POLYTOPES OF ROOTS OF TYPE A_{N}

Soojin Cho

Polytopes of roots of type A_{n-1} are investigated, which we call P_{n}. The polytopes, P_{n}^{+}, of positive roots and the origin have been considered in relation to other branches of mathematics [4]. We show that exactly n copies of P_{n}^{+}forms a disjoint cover of P_{n}. Moreover, those n copies of P_{n}^{+}can be obtained by letting the elements of a subgroup of the symmetric group S_{n} generated by an n-cycle act on P_{n}^{+}. We also characterise the faces of P_{n} and some facets of P_{n}^{+}, which we believe to be useful in some optimisation problems. As by-products, we obtain an interesting identity on the number of lattice paths and a triangulation of the product of two simplices.

1. Introduction

The polytope P_{n}^{+}of positive roots of type A_{n-1} and the origin has been considered by Gelfand, Graev and Postnikov in relation to hypergeometric functions [4]. Many combinatorial problems have been considered: for example, the volume is calculated and some facets are characterised. In this article, we consider the polytope P_{n} of all roots of type A_{n-1} in relation to the polytope $P_{n}^{+} . P_{n}$ itself is an object of interest since it is related to many combinatorial objects. Notice that P_{n} is a Young orbit polytope corresponding to the partition ($n-1,1$), which was introduced as a framework for many combinatorial optimisation problems [8]. Moreover, the set of roots of type A_{n-1} is the set of minimal null designs of a certain type [2]. Hence, it is worth characterising the faces of P_{n}. It is also interesting to observe how the polytope P_{n}^{+}sits inside P_{n} and calculate the volume of P_{n}.

In this paper, we characterise all faces of P_{n} and give a proof for the characterisation of certain facets of P_{n}^{+}. Then we use these results to show that exactly n copies of P_{n}^{+} form a disjoint (in the sense that the intersection has volume zero in \mathbb{R}^{n-1}) cover of P_{n}, and there, the cyclic group generated by a Coxeter element (n-cycle) plays a role. While proving the main theorem, we also obtain an interesting identity on the number of lattice paths and a triangulation of the product of two simplices.

We refer to [1] and [10] for detailed information on convex polytopes, while we give some basic definitions. A (convex) polytope is the convex hull $\operatorname{Conv}(K)=\left\{\sum_{i=1}^{l} \lambda_{i} \mathbf{u}_{i}\right.$:

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.
$\left.\sum_{i} \lambda_{i}=1, \lambda_{i} \geqslant 0\right\}$ of a finite set $K=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{l}\right\}$ in \mathbb{R}^{d} for some d. The dimension of a polytope $\operatorname{Conv}(K)$ is the dimension of its affine hull $\left\{\sum_{i=1}^{l} \lambda_{i} \mathbf{u}_{i}: \sum_{i} \lambda_{i}=1\right\}$, that is, the size of the largest affinely independent subset of K subtracted by 1 . For vectors \mathbf{u}, $\mathbf{v} \in \mathbb{R}^{\boldsymbol{d}}$, let (\mathbf{u}, \mathbf{v}) denote the usual inner product in $\mathbb{R}^{\boldsymbol{d}}$. A face of a polytope $P \in \mathbb{R}^{\boldsymbol{d}}$ is any set of the form $F=P \cap\left\{\mathbf{x} \in \mathbb{R}^{d}:(\mathbf{c}, \mathbf{x})=c_{0}\right\}$, where $\mathbf{c} \in \mathbb{R}^{d}, c_{0} \in \mathbb{R}$ and $(\mathbf{c}, \mathbf{x}) \leqslant c_{0}$ for all $\mathbf{x} \in P$. The dimension of a face is the dimension of its affine hull. P itself is a face with $(0, \mathbf{x}) \leqslant 0$, and \emptyset is a face given by $(0, \mathbf{x}) \leqslant-1$. We call these faces trivial. A face F of a polytope P is called a facet if the dimension of F is one less than the dimension of P. Observe that faces are characterised as the subsets of P, whose elements maximise a given linear functional. In the definition, we can replace \mathbf{c}, c_{0} by $-\mathbf{c}$ and $-c_{0}$, respectively. Hence, the faces of a polytope are also characterised as subsets of P whose elements minimise a linear functional.

