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Abstract

A geometric property of convex sets which is equivalent to a minimax inequality of the Ky
Fan type is formulated. This property is used directly to prove minimax inequalities of the
von Neumann type, minimax inequalities of the Fan-Kneser type, and fixed point theorems for
inward and outward maps.
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1. Introduction

Properties of convex sets in topological vector spaces related to fixed point and

minimax theorems were given in Fan [7, 10-15]. In 1972, Fan [13, Theorem

2] proved the following geometric theorem of convex sets which has numerous

connections with other areas of mathematics and serves to unify many apparently

diverse mathematical phenomena.

THEOREM 1 [KY FAN]. Let X be a non-empty compact convex subset of a

Hausdorff topological vector space and let B C X x X. Assume
(a) For each fixed x € X, the section {y € X: (x, y) € B} is open in X.
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170 Mau-Hsiang Shih and Kok-Keong Tan [2]

(b) For each fixed y € X, the section {x € X: (x,y) € B} is non-empty and
convex.
Then there exists a point xo G X such that (xo,xo) e &•

In the present paper we shall extend Theorem 1 by relaxing the compactness
and convexity conditions. Direct applications to minimax type inequalities and
fixed point theorems are illustrated.

2. A Geometric property of convex sets

THEOREM 2. Let X be a non-empty convex subset of a Hausdorff topological
vector space and let A, B C X x X. Assume

(a) For each fixed x € X, the section {y € X: (x, y) e .4} is open in X.
(b) For each fixed y € X, the section {x g X: (x, y) € B} contains the convex

hull of the section {x G X: (x, y) € A}.
(c) There exist a non-empty compact convex subset Xo and a non-empty com-

pact subset K of X such that
(ci) the section {x E X: (x, y) € A} ^ 0 for all y € K and
(c2) Xon{x€X: (x,y)€A} j£0 for ally <=X\K.

Then there exists a point Xo € X such that (xo,xo) € B.

PROOF. For each x eX, let A(x) - {y E X: (x,y) e A}; then by (a), A(x)
is open in X for each x e X. By (ci), K C \JxeX A(x). By compactness of K,
there exists {x\, x%,..., xn} C X such that

(*) Kc{J A(xt).
t=i

Let fi be the convex hull of Xo U {zi, x2, • • •, xn} and define

Then Q is a compact convex subset of X and we have:
(i) For each fixed i e O , the section { y e n : (x, y) e A} is open in fi by (a).
(ii) For each fixed y G fi, the section {x € fi: (x, y) 6 B} contains the convex

hull of the section {x e fi: (x, y) € A} by (b).
(iii) For each fixed y € fi, the section {x € fi: (x,y) € A) ^ 0 by (ci), (c2)

and (*).
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[3] Geometric property of convex sets 171

Now, for each x eft, let A(x) = {y € fi: (a;, y) € v4}; then by (i) A(x) is open

in fi for each x € fi. By (iii), fi = U i e n A{x). By compactness of fi, there exists

{yi, V2, • • •,!/m} C fi such t h a t

m

n = U ^to)-
Let {a i , a 2 , . . -,otm} be a partition of unity subordinate to the covering

{A(yi), A(yz),... ,A(ym)}. Thus, ai,a-2,. ..,am are continuous non-negative
functions on fi such that for each j — l,2,...,m, suppct, C A(yj) and

y(y) = l foral lyGfi .

Define p: fi —> fi by setting

Then p is a continuous map which maps the convex hull conv{yi,2/2>-• • ,2/m}
of {j/i> 2/2)- • • i2/m} into itself. By Brouwer's fixed point theorem, there exists
a point XQ € conv{j/i, j/2> • • • >2/m} such that p(xo) = Xo- Note that for each
j = 1,2,..., m, if aj(xo) > 0, then zo € A(J/J) so that (J/J, xo) G A; it follows
from (ii) that (p(xo),a;o) G -B- This proves the theorem.

REMARKS. (1) When A = B, X = XQ = K, Theorem 2 reduces to Theorem
1. (2) When A = B, XQ = K, Theorem 2 still contains a theorem of Fan
[14, Theorem 10]. (3) When X = Xo = K, Theorem 2 reduces to our earlier
formulation [22, Theorem 3]. (4) Theorem 2 is equivalent to the following:

THEOREM 2'. Same hypotheses and conclusions as in Theorem 2 except that
the condition (b) is replaced by (bi) A C B, and (D2) for each fixed y € X, the
section {x € X: {x,y) € B} is convex.

