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Consequences of fluctuating microscopic conductivity in mean-field electrodynamics
of turbulent fluids are formulated and discussed. If the conductivity fluctuations
are assumed to be uncorrelated with the velocity fluctuations then only the
turbulence-originated magnetic diffusivity of the fluid is reduced and the decay time
of a large-scale magnetic field or the cycle times of oscillating turbulent dynamo
models are increased. If, however, the fluctuations of conductivity and flow in a
certain well-defined direction are correlated, an additional diamagnetic pumping effect
results, transporting the magnetic field in the opposite direction to the diffusivity flux
vector 〈η′u′〉. In the presence of global rotation, even for homogeneous turbulence
fields, an alpha effect appears. If the characteristic values of the outer core of the
Earth or the solar convection zone are applied, the dynamo number of the new alpha
effect does not reach supercritical values to operate as an α2-dynamo but oscillating
αΩ-dynamos with differential rotation are not excluded.

Key words: astrophysical plasmas, plasma flows

1. Introduction
The electromotive force (EMF) u × B as the vector product of flow velocity and

magnetic field is the only nonlinear term in the induction equation on which the
present-day mean-field electrodynamics is based on. It is the only nonlinear term
in this equation if the microscopic magnetic diffusivity η in the fluid is uniform.
This, however, is not necessarily true. If for any reason the electric conductivity
fluctuates around a certain average value then the local diffusivity fluctuates around
its basal value so that the effective decay time of a large-scale electric current is
changed. Below, we shall demonstrate this phenomenon – which reduces the effective
eddy diffusivity of a turbulence field (Krause & Roberts 1973) – also with nonlinear
simulations.
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In convection-driven turbulent fields temperature fluctuations should produce
electric-conductivity fluctuations which are correlated with the vertical component
of the flow field. In this case, even a turbulent diffusivity flux vector 〈η′u′〉 occurs
which in connection with the large-scale field and/or the large-scale electric current
may form new terms in the mean-field induction equation. Pétrélis, Alexakis &
Gissinger (2016) assumed that a new sort of alpha effect arises in such systems.
Our considerations confirm the existence of an alpha effect but only in the presence
of global rotation. Without rotation the conductivity fluctuations will (only) lead
to a reduction of the eddy diffusivity and – if correlated with one of the velocity
components – to a new diamagnetic pumping term.

2. The equations
The problem is mainly described by the induction equation

∂B
∂t
= curl(u×B− η curl B), (2.1)

with div B = 0 and div u = 0 for an incompressible fluid. Here u is the velocity, B
is the magnetic field vector and η the magnetic diffusivity. We consider a turbulent
fluid with u= ū+ u′ and with a fluctuating magnetic diffusivity η = η̄ + η′. For the
expectation values of the perturbations we shall use the notations urms = 〈u′2〉

1/2
and

ηrms= 〈η
′2
〉

1/2
. Large-scale observables (mean values) are marked with overbars while

brackets are used for the correlations of fluctuations. For finite fluctuations the high-
conductivity limit η̄→ 0 is not allowed. The fluctuations u′ and η′ may be correlated
so that a turbulence-originated diffusivity flux

U= 〈η′u′〉 (2.2)

forms a vector which is polar by definition. The existence of this vector is obvious for
thermal convection, when both the velocity field and the electric conductivity are due
to temperature fluctuations. The correlation (2.2) can be understood as the transport of
magnetic diffusivity in a preferred direction. Also the magnetic field will fluctuate, i.e.
B= B̄+ B′. The magnetic fluctuation B′ fulfils a nonlinear induction equation which
follows from (2.1). We shall only discuss its linear version

∂B′

∂t
= curl(u′ × B̄− η̄ curl B′ − η′ curl B̄) (2.3)

in the analytical theory of driven turbulence (Krause & Rädler 1980). The results of
the calculations within the quasilinear first-order smoothing approximation will also
be probed by targeted numerical simulations with well-established nonlinear codes.