We denote the elementary vectors of \mathbb{R}^{n} by $\varepsilon_{i}, i=1, \ldots, n$. Then P_{n}^{+}is the convex hull of $\left\{\varepsilon_{i}-\varepsilon_{j}: i<j\right\}$ and the origin, and P_{n} is the convex hull of $\left\{\varepsilon_{i}-\varepsilon_{j}: i \neq j\right\}$. Obviously, the dimension of P_{n} and P_{n}^{+}is $n-1$.

In Section 2, the polytope P_{n} is considered and all faces are characterised. In Section 3, we first summarise some combinatorial results of Gelfand, Graev and Postnikov. Then, in Section 4, P_{n} and P_{n}^{+}are considered together and the main theorem is proved that shows how the two polytopes are related.

2. Polytopes P_{n}

In this section, we consider the polytope $P_{n}=\operatorname{Conv}\left\{\varepsilon_{i}-\varepsilon_{j}: i \neq j, i, j \in[n]\right\}$ of all roots of type A_{n-1}. Note that P_{n} is a special case of the polytopes called generalised permutahedrons since it is a convex hull of all the vectors given by all permutations of the vector $(1,-1,0, \ldots, 0) \in \mathbb{R}^{n}$. (Permutahedron Π_{n-1} is a classical object defined as the convex hull of all vectors of permutations of the vector $(1,2, \ldots, n)$, see [10].) We give an explicit description of every face of $P_{n} . P_{n}$ is obtained from Π_{n-1} by identifying many vertices, hence the faces of P_{n} are the ones collapsed down from the faces of Π_{n-1}. Remember that the k-faces of Π_{n-1} are in one to one correspondence with the ordered partitions of the set [n] into $n-k$ non-empty parts. Hence Theorem 1 does not surprise us.

Each face of a (finite) convex hull can be described as a subset of the given polytope, which maximises (or minimises) a linear functional. So, to investigate the faces of P_{n}, we consider all possible linear functionals defined on \mathbb{R}^{n}. Observe that every linear functional f can be written as

$$
f(\mathrm{y})=\sum_{i \in I} \lambda_{i} y_{i}-\sum_{j \in J} \lambda_{j} y_{j} \text { for } \lambda_{i} \geqslant 0, \lambda_{j}>0 \text { and } I \cap J=\emptyset, I \cup J=[n]
$$

where $\mathrm{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Theorem 1. Every m-dimensional ($m=0, \ldots, n-2$) face of P_{n} is given by the convex hull of the vectors in $\left\{\varepsilon_{i}-\varepsilon_{j}: i \in I, j \in J\right\}$ where I, J are disjoint non-empty subsets of $[n]$ such that $|I|+|J|=m+2$. Hence, there is a one to one correspondence between the set of non-trivial faces of P_{n} and the set of ordered partitions of subsets of [n] with two blocks, where the dimension of the face corresponding to (I, J) is $|I|+|J|-2$.

Proof: For a given non-zero linear functional $f(\mathbf{y})=\sum_{i \in I} \lambda_{i} y_{i}-\sum_{j \in J} \lambda_{j} y_{j}, \lambda_{i} \geqslant 0$, $\lambda_{j}>0$, determining a non-trivial face F, where (I, J) is a partition of $[n]$, we define (I^{\prime}, J^{\prime}) as follows:

