo lume fraction (i.e. [v] = v-) to that of the tiU

ice momentum-excha nge interaction WO' a t the interface; in 
pa rticular, th e large r the till- ice momentum exchange at 
the interface, the la rger the jump in till vo lume fraction. 
Conseq uentl y, 'Wet el ea rly defin es the s/tClljmess of the 
interface between the till below and pure ice above, with 

'Wc> = 0 co rresponding to no interface (in the sense of a 
jump in the till volume fraction ) a t a ll. Observations (e.g. 
Engelha rd t a nd others, 1978) indicate tha t indeed the 
interface between the pure ice a bove and the till below is 
ra ther abrupt, or sharp; in other wo rd s, till is cortrentmted in 
the basal layer. In a ny case, we would a lso ex pect 'W" i- 0 
on ph ys ica l gro und s; indeed, the steep grad ient in th e till 
volume fraction from the bottom to th e top of the pillbox 
induces mechanical interactions (forces) between the ti ll 
a nd ice which in the limit as the pillbox thi ckness goes to 
ze ro become corresponding inl f1Jace interactions which a re 

non-zero in general. 

3. DIMENSIONAL ANALYSIS AND SIMPLIFICATION 

In thi s sec tion , we adapt th e above balance a nd 
constitutive relations to the two-dim ensional , parall el

sided sla b id eali zation of a g lacier or ice shee t dea lt with 
in this work (see Fig. I ) . T o this end , we work with the 
fo llowing sca lings : 

[x] = L , [y] = H , [t] = T, ['[La] = U, [vo] = V, 

[STJ = PT gH sill'Y, [SJ] = PI gH sil1"Y, 

[PJ = Pr gH COS,,!, [woJ = L" . (3. 1) 

H ere L , H , U, V and T re present a typica l leng th , 
thi ckness of the two-l ayer sys tem , x velocity, y ve locity 
and time, respec tively, chosen such th a t T = L/U = 
H/V. 

Substi tuting Equations (3. 1) into Equations (2.2)
(2.7 ), a nd introducing the thin-layer approximation E = 
H / L « 1, we obta in th e following non-dimensionalized 
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e ice shear stress 
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N 
O'---------------------~ 

o 
o+-______ ,-____ ~~~~~ 

0 .6 0 .9 1.0 \.1 

b saturation pressure 

N 

O'---------------------~ 

0 
0 

0 .00 0 .25 0 .50 

d till velocity 

N 

0 

o 
o+-______ ~~--~~----~ 

0 .0 3.5 7 .0 

f till shear stress 

Fig . 2. Till volume fraction (a), saturation pressure ( b), ice velocity (c), till velocity ( d), ice slzem' stress (e) and till 
shear stress (j), profiles with depth (all dimensionless) for three values of v-, i.e. v- = 0.01 (curves with squares), 
v- = 0.1 (curves with circles) and v- = 0.5 (curves witlz triangles) . For these calculations, we chose H = 1000 m, 
R = 2.7,91 = 1, 9T = 1, M = 1 and PT = 1 (see text). 

com ponen t forms of th e model rela tions for the lower 
mi xture laye r: 

-VP,y + (1 - 8)p V ,y = Rv , 

(1- v)P.y + (1- 8)pv.y = -(1 - v) , 
TS.y = -[v + Mv(l - v)U] , 

TI ,y = -(1 - v) + RMv(l - v)u, 

US, y = 2QTTT , 

UI ,y = 2Qm (3 .2) 

to 0 (1) in c, where now, a nd in the rest of this wo rk , aLL 
variables are non-dimensional. The no ta tion !,y indica tes a 
partial derivati ve of a quantit y f with respect to y . In 

these las t relations appear th e non-dimensiona l qu a ntites 

R = h/PI, M = mvU /hgsiwy, 9T = H 2hgsin 1/ MU 
a nd 91 = H 2 Pl.q sin 1/ /-/,j U; furthermore 9 : = 19l ; in add
iti on, we have introduced Ta = S a.xy (for more details, see 
HUlter a nd others, 1994) . Similarly, the boundary 

conditions from Eq ua tions (2.8)- (2. 10) become 

at Y = yF(x, t) : P = 0 and T] = 0, (3.3) 

atY=YB(X, t): 

atY=YI(X,t) : 