If the fluctuations are known in their dependences on the magnetic background field
and rotation then the turbulence-originated EMF E = 〈u′ × B′〉 and the diffusivity–
current correlation

J =−〈η′curl B′〉 (2.4)

can be formed which enter the induction equation for the large-scale field via

∂B̄
∂t
= curl(E +J − η̄ curl B̄). (2.5)
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To find the influence of a large-scale field and/or its gradients on the EMF E at linear
order it is enough to solve the induction equation (2.3) where the inhomogeneous
large-scale magnetic field may be written in the form B̄j = Bjpxp with Bjp ≡ B̄j,p.
Without any loss of generality, the coordinate x = 0 defines the point where the
background field vanishes. We also note that the global rotation here only appears in
the Navier–Stokes equation for the velocity fluctuation which remains homogeneous
if only expressions linear in Bjp are envisaged. One can thus work with

u′i(x, t)=
∫∫

ûi(k, ω)ei(kx−ωt) dk dω,

B′i(x, t)=
∫∫

(B̂i(k, ω)+ xlB̂il(k, ω))ei(kx−ωt) dk dω.

 (2.6)

The result is

B̂i =
ixlkjBjl

−iω+ η̄k2
ûi −

Bij +
2η̄klkmBlmδij

−iω+ η̄k2

−iω+ η̄k2
ûj +

ikj(Bij − Bji)

−iω+ η̄k2
η̂ (2.7)

as the spectral component of the magnetic fluctuations (Rüdiger, Kitchatinov &
Hollerbach 2013). The first two terms on the right-hand side of this equation describe
the interaction of the turbulence with the large-scale magnetic field and its gradients.
Under the assumption that the large-scale field B̄ varies slowly in space and time,
the electromotive force can be written as

E = α ◦ B̄− ηt curl B̄, (2.8)

where the tensor α and the coefficient ηt represent the α effect and the turbulent
magnetic diffusivity.

The last term in (2.7) directs the influence of the fluctuating diffusivity. It leads to
an EMF of

Ei = εiqp

∫∫
ikjÛq

−iω+ η̄k2
dk dω(Bpj − Bjp), (2.9)

where Û is the Fourier transform of the diffusivity–velocity correlation U which itself
is a polar vector. The spectral vector of the correlation (2.2) can in full generality be
written as

Ûi = u1

[
gi −

(gk)ki

k2

]
+ u2iεijkkjgk. (2.10)

The vector g gives the unit vector of the coordinate in which direction the correlation
between velocity and diffusivity is non-vanishing. The expression (2.10) must be odd
in g and the real part must be even in the wavenumber k. The quantity u1 reflects
the correlation of the velocity component gu′ with η′. The second term in (2.10)
contains a correlation of diffusivity and vorticity where u2 must be a pseudoscalar.
Equations (2.9) and (2.10) lead to

E =
∫∫

η̄k4u2

ω2 + η̄2k4
dk dω g× J̄, (2.11)

with J̄= curl B̄ and (g× J̄)i=−(g · ∇)B̄i+∇i . . ., where the latter symbol represents
a gradient which does not play a role in the induction equation. We note that the non-
potential term only exists if the magnetic field B̄ depends on the coordinate along g.
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2.1. The diffusivity–current correlation
The diffusivity–current correlation J from (2.4) is now analysed in detail. Fourier
transformed fluctuations of the electric current are

curli B̂=−
εispkjks

−iω+ η̄k2
(ûpBj + η̂(Bpj − Bjp)). (2.12)

Multiplication with the (negative) Fourier transform of the diffusivity fluctuation, η̂,
leads to

Ĵi =
εispkjks

−iω+ η̄k2
(ÛpBj + V̂(Bpj − Bjp)). (2.13)

Here, V̂ is here the spectral function of the autocorrelation function V = 〈η′(x, t)η′
(x+ ξ , t+ τ)〉 of the diffusivity fluctuations. Equations (2.10) and (2.13) provide J =
−γ g× B̄ with

γ =
1
3

∫∫
η̄k4u1

ω2 + η̄2k4
dk dω, (2.14)

representing a turbulent transport of the magnetic background field (‘pumping’) anti-
parallel to g. For positive u1 (i.e. for positive correlation of η′ and u′z) the pumping
goes downwards as g is the vertical unit vector. We note that formally the integral in
(2.14) also exists in the high-conductivity limit η̄→ 0 so that for small η̄ it does not
depend on the magnetic Reynolds number

Rm=
urms`

η̄
, (2.15)

(with ` as the correlation length) for large Rm. In this limit γ is linear in the
correlation function u1. For small Rm the integral in (2.14) linearly grows with Rm,
which follows after application of the extremely steep correlation function δ(ω) as a
proxy of the low-conductivity limit.