1. If $I \neq \emptyset$ and $J \neq \emptyset$, then $I^{\prime}=\left\{i: \lambda_{i}=\max \left(\lambda_{l}: l \in I\right)\right\}, J^{\prime}=\left\{j: \lambda_{j}=\right.$ $\left.\max \left(\lambda_{l}: l \in J\right)\right\}$,
2. If $I=\emptyset$ then $I^{\prime}=\left\{i: \lambda_{i}=\min \left(\lambda_{l}: l \in J\right)\right\}, J^{\prime}=\left\{j: \lambda_{j}=\max \left(\lambda_{l}:\right.\right.$ $l \in J)\}$,
3. If $J=\emptyset$ then $I^{\prime}=\left\{i: \lambda_{i}=\max \left(\lambda_{l}: l \in I\right)\right\}, J^{\prime}=\left\{j: \lambda_{j}=\min \left(\lambda_{l}:\right.\right.$ $l \in I)\}$.
If $I=\emptyset$ (hence $J=[n]$) and λ_{j} is a constant for all $j \in J$, then $F=P_{n}$. If $J=\emptyset$ and λ_{i} is a constant for all $i \in I$, then $F=P_{n}$ also. Hence, $I^{\prime} \neq \emptyset, J^{\prime} \neq \emptyset$ and $I^{\prime} \cap J^{\prime}=\emptyset$. Note that F is the convex hull of the vectors in $\left\{\varepsilon_{i}-\varepsilon_{j}: i \in I^{\prime}, j \in J^{\prime}\right\}$, hence $I^{\prime} \neq \emptyset$ and $J^{\prime} \neq \emptyset$ are determined uniquely and independently of the choice of a linear functional f which characterises the given face. Conversely, for a pair of disjoint non-empty subsets I, J of $[n]$, if we define $f_{I J}(\mathrm{y})=\sum_{i \in I} y_{i}-\sum_{j \in J} y_{j}$, then the convex hull of vectors in $\left\{\varepsilon_{i}-\varepsilon_{j}: i \in I, j \in J\right\}$ is the face which maximises $f_{I J}$ in P_{n}.

Now, we show that the dimension of the face of P_{n}, determined by disjoint nonempty subsets I, J of $[n]$ is $|I|+|J|-2$. Let $a=|I|, b=|J|$ and $I=\left\{i_{1}, \ldots, i_{a}\right\}$, $J=\left\{j_{1}, \ldots, j_{b}\right\}$. Then

$$
X=\left\{\varepsilon_{i_{1}}-\varepsilon_{j_{l}}: l=1, \ldots, b\right\} \cup\left\{\varepsilon_{i_{l}}-\varepsilon_{j_{1}}: l=2, \ldots, a\right\}
$$

is a linearly independent set of minimal vectors, hence is an affinely independent set. In addition, for any $i \in I, j \in J, \varepsilon_{i}-\varepsilon_{j}$ is in X or

$$
\varepsilon_{i}-\varepsilon_{j}=\left(\varepsilon_{i}-\varepsilon_{j_{1}}\right)-\left(\varepsilon_{i_{1}}-\varepsilon_{j_{1}}\right)+\left(\varepsilon_{i_{1}}-\varepsilon_{j}\right)
$$

an affine combination of vectors in X. Hence, X is an affine basis of the face we are considering, and the dimension of the face is $|X|-1=b+a-1-1=a+b-2$.

Corollary 2. For $m=0,1, \ldots, n-2$, the number of m-dimensional faces of P_{n} is

$$
\binom{n}{m+2}\left(2^{m+2}-2\right)
$$

Proof: By Theorem 1, the number of m-dimensional faces is the number of ordered partitions of $(m+2)$-subsets of $[n]$ with two blocks. The result is immediate since $\sum_{l=1}^{m+1}\binom{m+2}{l}=2^{m+2}-2$.

Remember that a d-dimensional polytope is simple if every vertex is in d facets.
Corollary 3. $\quad P_{n}$ is not a simple polytope if $n>3$, whereas the permutahedron Π_{n-1} is always simple.

Proof: When we fix a vertex $\varepsilon_{i}-\varepsilon_{j}$ in P_{n}, the number of facets containing $\varepsilon_{i}-\varepsilon_{j}$ is $\sum_{l=0}^{n-2}\binom{n-2}{l}=2^{n-2}$ which is strictly bigger than the dimension $n-1$ of P_{n}, if $n>3$. $\quad \square$

As a reminder, a simplex is the convex hull of vectors in $U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{i}\right\}$ with the property that U is an affinely independent set. Also, an m-simplex Δ_{m} is a simplex of dimension m. Given two polytopes $P \subseteq \mathbb{R}^{p}$ and $Q \subseteq \mathbb{R}^{q}$, the product of two polytopes is also a convex polytope $P \times Q=\{(\mathbf{u}, \mathbf{v}): \mathbf{u} \in P, \mathbf{v} \in Q\} \subseteq \mathbb{R}^{p+q}$.