Theorem 2 has the following analytic form.

THEOREM 3. Let X be a non-empty convex subset of a Hausdorff topological
vector space and let f and g be two real-valued functions on X x X. Assume

(a) g(x,x) <0 for allx€X.
(b) For each fixed x € X, f(x, y) is a lower semi-continuous function of y on

X.
(c) For each fixed y € X, the set {x € X: g{x,y) > 0} contains the convex

hull of the set {x€X: f(x, y)>0}.
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(d) There exists a non-empty compact convex subset Xo of X such that the
set {y E X: f{x,y) < 0 for all x G Xo} is compact.
Then there exists a point y G X such that f{x, y) < 0 for all x G X.

Indication of a proof for the equivalence of Theorems 2 and 3:
Theorem 2 =>• Theorem 3. Let

A = {(x,y)eXxX: f{x,y)>0},

B = {{x,y)eXxX:g(x,y)>0},

K = {yEX: f{x,y) < 0 for all x G AT0},

and apply Theorem 2.

Theorem 3 => Theorem 2. Let / and g be characteristic functions of A and
B, respectively, and apply Theorem 3.

REMARKS. (1) When f = g, X = Xo = K, Theorem 3 reduces to the well-
known Ky Fan minimax principle [13]. (2) When / = g, Theorem 3 reduces to
Fan's theorem [15, Theorem 6]. (3) When / = g and Xo — K, Theorem 3 reduces
to Allen's theorem [1, Theorem 2]. (4) When Xo = K, Theorem 3 reduces to
Tan's theorem [26, Theorem 1]. (5) When X = Xo = K, Theorem 3 reduces to
Yen's theorem [27]. (6) Conditions (a) and (b) imply the set {y G X: f(x, y) < 0
for all x G Xo} is non-empty. The coercive condition (d) is a unification of the
two coercive conditions given in Allen [1, Theorem 2, condition (d)] and in
Brezis-Nirenberg-Stampacchia [3, Theorem 1, condition (5)].

The following example shows that Allen's theorem [1, Theorem 2] is properly
contained in Fan's theorem [15, Theorem 6].

EXAMPLE. Let 0 < p < l,

oo ^

:(n)\p <oc\,
K n = l )

oo

dp{x,y) = ^ 2 lx(n) ~~ 2/(n)lPi f°r a 'l x = (a;(n))^=n2/ = (y(n))^=i € 'P-
n=l

Then {lp,dp) is a completely metrizable topological vector space which is not
locally convex. Let (xn)^L0 be a sequence in lp denned by

(0, if * # n,
x0 — l u ) «> • • • ) i xn \K) — S 1 . . .

—r—, ifft = n.

https://doi.org/10.1017/S144678870003007X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003007X
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Let A" = {xn: n = 0 ,1 ,2 , . . . },X = conx(K), the convex hull of K. Since xn —» 0
as n —• oo, K is compact. Define / : X x X —• R by

f{x, y)-0 for each (x,y)eX xX with a; ̂  0,

/(0, ai2n) = 0 for each n = 0 ,1 ,2 , . . . and for each a € [0,1],
1

/ (0 ,az 2 n+i ) =
2n

for each n = 0 ,1 ,2 , . . . and for each a e (0,1],

N

/ I 0 , 2 J (XiXm \ = N for each N > 2, for each c*i, a 2 , . . . , C*N € (0,1]
V t=i /

N

with 1 < ni < n2 < • • • < TIN such that Y^ c*j < 1.

I. For each fixed x G X, y *-* f(x, y) is lower semi-continuous.

Let A e R be given.

Case 1. Suppose x ^ 0. Then the set

0 if A < 0,

X if A > 0,

is open in X.

Case 2. Suppose x = 0. Then we see that

0 , if A < 0,

1,2, . . . , a € [0,1]}, ifA = O,

, U { / ? x 2 n + 1 : n > J V + l , / ?€ [0 , l ] } ,
1 . 1

if < A<
2JV + 3 " " ^2N + V ' ' '"

{ a x n : n = 0 , l , 2 , . . . , a e [ 0 , l ] } , if 1 < A < 2,

AN, \{2<N<X<N + 1,

where

AN =
N N

< n\ < n2 < • • • < rijv, oti, a 2 , . . . , QN € [0,1], / cxi < 1 > .