On the other hand, the term with V̂ in (2.13) leads to

J = · · · +
2
3

∫∫
k2V̂

−iω+ η̄k2
dk dω curl B̄, (2.16)

which provides an extra contribution to the magnetic field dissipation. The question
is whether this term reduces or enhances the eddy diffusivity ηt which is due to the
turbulence without η-fluctuations. For homogeneous turbulence one finds from (2.7)

Ei =−εijp

∫∫ (
BpnQ̂jn +

2η̄klkm

−iω+ η̄k2
BlmQ̂jp

)
d k dω
−iω+ η̄k2

. (2.17)

The spectral tensor Q̂ij for isotropic turbulence is

Q̂ij(k, ω)=
E(k, ω)
16πk2

(
δij −

kikj

k2

)
− iεijkkkH(k, ω), (2.18)

where the positive–definite spectrum E gives the energy

u2
rms =

∫
∞

0

∫
∞

0
E(k, ω) dk dω (2.19)
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and H is the helical part of the turbulence field. From (2.17) follows E =−ηt curl B̄
with the positive eddy diffusivity

ηt =
1

24π

∫∫
η̄E

ω2 + η̄2k4
dk dω. (2.20)

For the sum of the turbulence-originated terms in (2.5) one obtains

E +J = −
(

1
24π

∫∫
η̄E

ω2 + η̄2k4
dk dω−

2
3

∫∫
η̄k4V̂

ω2 + η̄2k4
dk dω

)
curl B̄

−
1
3

∫∫
η̄k4u1

ω2 + η̄2k4
dk dω g× B̄, (2.21)

indicating the total turbulent diffusivity as reduced by the conductivity fluctuations. On
the other hand, the pumping term in the second line of this equations only exists if
these conductivity fluctuations are correlated with the flow component in a preferred
direction within the fluid. All terms in (2.21) also exist in the high-conductivity limit,
η̄→ 0.

The modified eddy diffusivity is

ηeff
t

η̄
=

1
24π

∫∫
E

ω2 + η̄2k4
dk dω−

2
3

∫∫
k4V̂

ω2 + η̄2k4
dk dω (2.22)

(see Krause & Roberts 1973). For large Rm both terms grow linearly with Rm
while for small Rm both terms formally grow with Rm2. If the second expression
is considered a function of ηrms/η̄ then it runs with 1/Rm for large Rm and with
Rm0 for small Rm. As it should, the reduction of the eddy diffusivity by conductivity
fluctuations disappears in the high-conductivity limit.

Discussing possible dynamo effects in hot Jupiter atmospheres, Rogers & McElwaine
(2017) considered variable molecular diffusivities which form patterns in the vertical
direction and the horizontal plane. In the horizontal plane the quasi-two-dimensional
velocity field existed without being correlated with the diffusivity. In consequence,
the effective magnetic diffusivity is also reduced as in (2.22) but the pumping term
(2.14) does not appear.

2.2. Direct numerical simulations
To test theoretical predictions, we run fully nonlinear numerical simulations with the
PENCIL CODE1. We solved the equations of compressible magnetohydrodynamics

∂A
∂t
= u×B− (η̄+ η′)µ0 J+ E0, (2.23)

D ln ρ
Dt
=−div u,

Du
Dt
=−c2

s ln ρ +Fvisc
+Fforce, (2.24a,b)

where A is the magnetic vector potential and B = curl A is the magnetic field,
J = µ−1

0 curl B is the current density, D/Dt = ∂/∂t + u · ∇ is the advective time
derivative, ρ is the density and cs is the constant speed of sound. The last term

1https://github.com/pencil-code/.
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(a) (b)

FIGURE 1. The specific diffusivity ηeff
t /η̄ (a) and the eddy diffusivity ratio ηeff

t /ηt (b) as
functions of the normalized diffusivity fluctuation ηrms/η̄. In the high-conductivity limit
(Rm� 1) the influence of the conductivity fluctuations disappears.

of (2.23) describes an imposed EMF E0 = Ê0 sin(k1x)êz, that is used to introduce a
large-scale magnetic field B̄y(x) to the system. Furthermore, the fluctuating component
of the magnetic diffusivity is given by η′ = cuuz, where cu is used to control the
strength of the correlation. We use ηrms = cuuz,rms to quantify the amplitude of the
fluctuating part of the diffusivity.