Corollary 4. Every nontrivial face of P_{n} is a product of two simplices. Moreover, if the face F corresponds to a disjoint pair of non-empty subsets I, J, then the face is the product of a $(|I|-1)$-simplex and a $(|J|-1)$-simplex.

Proof: Let $P=\operatorname{Conv}\left(\varepsilon_{i}: i \in I\right) \simeq \Delta_{|I|-1}$ and $Q=\operatorname{Conv}\left(\varepsilon_{i}: j \in J\right) \simeq \Delta_{|J|-1}$, then by Theorem $1, F$ is affinely isomorphic to $P \times Q$.

3. Combinatorics of P_{n}^{+}

In this section, we summarise some combinatorial results from [4] about the polytope P_{n}^{+}. These will be needed in Section 4.

Let H_{n}^{+}be the sublattice in \mathbb{Z}^{n} generated by $\varepsilon_{i}-\varepsilon_{j}, 1 \leqslant i<j \leqslant n$ and $\mathrm{Vol}_{H_{n}^{+}}$be the form of volume on the space $H_{n}^{+} \otimes \mathbb{Z} \mathbb{R}$ such that volume of the identity cube is equal to 1 .

Definition 5: Let $\Gamma=\{(i, j): 1 \leqslant i<j \leqslant n\}$ be a tree on the set $[n]$. Γ is admissible if there are no $1 \leqslant i<j<k \leqslant n$ such that both (i, j) and (j, k) are edges of Γ. We say that Γ has intersections if there are $1 \leqslant i<k<j<l \leqslant n$ such that (i, j) and (k, l) are edges of $\Gamma . \Gamma$ is defined to be standard if it is admissible and there is no intersection. For a given standard tree Γ, let $\mathcal{I}_{\Gamma}=\left\{\varepsilon_{i}-\varepsilon_{j}: 1 \leqslant i<j \leqslant n,(i, j)\right.$ is an edge of $\left.\Gamma\right\}$. Let $\Theta=\left\{\mathcal{I}_{\Gamma}: \Gamma\right.$ is a standard tree on $\left.[n]\right\}$. It is well known that \mathcal{I}_{Γ}, where Γ is a standard tree, forms a basis of the linear space $H_{n}^{+} \otimes_{\mathbf{z}} \mathbb{R}$. Hence $\operatorname{Conv}\left(\mathcal{I}_{\Gamma} \cup\{\mathbf{0}\}\right)$ is an ($n-1$)-dimensional simplex and we let $\Delta_{I_{\Gamma}}$ be this simplex.

Theorem 6. Θ is a local triangulation of P_{n}^{+}, in other words,

$$
\bigcup_{I_{\Gamma} \in \Theta} \Delta_{I_{\Gamma}}=P_{n}^{+}
$$

and $\Delta_{\mathcal{I}_{\Gamma_{1}}} \cap \Delta_{\mathcal{I}_{\Gamma_{2}}}$ is the common face of $\Delta_{I_{\Gamma_{1}}}$ and $\Delta_{I_{\Gamma_{2}}}$ for all $\mathcal{I}_{\Gamma_{1}}, \mathcal{I}_{\Gamma_{2}} \in \Theta$.

LEMMA 7. $(n-1)!V^{(n)} H_{H_{n}^{+}} \Delta_{\tau_{\Gamma}}=1$ for any $\mathcal{I}_{\Gamma} \in \Theta$.
Theorem 8. The number of standard trees on $[n]$ is equal to the Catalan number

$$
C_{n-1}=\frac{1}{n}\binom{2(n-1)}{n-1} .
$$

Hence, by Theorem 6 and Lemma 7,

$$
(n-1)!\operatorname{Vol}_{H_{n}^{+}}\left(P_{n}^{+}\right)=C_{n-1} .
$$

For a disjoint pair (I, J) of subsets of $[n]$, let

$$
S_{I J}=\left\{\varepsilon_{i}-\varepsilon_{j}: i \in I, j \in J, i<j\right\} .
$$

Definition 9: Let I, J be disjoint subsets of $[n]$ such that $I \cup J=[n]$ and $1 \in I, n \in J$. We let Γ be a tree on $[n]$.