Now, AQ is compact, being the continuous image of the compact set {x2 n : n =

0,1 ,2 , . . . } x [0,1]. Similarly {/3x2n+i: n > N + 1,0 e [0,1]} and {axn: n =

0 ,1 ,2 , . . . , a € [0,1]} are compact. To show {y G X : /(0,y) < A} is closed in X,

it remains to show that AN is closed in X for N > 2; in fact, each AN is compact,

since it is the continuous image of the compact set PN X ( I l i ^ i ^ 0 where P/v =
7V ;,^iAi < 1}.
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II. For each fixed y € X, I H f(x, y) is quasi-concave.
Let A € R be given.

Case 1. If A < 0 or y = ax2n,n = 0 , 1 , 2 , . . . , a € (0,1], the set {x e
X: / (x , y) > A} = X is convex.

Case 2. If A > 0 and y = ax^n+i for n = 0 ,1 ,2 , . . . , a € (0,1], the set

{xeX:f(x,y)>\} = { 2 n + 1

I0' if^2^TP
is also convex.

Case 3. If A > 0 and y — $^£Li a^n* for 1 < ni < • • • < njy, a i , . . . , ajv €
(0,1) with YiiLi ai < 1 where AT > 2,

}, if 0 < A<JV,f {0}, if 0 < A<
{xeX:f(x,y)>\} = \ Xh ~

( 0, if A > N,

is also convex.

III. Allen's coercive condition is not satisfied, i.e., there does not exist a non-
empty compact convex subset M of X such that for each y € X\M, there exists
xeM with f{x,y) > 0.

Suppose the contrary, that is suppose there exists a non-empty compact con-
vex subset M of X such that for each y € X\M, there exists x e M with
f(x, y) > 0. Since f(x, y) = 0 for each x, y € X with x ̂  0, we must have 0 G M
and for all y € X\M, /(0, y) > 0. As /(0, x2n) = 0 for n = 0,1,2,.. . , {x2n: n =
0,1,2,... } C M and hence conv{x2n: n = 0,1,2,... } c M since M is convex.
We shall show that conv{x2n: n = 0,1,2,... } is unbounded. Indeed

/ N \ N

dp 0,1/N ^Xin) =Y1 llNP • V(2n)(1-p)p

V n=l / n=l
> N • 1/NP • l/(2AT)(1-p)p

)2 _» oo a s i V - o o .

Therefore conv{x2n: n = 0 ,1 ,2 , , . . . } is an unbounded subset of the compact
convex set M, which is impossible.

IV. Fan's coercive condition is satisfied, that is there exists a non-empty com-
pact convex subset Xo of X such that the set {y € X: f(x, y) < 0 for all x e Xo}
is compact.
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[7] Geometric property of convex sets 175

Indeed, take Xo = {0}; then

{y€X: f{x, y) < 0 for all x € Xo} = {ax2n: n = 0,1,2,.. . , a E [0,1]} = Ao

is compact.

3. Minimax inequalities of the von Neumann type

We have shown that Theorem 2 is equivalent to a minimax inequality of the Ky
Fan type. We shall now show that Theorem 2 also implies minimax inequalities
of the von Neumann type directly.

THEOREM 4. Let X and Y be non-empty convex sets, each in a Hausdorff
topological vector space, and let f, u, v, g be four real-valued functions on X xY.
Assume

(a) u < v on X x Y.
(b) For each fixed x & X, f(x, y) is a lower semi-continuous function of y on

Y.
(c) For each fixed y € Y, g(x,y) is an upper semi-continuous function of x on

X.
(d) For each fixed y G Y and for each A € R, the sectin {x € X: u(x, y) > A}

contains the convex hull of the section {x G X: f{x,y) > A}.
(e) For each fixed x € X and for each A G R, the section {y € Y: v(x, y) < A}

contains the convex hull of the section {y GY: g{x,y) < A}.
(f) For a given fixed p € R, suppose there exist a non-empty compact convex

subset Xo of X x Y and a non-empty compact subset K of X xY such that

Xo n [{w € X: f(w,y) >p}x{zGY: g(x,z) < p}] jt 0

for each (x,y)€(XxY)\K.
Then there exists a point (xo, j/o) £ K such that either f(x,yo) < p for all x G X
or g(x0, y)>p for allyeY.

PROOF. For each (x, y) € X x Y, let

C(2/) = {x€X: f{x,y)>p}, D{y) = {x e X: u(x,y) > p},

E(x) = {y€Y: v(x, y) < p}, F{x) = {yeY: g{x, y) < p}.