The viscous force is given by the standard expression

Fvisc
= ν

(
∇

2u+ 1
3∇∇ · u

)
, (2.25)

where ν is the kinematic viscosity. The fluid is forced with an external body
force Fforce(x, t) = Re{Nf k(t) exp[ik(t) · x − iφ(t)]}, where x is the position vector,
N = f0cs(kcs/δt)1/2 is a normalization factor where f0 is the non-dimensional
amplitude, k= |k|, δt is the length of the time step and −π< φ(t) < π is a random
delta-correlated phase. The vector f k describes non-helical transversal waves.

The simulation domain is a fully periodic cube with volume (2π)3. The units
of length and time are [x] = k−1

1 , [t] = (csk1)
−1 where k1 is the wavenumber

corresponding to the system size. The simulations are characterized by the magnetic
Reynolds number (2.15) with urms volume averaged and `= (kf)

−1. The flows under
consideration are weakly compressible with Mach number Ma= urms/cs ≈ 0.1. All of
the simulations use kf/k1 = 30 and a grid resolution of 2883.

We first run the simulations with each Rm with η′ = 0 sufficiently long that a
stationary large-scale magnetic field B̄y(x) due to the imposed E0 is established.
The amplitude of the resulting magnetic field is typically of the order of 10−3 of
the equipartition strength such that its influence on the flow is negligible. Then
we branch new simulations from snapshots of these runs with different levels of
diffusivity fluctuations η′ and switch off the imposed EMF, i.e. E0 = 0. Without
the EMF the large-scale magnetic field decays. Measuring the decay rate of the
magnetic field, the effective turbulent diffusion can be computed. At least five decay
experiments with each value of Rm and η′ were made and the averaged decay rate
was used in the computation of ηeff

t /η̄. The error bars in figure 1 indicate the standard
deviation divided by the square root of the number of experiments.

Going back to (2.22), we note that if the second expression is considered then its
argument (ηrms/η̄)

2 must be multiplied with 1/Rm for large Rm and with Rm0 for
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small Rm. It is thus clear that the diffusivity reduction by conductivity fluctuations
disappears in the high-conductivity limit, which is confirmed by the numerical results,
see figure 1(a). Figure 1(b) shows the numerical results for the ratio ηeff

t /ηt of the
terms in (2.22) which, of course, is unity for vanishing ηrms. It is also unity for large
Rm as the η-fluctuation-induced second term in (2.22) vanishes with 1/Rm. Its role,
however, becomes more important for small Rm. In this case, the first term loses
its dominance and the total diffusivity ηeff

t is reduced. If the numbers of figure 1(b)
are multiplied with ηt/η̄ then panel (a) results where the total magnetic diffusivity
normalized with the microscopic value η̄ is given. The influence of the conductivity
fluctuations vanishes for large Rm while the fluctuations provide smaller effective
diffusivities ηeff

t so that the cycle frequencies of oscillating dynamo models are
reduced (Roberts 1972), also characteristic growth and decay times become longer.

3. Alpha effect
All turbulent flows which are known to possess an alpha effect are helical due to

an inhomogeneity in the rotating turbulence field subject to the influence of a density
and/or turbulence-intensity stratification2. The product g · Ω forms the pseudo-scalar
on which the pseudo-tensor α in the relation (2.8) bases. However, the turbulence
model considered in this paper is homogeneous and anisotropic. As the anisotropy is
only implicit, it is not trivial whether the influence of global rotation will lead to an
alpha effect or not.

3.1. Quasilinear approximation
We start with (2.12) and include the influence of rotation by the transformation ûp =

Dpqûq with the rotation operator

Dij = δij +
(2k ·Ω/k)
−iω+ νk2

εijp
kp

k
(3.1)

in the linear approximation (Kitchatinov, Pipin & Rüdiger 1994). The second term
gives the influence of the basic rotation in the Fourier representation. As it should be,
it is even in the wavenumber and odd in the angular velocity. The Levi-Civita tensor
ensures that the term is invariant with respect to the transformation of the coordinate
system. It follows that Ĵi = εispkjksDpqÛqBj/(−iω+ η̄k2)+ · · ·, and finally

J =−γ g×B+ α(4(B ·Ω)g− (g ·B)Ω − (g ·Ω)B), (3.2)

where γ is given by (2.14) and for the coefficient α (related but not identical to the
tensor α in (2.8)) one finds

α =
2
15

∫∫
(νη̄k4

−ω2)k2u1

(ω2 + η̄2k4)(ω2 + ν2k4)
dk dω. (3.3)

For ν = η̄ and for frequency spectra which monotonically decrease for increasing ω
the frequency integral in (3.3) has the same sign as u1 while it vanishes a for a
spectrum (‘white noise’) which does not depend on the frequency ω. Correlations of
a white-noise spectrum possess zero correlation times so that, indeed, the rotational

2Also global shear needs a stratification to develop α effect (Rüdiger & Brandenburg 2014).
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influence should vanish. The α effect after (3.2) is highly anisotropic, its last term is
the rotation-induced standard α expression.