1. Γ is of type (I, J) if for every edge $(i, j), i<j$, in $\Gamma, i \in I$ and $j \in J$.
2. Let $\Theta_{I J}=\left\{\mathcal{I}_{\Gamma}: \Gamma\right.$ is standard of type $\left.(I, J)\right\}$, and $P_{I J}^{+}=\operatorname{Conv}\left(S_{I J} \cup\{0\}\right)$.
3. A word w of type (p, q) is the sequence $w=\left(w_{1}, w_{2}, \ldots, w_{p+q}\right), w_{r} \in\{0,1\}$ such that $\left|\left\{r: w_{r}=0\right\}\right|=p$ and $\left|\left\{r: w_{r}=1\right\}\right|=q$. Let $w=\left(w_{1}, w_{2}, \ldots, w_{p+q}\right)$ and $w^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{p+q}^{\prime}\right)$ be two words of type (p, q). We say that w^{\prime} exceeds w if $w_{1}^{\prime}+\cdots+w_{r}^{\prime} \geqslant w_{1}+\cdots+w_{r}$ for all $r=1,2, \ldots, p+q$. If we present a word w of type (p, q) as the path P_{w} from $(0,0)$ to (p, q) by the correspondence $1 \leftrightarrow N, 0 \leftrightarrow E$, where N, E mean north and east respectively, then w^{\prime} exceed w if and only if $P_{w^{\prime}}$ is above the path P_{w}.
4. Let $I=\{1\} \cup I^{\prime}, J=\{n\} \cup J^{\prime}$. Let $\left|I^{\prime}\right|=p,\left|J^{\prime}\right|=q$ and $I^{\prime} \cup J^{\prime}=$ $\left\{t_{1}<t_{2}<\cdots<t_{p+q}\right\}$. Associate with the pair (I, J) the word $w_{I J}=$ $\left(w_{1}, w_{2}, \ldots, w_{p+q}\right)$ of type (p, q) such that $w_{r}=0$ if $t_{r} \in I$ and $w_{r}=1$ if $t_{r} \in J$ for all $r=1,2, \ldots, p+q$.

Lemma 10. $(n-1)!\operatorname{Vol}_{H_{n}^{+}} \Delta_{I_{\Gamma}}=1$ for each $\mathcal{I}_{\Gamma} \in \Theta_{I J}$, where (I, J) is a pair of disjoint subsets of $[n]$ such that $I \cup J=[n]$ and $1 \in I, n \in J$.

Theorem 11. Let (I, J) be a pair of disjoint subsets of $[n]$ such that $I \cup J=[n]$ and $1 \in I, n \in J$. Then, $\Theta_{I J}$ forms a local triangulation of $P_{I J}^{+}$. Moreover, the number of standard trees of type (I, J) is equal to the number of words w^{\prime} of type $(|I|-1,|J|-1)$, which exceeds the word $w=w_{I J}$.

Corollary 12. If $I=\{1,2, \ldots, i\}$ and $J=\{i+1, i+2, \ldots, n\}$ then $w_{I J}=$ $(0, \ldots, 0,1, \ldots, 1)$, hence $(n-1)$! times the volume of $P_{I J}^{+}$is the number of paths from $(0,0)$ to $(i-1, n-i-1)$, which is $\binom{n-2}{i-1}$.

4. P_{n} AND P_{n}^{+}

In this section, we look at the polytope P_{n} in relation to P_{n}^{+}. We first characterise the facets (which do not contain the origin) of P_{n}^{+}. (In [4], there is a statement about the facets of P_{n}^{+}, but it is slightly incorrect and there is no proof given, so we give a proof of the characterisation of the facets of P_{n}^{+}.) Then, we prove the main theorem which shows how P_{n}^{+}sits inside P_{n}. From this observation, we obtain an interesting identity on the number of paths, and find a triangulation of the product of two simplices. Remember that $S_{I J}=\left\{\varepsilon_{i}-\varepsilon_{j}: i \in I, j \in J, i<j\right\}$, for a pair of disjoint subsets I, J of $[n]$.