Uo: = 0 and Vc> = 0 , 

P- = p+ , TT = QT WSx , 

(3.4) 

(3.5) 

with QT = ~T/hgHsin1, Ql = ~r/PIgHsin1 and P T = 
VT/PlgH cosT The dimens ion less equ ations in the upper 
layer are 

P.y = - 1 , TI ,y = -1 , Ul. y = 2Q[TJ, (3.6) 

from which we obtain 

p(y) = -(y - 1), TI(Y) = -(y - 1), 

u](y) = uI(l ) - 91 (1 - y)2 (3.7) 

where YF = 1 a nd the boundary conditions (3.2) we re 
used. From Equa tions (3.Sh, we infer th at if the ti ll 
volume fraction v - does not va ni sh, th e interface ti ll- ice 
interaction force WS y in the Y direction must differ from 
ze ro. In th e nex t section , these quantities a re prescribed 

a nd their effect o n the thickness and m ec ha ni ca l 

behaviou r of the basal laye r is quantitatively invest igated 
in some simple cases. 
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4. NUMERICAL SOLUTIONS AND DISCUSSION 

The rel a ti ons (3.2Ji,2 can be rewritten in th e forms 

(1 -15)pv.u = (1 - R )v(l - v) , 

P,y = -1 + (1 - R )v , (4,1 ) 

representing two coupled equa tions in two unknowns v 
a nd p . In addition , res tricting at tention for simplicity to 
the case of consta nt viseosities, i. e. 9a = co nsta nt , 
Equations (3.2)3- 6 can be combined to obtain the single 
relation 

U yy = 2[9[(1 - v) - 9TV] - 2Mv(1 - v)(l + R )u (4 .2) 

for U = UT - U T. IfYT is g ive n, we can integrate the first 
two eq uations containing onl y v a nd p numericall y with 

the boundary co ndition s (3.5 )13' From Equation s 

(3.2)5,6, (3 .5h,..[ and (3.7h, there follows U,y- = 1 - Yr at 
th e interface. The relation (4 .2)3 togeth er with the 
bound a ry conditi ons 1i.!I - = 1 - Y[ and V,(YB) = 0 con
stitut es a two-point bounda ry-value problem., which ca n 
be solved numericall y using a shooting technique. The 

shea r stress T(t is then obtained via numerical integration 

of Equations (3.2h-l with Equ a tions (3.5h.4 and the 
solutions of U and v . Fina ll y, th e ve locity 'Li(t is obtained 
by integrating Equations (3.2 )5.6 with Eq uat ion (3.4) . It 
is reasonable to ass ume continuity of the ice velocity 
through the interface, i.e. 'UI- = U I+ as the kin ematical 

relation at the interface, which can be used to determine 
Yr via a predictor-corrector method. Giving an initia l 
va lue for Y] , we calcu la te v,] - ,u] + a nd compare th em . If 
their difference is not suffi cien tl y small, we correct YJ and 
repeat the computation until the difference Iv,J- - u l+1 
becomes negli gi ble. 

For the numerical solutions, we chose H = 1000 m, 
R = 2.7, 9r = 1, 9T = 1, M = 1 a nd PT = 1; the first of 
these is an appro pri ate ord er-of-m agni rude val ue for the 
thickness of a n ice shee t a nd th e othe r va lu es a re chosen 
for simplicit y. In particular , note that 9T/91 = RJ.Lr/{lT , 
so that these ass umptions correspond to assuming th a t the 
viscos ity of th e "granular" till is about three times that of 
ice. Further, we ass ume that W SJ', WI,,. a nd Wry a re 
negligible for simpli city and focus on wSy, which is 
prescribed. Equation (3.5)3 a llows the till vo lum e frac tion 
v - at th e illlerface to be evaluated. Sin ce v ~ 0.85 at the 
base is the la rgest ph ysica ll y reasonable value (personal 
com munication from G. Clarke), YB = y(v = 0.85) is 
numerica ll y determined in our computations. 