Both quantities α and γ are linearly running with the ratio ηrms/η̄. In the low-
conductivity limit (Rm< 1) they are

γ

urms
'
ηrms

η̄
,

γ

αΩ
'

1
Rm (τcorrΩ)

(3.4a,b)

while in the high-conductivity limit (Rm> 1)

γ

urms
'
ηrms

η̄

1
Rm

,
γ

αΩ
'

1
τcorrΩ

. (3.5a,b)

Both relations for the α terms taken for all Pm= ν/η̄6 1. The α effect always needs
rotation; both of the given coefficients are small. The dimensionless ratio γ̂ = γ /αΩ
of the pumping term γ and the α effect indicate the ratio of off-diagonal and diagonal
elements in the alpha tensor. For γ̂ > 1, dynamo operation can highly be disturbed.
For a standard disk dynamo Rüdiger, Elstner & Schultz (1993) demonstrated with
numerical simulations that large values of |γ̂ | suppress the dynamo action. In spherical
dynamo models the γ term plays the role of an upward buoyancy (Moss, Tuominen
& Brandenburg 1990) or even a strong downward turbulent pumping (Brandenburg,
Moss & Tuominen 1992). In order to be relevant for dynamo excitation, the α

effect should numerically exceed the value γ of the pumping term. As the pumping
effect exists even for Ω = 0, the ratio γ̂ should decrease for faster rotation. With
extensive numerical simulations Gressel et al. (2008) derived values of order unity
for interstellar turbulence driven by collective supernova explosions. For rotating
magnetoconvection Ossendrijver, Stix & Brandenburg (2001), Ossendrijver et al.
(2002) also found γ̂ ' 1, where both α and γ reached approximately 10 % of the
root-mean-square value of the convective velocity. In their simulations of turbulent
magnetoconvection Käpylä, Korpi & Brandenburg (2009) also reached typical values
of order unity for γ̂ .

3.2. Turbulent transport of electric current
We shall demonstrate why the existence of a diamagnetic pumping and an α effect
for rotating but unstratified fluids with fluctuating diffusivity (in a fixed direction) is
not too surprising. We start with the flow–current correlation 〈u′ · curl B′〉 describing
a turbulent transport of electric current fluctuations which after (2.12) for non-rotating
turbulence certainly vanishes. This is not true for rotating turbulence as 〈u′ · curl B′〉∝
B̄ · Ω is a possible construction for isotropic turbulence fields which only vanishes
for B̄⊥Ω . Moreover, the tensor 〈u′icurlj B′〉 for rotating isotropic turbulence may be
written as

〈u′i curlj B′〉 = κ1ΩiB̄j + κ2ΩjB̄i + κ3(Ω · B̄)δij. (3.6)

In opposition to the tensors forming the helicity, the current helicity and the
cross-helicity, the tensor (3.6) is not a pseudo-tensor and there is no reason that
the dimensionless coefficients κi identically vanish. The correlation 〈u′r curlφ B′〉
describes the up- or downward flow of azimuthal electric current fluctuations in a
rotating magnetized turbulence. Imagine that u′r is correlated (or anticorrelated) with
fluctuations η′ of the magnetic diffusivity, i.e. 〈u′r curlφ B′〉 ∝ 〈η′ curlφ B′〉 which is
proportional to Jφ . If this quantity occurs for rotating turbulence under the influence
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of an azimuthal magnetic background B̄φ field then the existence of a new α effect
has been proven.