Proposition 13. Let \mathcal{A} be the set of facets of P_{n}^{+}which do not contain the origin, and $\mathcal{B}=\{(I, J): I \cup J=[n], I \cap J=\emptyset$ and $1 \in I, n \in J\}$. Then there is a one to one correspondence between \mathcal{A} and \mathcal{B}, such that the corresponding facet of $(I, J) \in \mathcal{B}$ is $\operatorname{Conv}\left(S_{I J}\right)$.

Proof: Note that when $n=3$, the Proposition is clear. Let F be a facet of P_{n}^{+} not containing the origin, and $S=\left\{\varepsilon_{i}-\varepsilon_{j} \in F\right\}$. We also let $f(\mathbf{y})=\sum_{i \in I} \lambda_{i} y_{i}-\sum_{j \in J} \lambda_{j} y_{j}$, where $I \cap J=\emptyset, I \cup J=[n], \lambda_{i} \geqslant 0, \lambda_{j}>0$, be a corresponding linear functional such that F maximises f on P_{n}^{+}. Moreover, let M be the maximum value of f on P_{n}^{+}. We let $\left(I^{\prime}, J^{\prime}\right)$ be the disjoint pair of non-empty subsets of $[n]$ given in the proof of Theorem 1. If $S_{I^{\prime}} J^{\prime} \neq \emptyset$ then $S=S_{I^{\prime} J^{\prime}}$. Moreover, if $I^{\prime} \cup J^{\prime} \neq[n]$, then we can ignore the number missed in the union of I^{\prime} and J^{\prime} and the case goes down to the case $n-1$. Hence F can not be a facet, by induction. Hence $I^{\prime} \cup J^{\prime}=[n]$. If $1 \notin I^{\prime}$ or $n \notin J^{\prime}$, then 1 or n is completely ignored in $S_{I^{\prime} J^{\prime}}$ hence, by induction again, $1 \in I^{\prime}, n \in J^{\prime}$.

Suppose that $S_{I^{\prime} J^{\prime}}=\emptyset$. We first state two basic facts.

1. $\left\{l: \varepsilon_{l}-\varepsilon_{j} \in S\right.$ or $\left.\varepsilon_{i}-\varepsilon_{l} \in S\right\}=[n]$, since with an $(n-1)$-set, the maximum dimension of a face is $n-3$.
2. $\quad M>0$, since the origin is not contained in F.

There are two cases to be considered, either I and J are non-empty, or one of I, J is empty.

Suppose that $I \neq \emptyset$ and $J \neq \emptyset$. Note that, by considering the elements in I^{\prime} in the context of fact 1 , we have $S_{I^{\prime} J-J^{\prime}} \cap S \neq \emptyset$ or $S_{I^{\prime} I-I^{\prime}} \cap S \neq \emptyset$, and those two cases are exclusive because of the difference of the possible values of M. (If $S_{I^{\prime} I^{\prime}} \cap S \neq \emptyset$ then the maximum of f on P_{n}^{+}is 0 , contrary to fact 2.)

We assume that $S_{I^{\prime} J-J^{\prime}} \cap S \neq \emptyset$. Then

$$
S \subset S_{I^{\prime} J-J^{\prime}} \cup S_{I-I^{\prime} J^{\prime}} \cup S_{I-I^{\prime} J-J^{\prime}} \cup S_{J_{-} J^{\prime} J^{\prime}} \cup S_{J-J^{\prime} J-J^{\prime}} .
$$