Define
A= U C(y)xF(x)x{(x,y)},

(x,y)€XxY

B= U D{y) x E(x) x {(x,y)}.
{x,y)€XxY
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Suppose that the assertion of the theorem were false. Then for each point
(x, y) e K, there exists (x, y) € X x Y such that F(x, y) > p and g(x, y) < p so
that

{(x, y) € X x Y: ((x, y), (x, y)) € A} ? 0 for each (x, y) € K.

By (f),

Xo n {(x, y) E X x Y: ((x, </), (x,»)) G A } ^ 0 for each (x, y) € (X X Y ) \ * .

Other conditions of Theorem 2 are easily derived from the hypotheses of Theorem
4. Thus, according to Theorem 2, there exists a point (xo,j/o) £ X xY such
that ((xo, j/o)> (zo>2/o)) S S; it follows that

p < u(xo,j/o) < v(xo,yo) < P,

which is a contradiction. This proves the theorem.
When X and Y are compact, the condition (f) in Theorem 4 is satisfied by

settng Xo — K — X x Y. Thus Theorem 4 is a generalization of a minimax
inequality in [2, Theorem 5.4] by relaxing the compactness and convexity condi-
tions.

Theorem 4 implies the following:

THEOREM 5. Let X and Y be non-empty convex sets, each in a Hausdorff
topological vector space, and let f, u, v, g be four real-valued functions on X xY.
Assume the conditions (a), (b), (c), (d), (e) in Theorem 4 are satisfied.

(1) / / there exists non-empty compact convex sets Mo C X, No C Y and there
exist non-empty compact sets M c X, N c Y such that infyey s u p l € M o f(x, y)
- mfyeNswpx€Xf{x,y), and supx€XMyeNog{x,y) = sup l £ A f infv€y g(x,y),
then the following minimax inequality holds:

Inequality I: infy€7V s u p ^ * / (x , y) < s u p x e M infv6y g(x, y).
(2) / / there exist non-empty compact convex sets Mo C X and No C Y such

that MyeY sup.,.eMo / (x , y) = infy€y s u p ^ * f(x, y) and s u p i e X MyeNo g(x, y)
— s u P i e x mfs/ey 9(xi y) ihen the following minimax inequality holds:

Inequality II. i n f ^ y sup x € X f(x, y) < s u p l € X infy6y g(x, y).

When / = u = v = g, it is readily seen that Inequality I in Theorem 5 implies
the following minimax equalities, which generalize the minimax principle of the
von Neumann type due to Sion [19]:

(i) min sup f{x, y) = max inf f(x, y),
!/€N xeMyEY

(ii) inf sup f(x, y) = sup inf f(x, y).

When f = u,v = g, Theorem 5 also contains a minimax inequality of Liu [19].
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[9] Geometric property of convex sets 177

4. Systems of convex inequalities

According to Pietsch [21, page 40], a collection 7 of real-valued functions /
defined on a set X is called concave if, given any finite subset {/i, / 2 , . . . , / „}
of 7 and ai,c*2,• •• ,otn > 0 with J27=i a* = 1> there exists f G 7 such that
/(*) > E?=i <*ifi(x) for all as € X.

The following theorem given in Pietsch's book [21, page 40] concerning sys-
tems of convex inequalities is useful to study absolutely r-summing operators [21,
page 232], (p,^-dominated operators [21, page 236] and absolutely r-summing
operators [21, page 324].

THEOREM 6. Let X be a non-empty compact convex subset of a Haus-
dorff topological vector space, and let 7 be a concave collection of lower semi-
continuous convex real-valued functions f on X. Suppose that for every f € 7
there exists an x € X with f{x) < p. Then there exists a point XQ E X such that
f{xo)<p for all f € 7 simultaneously.

Observe that Theorem 6 is equivalent to a theorem of Fan [9, Theorem 1] and
Pietsch referred Theorem 6 as Fan's Lemma. The proof of Theorem 6 in Pietsch's
book used the well-known separation theorem on convex sets. Granas-Liu [16]
obtained a result which is a generalization of Theorem 6 to three collections
of functions whose proof used a minimax inequality of the von Neumann type.
We shall use Theorem 2 (or equivalently, Theorem 3, which is a Ky Fan type
minimax inequality) to further extend Theorem 6.

Given any two collections 7 and Q of real-valued functions on a set X, we
shall write 7 < Q if for any / e 7 there exists g e Q such that f{x) < g(x) for
all x € X.