The calculation on the basis of (2.7) and (3.1) for rotating and magnetized but
otherwise isotropic turbulence leads to the tensor expression

〈u′i curlj B′〉 = κ(ΩiB̄j +ΩjB̄i − 4(Ω · B̄)δij), (3.7)

which is symmetric in its indices. One finds

κ =
1
30

∫∫
(νη̄k4

−ω2)k2E
(ω2 + η̄2k4)(ω2 + ν2k4)

dk dω. (3.8)

The dimensionless κ is almost identical to the integral (3.3); it is also positive for
monotonically decreasing frequency spectra (at least for ν = η̄). For η̄ → 0 one
formally finds for the integrals κ ' St2/15 where the Strouhal number St= urmsτcorr/`,
with ` being the correlation length. In the low-conductivity limit it runs with Rm2.

On the other hand, without rotation the tensor (3.7) of the homogeneous turbulence
can simply be written as 〈u′i curlj B′〉 = κ ′εjikB̄k. As it should, the tensor is invariant
against the simultaneous transformation i→ j and B̄k→−B̄k. Then 〈(g · u′)curl B′〉 =
κ ′g× B̄ for all directions g, hence

〈u′rcurlθ B′〉 =−κ ′B̄φ (3.9)

for azimuthal background fields. After the heuristic replacement of u′r by η′, κ ′ in (3.9)
stands for the new pumping term discussed above. The coefficient

κ ′ =
1

15

∫∫
η̄k4E

ω2 + η̄2k4
dk dω, (3.10)

which is of the dimension of the inverse of the correlation time, is positive–definite.
In the formal limit η̄ → 0 the integral yields κ ′ ' (2/15)St2/τcorr whereas in the
low-conductivity limit it runs with Rm. We shall further demonstrate by numerical
simulations that the correlations (3.7) and (3.9) indeed exist and that the coefficients
κ and κ ′ are positive.

3.3. Rotating magnetoconvection
A nonlinear numerical simulation with an existing code demonstrates the existence
of the scalar quantities κ ′ and κ and, therefore, the existence of the pumping term
(2.14) and the new α effect. To this end the correlations 〈u′rcurlθ B′〉 and 〈u′rcurlφ B′〉
are calculated without and with rotation, yielding κ ′ and κ . As the latter correlation
needs global rotation to exist, κ and, therefore, the α effect, also need global rotation
to exist.

A convectively unstable Cartesian box penetrated by an azimuthal magnetic field
(fulfilling pseudo-vacuum boundary conditions at the top and bottom of the box) is
considered with both density and temperature stratifications of (only) 10 %. A detailed
description of the magnetoconvection code has been published earlier (Rüdiger &
Küker 2016). The box is flat: two units in the vertical direction and four units in the
two horizontal directions, there are 128 × 256 × 256 grid points. In code units the
molecular diffusivity is η' 6× 10−3 and the resulting turbulence intensity urms ' 0.7.
The convection cells are characterized by τcorr ' 0.6, hence Rm . 50. The values are
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(b)(a)

FIGURE 2. Snapshots of the turbulence-induced coefficients κ ′ after (3.9) (a) and the
correlation (3.11) (b) from simulations of non-rotating convection with an azimuthal
magnetic field. The convectively unstable region is located between the two vertical
dashed lines, the red curves denote time averages and the yellow curves characterize
the expectation value of the fluctuations. For non-rotating convection the correlation
〈u′rcurlθ B′〉 exists but 〈u′r curlφ B′〉 vanishes. Bφ = 1, Ω = 0, Pm= 0.1.

not varied for the various simulation runs. After the definitions the magnetic field
Bφ = 1 would take 40 % of the equipartition value Beq =

√
µ0ρurms.

Figure 2(a) gives the results of a numerical simulation for a non-rotating box
penetrated by an azimuthal magnetic field. We find κ ′ > 0 in accordance with
the result (3.10) obtained within the quasi-linear approximation. If additionally u′r
and η′ are (say) positively correlated then (3.10) provides positive values of γ in
accordance to (2.14). Multiplication of the numerical result in figure 2(a) with the
computed correlation time leads to τcorrκ

′
' 0.5, in good agreement with the analytical

result (3.10).
From (3.7) it also follows that the tensor trace 〈u′ · curl B′〉 = −10κ(Ω · B̄) has a

sign opposite to that of the correlation 〈(g · u′)curl B′〉 = κ(g · Ω)B̄, which we now
consider for the hemisphere where g · Ω > 0. One finds that fluctuations of electric
currents in the direction of the large-scale magnetic background field are correlated
with the velocity component g · u′, provided g is not perpendicular to the rotation
axis. Hence,