Let

$$
\begin{aligned}
& I_{1}=\left\{i \in I-I^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } j \in J^{\prime}\right\} \\
& I_{2}=\left\{i \in I-I^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } j \in J-J^{\prime}\right\} \\
& J_{1}=\left\{j \in J-J^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } i \in I^{\prime}\right\} \\
& J_{2}=\left\{j \in J-J^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } i \in I-I^{\prime}\right\} \\
& J_{3}=\left\{i \in J-J^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } j \in J^{\prime}\right\} \\
& J_{4}=\left\{i \in J-J^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } j \in J-J^{\prime}\right\} \\
& J_{5}=\left\{j \in J-J^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } i \in J-J^{\prime}\right\} .
\end{aligned}
$$

Then $I_{1} \cap I_{2}=\emptyset$ because of the possible values of M. (Note that λ_{i} is constant on I^{\prime}.) Moreover, $J_{1}, J_{2}, \ldots, J_{5}$ are mutually disjoint sets: It is easy to show that J_{1}, J_{2}, J_{5} are mutually disjoint and J_{3}, J_{4} are disjoint. To show that $J_{2} \cap J_{3}=\emptyset$, assume that there is $\varepsilon_{j} \in J_{2} \cap J_{3}$; then $\varepsilon_{i}-\varepsilon_{j} \in S$ and $\varepsilon_{j}-\varepsilon_{j^{\prime}} \in S$ for some $i \in I-I^{\prime}, j^{\prime} \in J^{\prime}$. Since $i<j<j^{\prime}, \varepsilon_{i}-\varepsilon_{j^{\prime}} \in P_{n}^{+}$and $f\left(\varepsilon_{i}-\varepsilon_{j^{\prime}}\right)=f\left(\varepsilon_{i}-\varepsilon_{j}\right)+f\left(\varepsilon_{j}-\varepsilon_{j^{\prime}}\right)=2 M>M$, we have a contradiction. Other cases can be proved in the same way.
We also define two subsets J_{1}^{\prime} and J_{2}^{\prime} of J^{\prime} by

$$
\begin{aligned}
& J_{1}^{\prime}=\left\{j \in J^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } i \in I-I^{\prime}\right\} \\
& J_{2}^{\prime}=\left\{j \in J^{\prime}: \varepsilon_{i}-\varepsilon_{j} \in S \text { for some } i \in J-J^{\prime}\right\} .
\end{aligned}
$$

Then $J_{1}^{\prime} \cap J_{2}^{\prime}=\emptyset$. Now, if we count the possible number of affinely independent vectors in S, by the proof of Theorem 1, it is at most

$$
\begin{aligned}
\left(\left|I^{\prime}\right|+\left|J_{1}\right|-1\right) & +\left(\left|I_{1}\right|+\left|J_{1}^{\prime}\right|-1\right)+\left(\left|I_{2}\right|+\left|J_{2}\right|-1\right) \\
& +\left(\left|J_{3}\right|+\left|J_{2}^{\prime}\right|-1\right)+\left(\left|J_{4}\right|+\left|J_{5}\right|-1\right) \leqslant|I|+|J|-5=n-5 .
\end{aligned}
$$

Hence, S can not make an ($n-2$)-dimensional face.
If we assume that $S_{I^{\prime} I-I^{\prime}} \cap S \neq \emptyset$, then

$$
S \subset S_{I^{\prime} I-I^{\prime}} \cup S_{J-J^{\prime} J^{\prime}} \cup S_{I-I^{\prime} I-I^{\prime}} \cup S_{J-J^{\prime} J-J^{\prime}} \cup S_{I-I^{\prime} J-J^{\prime}} \cup S_{I-I^{\prime} J^{\prime}}
$$

As we did for the previous case, we define five mutually disjoint subsets I_{1}, \ldots, I_{5} of $I-I^{\prime}$, four mutually disjoint subsets J_{1}, \ldots, J_{4} of $J-J^{\prime}$ and two disjoint subsets $J_{1}^{\prime}, J_{2}^{\prime}$ of J^{\prime}. Then, the number of possible affinely independent vectors is at most

$$
\begin{aligned}
\left(\left|I^{\prime}\right|+\left|I_{1}\right|-1\right) & +\left(\left|J_{1}\right|+\left|J_{1}^{\prime}\right|-1\right)+\left(\left|I_{2}\right|+\left|I_{3}\right|-1\right)+\left(\left|J_{2}\right|+\left|J_{3}\right|-1\right) \\
& +\left(\left|I_{4}\right|+\left|J_{4}\right|-1\right)+\left(\left|I_{5}\right|+\left|J_{2}^{\prime}\right|-1\right) \leqslant|I|+|J|-6=n-6 .
\end{aligned}
$$