THEOREM 7. Let X be a non-empty normal closed convex set in a Haus-
dorff topological vector space. Let 7,Q, and M be three collections of real valued
functions on X such that

{&)7<Q<X;
(b) for each f 6 7, f is lower semi-continuous on X;

(c) for each g s §, g is convex on X;

(d) the collection H is concave;

(e) X has a non-empty compact convex subset XQ and a non-empty compact
subset K such that for any two finite sets {f\, / 2 , . . . , / „ } C 7, {ffi, </2, • • •, ffn } C
$, for any « i , «2i • • •,<*n > 0 with 5 I " = 1 «t = 1> and for any y € X\K there
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exists x € Xo such that

Then given any p G R one of the following properties holds.

(i) There is an h e M such that i n f x e x h(x) > p.

(ii) There exists a point y € K such that f(y) < p for all f € 7.

PROOF. Without loss of generality we may assume that p — 0. For each

/ G 7, let Q(f) = {x e K: f(x) < 0}; then Q{f) is closed in K by lower semi-

continuity of / . If the set {Q(f) '• f € 7} has the finite intersection property,

then by compactness of K we obtain the alternative (ii). Suppose {Q(f): € 7}

does not have the finite intersection property, then there are / i , /b , • • • , / n € 7

such that fir=i Q(fi) = 0 - F o r e a c h » = 1 ,2 , . . . , n, let V; = X\Q(fj); then each

Vi is open in X and {Vi, V b , . . . , Vn} is an open covering of the normal space X.

Let {/?i, /?2, • • •, /3n} be a continuous partition of unity subordinate to this open

covering. Thus, fa, /?2, • • •, Pn are continuous non-negative functions on X such

that for each i = 1 ,2 , . . . , n, s u p p # C Vi and YA=I @i(x) = 1 for x € X. Choose

<7i > <?2> • • • 19n S Q and h\,h,2,- •• ,hn G /̂ so that fi < gi < hi on X for each

i = 1,2, . . . ,n. Define

B= {(x,y)eXxX: > ft(j/)&

Then the conditions (a), (b), (C2) of Theorem 2 are satisfied. Since for each
x € X, (x, x) £ B, by Theorem 2, there exists y € K such that {x € X: (x, t/) e
J4} = 0. Therefore

n n

t = l i = l

By concavity of M, there is an ft € # satisfying ft(x) > X)?=i 0i(v)hi(x) for all
x € X. Consequently,

0 <
t=i

r) ^ tiyxj tor all x G JC.

This proves the alternative (i). This completes the proof.
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In the case when X is compact convex, condition (e) in Theorem 7 is satisfied

by setting XQ = K = X. Thus Theorem 7 generalizes Granas-Liu's result [16].

In the case when X is compact convex and 7 = Q = M, Theorem 7 reduces to

Theorem 6.

Let H e a real-valued function denned on the product set X x Y of two

arbitrary non-empty sets X, Y. According to Fan [8], h is said to be concave on

X, if for any two elements x\,x2 € X and two numbers ot\ > 0, ct2 > 0 with

a i + c*2 = 1, there exists xo € X such tha t

h{xo,y) > otih(xi,y) + a2h{x2,y) for all y G Y.

THEOREM 8. Let X be an arbitrary non-empty set and Y a non-empty nor-
mal closed convex subset of a Hausdorff topological vector space. Let f,g,h:
X x Y —> R be three functions such that

(a) / <g<h onXxY;
(b) for each fixed x G X, f(x, y) is a lower semi-continuous function of y

onY;
(c) for each fixed x G X, g(x, y) is a convex functions of y on Y;
(d) h is concave on X;
(e) Y has a non-empty compact convex subset XQ and a non-empty com-

pact subset K such that for each finite subset {xi,x2,... ,xn} of X, for any
«i, ot2, ••-,«„ > 0 with J2?=i ai — 1> and for anV V e Y\K there exists x G XQ
such that X)"=1 <Xif(xi,y) > £?= i aig{xi,x).
Then

min sup f{x,y) < sup inf h(x,y).
y£Kx xvtY

PROOF. Let p = sup l 6 X infy €y h(x,y). Applying Theorem 7 with X being
the index set, there is a y G K such that f(x, y) < p for all x E X. The conclusion
follows.

In Theorem 8, X is not required to possess any topological or linear structure.
When X is convex and Y is compact convex, Theorem 8 is due to Granas-Liu
[16]. The connection of Fan's convex inequalities with minimax theorems was
pointed out by Takahashi [25].

When / = g = h, we obtain the following new minimax theorem.