〈u′r curlφ B′〉 = κ cos θΩB̄φ, (3.11)

which means that in a rotating but otherwise isotropic turbulence with an azimuthal
background field the radial flow fluctuations will always be correlated with azimuthal
electric current fluctuations. The correlation (3.11) runs with cos θ , it is thus
antisymmetric with respect to the equator and it vanishes there. An upflow motion
provides a positive (negative) azimuthal electric current fluctuation while a downflow
motion provides a negative (positive) azimuthal electric current fluctuation so that the
products of u′r and curlφ B′ have the same sign in both cases. Replace now u′r by
η′ and the existence of correlations such as 〈η′curlφ B′〉 becomes obvious in rotating
isotropic turbulence fields magnetized with an azimuthal background field. Just this
finding is formulated by (2.4) and (3.2). Hence, the dimensionless coefficient κ in
(3.11) is a proxy of an α effect which appears when u′r and η′ are correlated or
anticorrelated.
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(a) (b) (c)

FIGURE 3. The values of κ after (3.11) for rotating magnetoconvection with azimuthal
magnetic field Bφ =±1 (a), Bφ = 2 (b) and Bφ = 3 (c). Ω = 3, Pm= 0.1, θ = 45◦.

We calculate κ for different magnetic background fields for a fixed rotation rate.
Figure 2(b) confirms that the correlation (3.11) vanishes for Ω = 0. The three
examples given in figure 3 have been computed with the rotation rate Ω = 3 which
corresponds to a Coriolis number 2τcorrΩ = 3.6. The preferred direction g has been
fixed to θ = 45◦ corresponding to mid-latitudes in a spherical geometry. These are
natural choices as equator and poles as the two extremes are excluded. At the
equator we do not expect finite correlations to exist while the simulations often
meet complications at the poles. As expected, the resulting κ is positive and does
not depend on the sign of the magnetic field. It is approximately .0.1 for weak
magnetic fields. Due to magnetic suppression an increase of the field by a factor
of three reduces the κ by the same factor. An estimation of the analytical result
(3.8) yields κ ' (1/15)St2 for ν = η̄. Hence, κ . 0.1 for a Strouhal number of unity
derived from the analytical expressions is confirmed by numerical calculations. For
the effective pumping γ̂ = γ /αΩ the simulations provide the numerical value of
O(10) in (rough) accordance with the estimates (3.5).

For our argument only standard mean-field electrodynamics in turbulent media is
needed. We note that the α term in (3.2) is turbulence originated but it does not need
a prescribed helicity in stratified turbulent media; the helicity parameter H from (2.18)
does not occur in the calculations. In order to ensure the α tensor is a pseudo-tensor
the new α effect only exists in rotating media which, however, are no longer required
to be stratified in density and/or turbulent intensity.

The dynamo number Cα = |α|R/ηt for large Rm is

Cα .
St

Rm
ηrms

η̄

ΩR
urms

, (3.12)

with R the characteristic size of the dynamo domain. That Cα exceeds unity, which
is necessary for dynamo excitation in α2 models, cannot be excluded for sufficiently
rapidly rotating large volumes. Applying the characteristic values of the geodynamo
with Rm' 100 and urms ' 0.05 cm s−1 would provide ηrms/η̄& 10−4 as the excitation
condition of an α2-dynamo. We shall see below that in the outer core of the Earth
such (large) values are not realistic. In the solar convection zone the equatorial
velocity ΩR slightly exceeds the maximal convection velocity but the very large Rm
will prevent sufficiently high values of Cα. The smallness of the presented α effect
does not prevent the operation of αΩ dynamo models if sufficiently strong differential
rotation exists. The standard solutions of these models, however, are oscillating with
time scales of the order of the diffusion time.
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Finally, it might be underlined that (3.11) describes a general turbulence-induced
radial transport of azimuthal electric current fluctuations which vanishes for Ω = 0.
It exists for all rotating homogeneous turbulence fields without another preferred
direction beyond the rotation axis and magnetic field direction.

4. Results and discussion

We have shown analytically and with numerical simulations that the eddy diffusivity
in a turbulent fluid is reduced if not only the flow speed but also the electric
conductivity fluctuates. In this case the effective eddy diffusivity is smaller than
that without diffusivity fluctuations. This is understandable as the large-scale electric
current prefers the high-conductivity islands if they randomly exist in the fluid.
For small magnetic Reynolds number Rm the large-scale diffusivity decreases with
growing ηrms/η̄ but this effect disappears for large Rm. Figure 1 demonstrates the
reduction effect as a phenomenon of (say) a few 10 %.