As shown by Hutter and others (1994), one obta ins 
onl y trivial solutions of Equations (4 .1) wh en 15 = 1, i.e. a 
single-layer, single-constituent " mixture." Sve ndsen and 
others (1995 ) investigated the effects of varying 15 for 
v- = 0 on the till volume fraction, pressure, shear stress 
a nd velocity profiles in a single-layer mixture model for a 
g lacier or ice sheet. In particular, they showed that th e 
most reali sti c till volum e-fraction profiles arise for the case 
15 = 0.95. H ere, we use thi s va lu e of 15 and vary v - , which 
is tantamount to va rying w Sy in the contex t of Equation 

(3.412, a nd it is easier to implement numerica ll y. In 
pa rticul a r, we look at the cases v - = 0.01 , 0.1 a nd 0.5; the 
effec ts 0 [" thi s on the vertical profiles for till volume 
fra ction , sa turation pressure, ice velocity, till veloc ity, ice 
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shea r stress and till shea r stress in the lower part of the 
two-la ye I' sys tem (0 < Y < 0.1 ) arc shown in Figure 2a- f. 
The most sign ifi cant aspect of th ese results is the up/Jer 
exlenl oJ each ClIrve, which marks Ihe inteJjace posilioll ill the Iwo
la)!U ~Jls tem. Indeed , varying v- does not a lter sign ifi cantly 

th e form of the profiles, i. e. tbe qualita tive bebaviour of 
the so lution, nor even their quantitati ve \'alues, but 
rather the lowe r till-l ayer thickness. Looking, for exam
ple, at the till volume-fraction profiles in Fi gure 2a, we see 
th a t, with increasing v-, i. e. an increasing ly sha rper 
interface, the lower till layer becomes thinner. Comparing 
thi s trend with inter face va lues p- ofp shown in Figure 2b 
(u pper lefthand values on each curve ), whi ch increases 
with v -, as we ll as with Equation (3.4l2, implies that wSy 

is a lso increasing with decreasing basa l-layer thi ckness. 
Consequentl y, the stronge r the till- ice interactions a t th e 

mixture-ice interface, the thinn er a nd sha rper tb e 

resulting basal layer. From the quantitative point of 
view, the effect of varying v - , and so wS.lJ' on the Gelds is 
most noticable in the case of the sa tura ti on press ure (Fig. 
2b) and shear stresses (Fig . 2e and f) ; ind eed , th ese 
increase with increasing basal-layer thi ckn ess (at a given 

d epth in the layer) and so indirec tl y with increasing till
ice momentum exchange . 

One of tbe main purposes of the current work is to 
inves tigate th e effect of till- ice interaction processes, both 
in the bu lk, as represented by rn in Eq uation (2.7 ), as 
well as on the mixture- ice interface, as rep resented by 'Wo 

in Equ a tion (2.10), on th e "geometry" of the two-l ayer 
sys tem and , in particular, on the distribution of till in this 
sys tem. From an observa tional poi n l of view, it is exac tl y 
thi s latter aspect, i. e. the distribution of till in the sys tem, 
tha t is most well-known. As shown in this and previo us 
work , th e bulk and interface momentum interaction 
between till and ice has a dramatic influ ence on this 
distribution , as well as on the thickness of the basal layer. 
Th e nex t step is to extend th ese consid era tions towards a 
more detail ed mod el of th e rheo logy a nd d yna mic 
behaviour of the basa l layer itself, taking in particular 
ice- till (and perhaps more importa ntl y, free-water- till ) 
interactions into account. 
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