THEOREM 9. Let X be an arbitrary non-empty set and Y a non-empty nor-
mal closed convex subset of a Hausdorff topological vector space. Let f be a
real-valued function defined on X xY such that

(a) For each fixed x € X, f(x, y) is a lower semi-continuous convex function
of y on Y;

(b) / is concave on X;
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(c) Y has a non-empty compact convex subset XQ and a non-empty com-
pact subset K such that for each finite subset {xi,X2,. . . x n } of X, for any
t*i,Q2,••• ,atn > 0 with Yl?=i ai = 1> and for any V € Y\K there exists i G J o
such that

t = l

Then

min sup f{x,y) = sup inf f{x,y).
y^K xex v^y

When X is convex and Y is compact convex, Theorem 9 is a well-known
minimax theorem of Kneser [18]. Another generalization of Kneser's minimax
theorem was obtained by Fan [8] where both the linear structures of X and Y
are eliminated.

5. Fixed point theorems

Fixed point theorems for inward or outward maps, and for single-valued or set-
valued maps were studied by Browder [4, 5, 6], Fan [12, 13, 15] and Halpern and
Bergman [17]. In this section, we shall apply Theorem 2 to give a generalization
of Browder's recent fixed point theorem [6] to non-compact convex sets.

THEOREM 10. Let X be a non-empty convex subset of a Hausdorff topological
vector space E and let f: X —• E be a continuous map. Suppose that p is a
continuous real-valued function on X X E such that for all x G X, p(x, •) is
a convex function on E. Assume that there exist a non-empty compact convex
subset Xo of X and a non-empty compact subset K of X such that

(a) For each y G K with y ^ f{y), there exists x G y + (JA>O ^(-^ ~ v) su°h
thatp{y,x- f(y)) < p{y,y - f(y)).

(b) For each y € X\K with y ^ f{y), there exists x G y + U A > I -M-̂ o - y)
such that p(y, x - f(y)) < p{y, y - f(y)).
Then f has a fixed point in X.

PROOF. Suppose that / has no fixed point in X. Define A = {(x,y) €
X x X: p{y,x - f(y)) < p(y,y - f(y))}. Then (i) For each fixed x G X,
the section {y G X: (x,y) G ^4} is open in X by continuities of / and p.
(ii) For each fixed y G X, the section {a: G X: (x,y) G A} is convex since
p(y, •) is a convex function, (iii) By (a), for each y G K there exists xo G
y + \J\>o^(x~y) such that p ( j / , i o - / ( j / ) ) < p(y,y~ f{y))- If *o G X, then the
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section {x € X: (x,y) € A} ^ 0 . If xo ^ X, by convexity of X, there exist
x e A" and A > 1 such that xo = y+X(x-y), so that x = ( (A-1) /A)j / + (1/A)xo-
As p(y, •) is convex, we have

P(y, x - f(y)) < —^—p(y, y - f{y)) + - p ( y , x0 - / (» ) )

<p{y,y - f{y));

thus (x,y) € A and hence the section {x G -X": (x,y) € .4} ^ 0 . (iv) By (b),
for each y G X\K, there exists i e l o and A > 1 such that x — y + A(x — y)
and p(y, x - /(y)) < p(y, y - f{y)). If A = 1, then x = x, so that (x, y) e A. If
A > 1 by the same argument as in (iii), we also have (x,y) e A. In both cases,
we conclude that

Xon{xeX:(x,y)eA}jL0.

Applying Theorem 2 with A = B, there exists x € X such that (x, x) e ̂ 4,
which is impossible. Thus / has a fixed point X, completing the proof.

Theorem 10 generalizes Browder's fixed point theorem [6, Theorem 1] to non-
compact convex sets. By setting p(x, y) = \\y\\ in Theorem 5 if the underlying
space is a normed linear space, we have the following generalization of the Brow-
der fixed point theorem [6, Corollary 1] and therefore a new generalization of
the classical Schauder fixed point theorem.

COROLLARY 1. Let X be a non-empty convex subset of a normed linear space
E and let f: X —» E be a continuous map. Suppose that there exist a non-empty
compact convex subset Xo of X and a non-empty compact subset K of X such
that

(a) For each y e K, f(y) lies in the closure of y + UA>O H% ~ 2/)-

(b) For each y e X\K, f(y) lies in the closure of y + UA>I

Then f has a fixed point.

REMARKS. (1) Theorem 10 and Corollary 1 remain valid if in the unions
(JA>0 and UA>I

 m conditions (a) and (b) are replaced by UA<O
 a n ^ UA<-I>

respectively. (2) A more general version of Corollary 1 has been obtained in our
recent paper [23].
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