If the fluid becomes anisotropic in the sense that one of the components of the
flow vector is correlated (or anticorrelated) with the local values of the fluctuating
electric conductivity then further phenomena appear. Convection may serve as an
example where the downward and upward flows always have different temperatures
and, therefore, different electric conductivities. If we define in positive radial direction
the correlations as positive then a downward topological pumping of the magnetic
field appears in the negative radial direction. In other words, if by the existence
of correlations the diffusivity fluctuations are transported in one direction then the
magnetic background field is transported in the opposite direction. This is despite the
fact that the considered turbulence is homogeneous. Applying the diffusivity relation
η ∝ T−3/2 (Spitzer 1962) to convection then the correlation 〈η′u′r〉 (with r as the
radial direction in spheres) is negative. It formally describes a downward transport
of diffusivity and hence the magnetic pumping should go upwards. The amplitude
of the pumping velocity, however, is only a few per cent of the turbulent velocity
which may be smaller by one order of magnitude than the diamagnetic effect of
inhomogeneous turbulence.

The Spitzer relation yields η′/η̄ ' −1.5T ′/T , where a simple estimate provides
Trms/T ' u2

rms/g` with g as the acceleration due to gravity. The numerical results
urms ' 0.7 and ` ' 0.5 provide Trms/T ' 5 × 10−4, in excellent agreement with the
outcome of the numerical simulations (figure 4). The fluctuating diffusivity ηrms/η̄ is
of the same order, which after (3.12) is consistent with Cα = O(1) if characteristics
of the Earth’s core are applied. However, the very slow convection flows in the outer
core of the Earth provide much smaller values of ηrms/η̄' u2

rms/g`. 10−12.
If the values of our local convection simulations are used to compute (3.12) then

Cα ' 10−5, which is far from the possibility of exciting an α2 dynamo.
Also, in the bulk of the solar convection zone the temperature fluctuations with

Trms/T ' 10−6 are small. Only the granulation pattern near the solar surface exhibits
higher values of order 0.01 (Stix 1989).

All previously known turbulence models which produce an α effect under the
influence of rotation are inhomogeneous. The turbulence considered in the present
paper is homogeneous but anisotropic if molecular diffusivity fluctuations are
correlated (or anticorrelated) with the radial (better: upward and downward) velocity
fluctuations. With the vector of the preferred direction (say g) in the turbulence field
one can form a pseudo-scalar (g ·Ω) which is needed for the existence of the pseudo-
scalar α in (2.8). It is thus challenging to probe our model for generation of an α
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FIGURE 4. Similar to figure 3(a) but for the normalized temperature fluctuation Trms/T .
Bφ = 1. Ω = 3, Pm= 0.1, θ = 45◦.

effect under the influence of rotation. Equations (3.2) and (3.3) represent the analytical
results of a quasi-linear approximation. The coefficient α has the same sign as the
diffusivity–velocity correlation for δ-like frequency spectra but it vanishes for white-
noise (in time) spectra. The ratio γ̂ of the pumping term and the α effect depends
on the rotation rate. We estimate this ratio to be .10 for Coriolis number unity.

We have probed the properties of the diffusivity–current correlation vector
〈η′curl B′〉 by means of the proxy 〈u′rcurl B′〉 where it is assumed that the flow
component u′r is correlated (or anticorrelated) with the diffusivity fluctuation η′. To
this end the turbulent flux of electric current (3.7) has been calculated under the
influence of rotation and a uniform magnetic field in the azimuthal direction. With
numerical simulations of rotating magnetoconvection driven by very weak density
and temperature stratification, the analytical results have been verified. The interesting
correlations are 〈u′rcurlθ B′〉 for the pumping term γ and 〈u′rcurlφ B′〉 for the α term.
We note that the considered turbulence field is non-helical. In opposition to the
tensors of helicity 〈u′icurlj u′〉 and current helicity 〈B′icurlj B′〉, the current-flux tensor
〈u′icurlj B′〉 is not a pseudo-tensor. Both correlations show finite values with the
expected signs and with the correct symmetry properties.

Editor Steve Tobias thanks the referees for their advice in evaluating this article.
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