Hence S can not make a facet.
As for second case, we assume that $J=\emptyset$. Applying fact 1 to the elements of I^{\prime}, we have $S \subset S_{I^{\prime} I-I^{\prime}-J^{\prime}}$ and the number of affinely independent vectors of S is at most $\left|I^{\prime}\right|+\left|I-I^{\prime}-J^{\prime}\right|-1=\left|I-J^{\prime}\right|-1 \leqslant n-2$. Therefore S can not form a facet. The proof for the case $I=\emptyset$ goes just the same.

For a given facet F, we produced $\left(I^{\prime}, J^{\prime}\right) \in \mathcal{B}$ so that $F=\operatorname{Conv}\left(S_{I^{\prime} J^{\prime}}\right)$ and the choice is unique as we proved in Theorem 1.

Conversely, if we have $(I, J) \in \mathcal{B}$ then $F=\operatorname{Conv}\left(S_{I J}\right)$ is a facet, since $1 \in I, n \in J$. Moreover, since $f_{I J}(\mathbf{y})=\sum_{i \in I} y_{i}+\sum_{j \in J} y_{j}$ is a linear functional producing F, this is the inverse process of what we did above.

Observe that S_{n} (the symmetric group on n letters) acts on P_{n} as a linear transformation in the obvious way, by $\sigma \in S_{n}$ sending the vertex $\varepsilon_{i}-\varepsilon_{j}$ to another vertex $\varepsilon_{\sigma(i)}-\varepsilon_{\sigma(j)}$ (geometric representation of S_{n}). Let G be the cyclic subgroup of S_{n} generated by the n-cycle $(12 \ldots n)$. Let $F_{I J}$ be the corresponding facet of P_{n} and $F_{I J}^{+}$be the corresponding facet of P_{n}^{+}of the given pair of disjoint subsets I, J such that $I \cup J=[n]$. (For $F_{I J}^{+}, 1 \in I$ and $n \in J$ should be satisfied also.) We say that a convex polytope F^{\prime} is a sub-face of a face F of a polytope P if F^{\prime} and F have the same dimension and $F^{\prime} \subseteq F$. Two sub-faces of a given face are said to be disjoint if the dimension of the intersection is strictly less than the dimension of the given face.

Proposition 14. Let $(I, J),\left(I^{\prime}, J^{\prime}\right)$ be two pairs of disjoint subsets of $[n]$ such that $I \cup J=I^{\prime} \cup J^{\prime}=[n]$ and $l \in I^{\prime}, n \in J^{\prime}$. Let $g \in G$. Then $g\left(F_{I^{\prime} J^{\prime}}^{+}\right)$is a sub-face of $F_{I J}$ if and only if $g\left(I^{\prime}\right)=I$ and $g\left(J^{\prime}\right)=J$.

Proof: The 'if' part is trivial. Let us assume that $g\left(F_{I^{\prime}, J^{\prime}}^{+}\right)$is a sub-face of $F_{I J}$. Then $g\left(S_{I^{\prime} J^{\prime}}\right) \subseteq\left\{\varepsilon_{i}-\varepsilon_{j}: i \in I, j \in J\right\}$. Note that for each $i \in I^{\prime}$ (or $j \in J^{\prime}$), $\varepsilon_{i}-\varepsilon_{n}$ ($\varepsilon_{1}-\varepsilon_{j}$ respectively) is in $S_{I^{\prime} J^{\prime}}$, hence $g(i) \in I$ and $g(j) \in J$. The proof is completed since $I \cup J=I^{\prime} \cup J^{\prime}=[n]$.

Proposition 15. Let I, J be a pair of disjoint subsets of $[n]$ such that $I \cup J=$ $[n]$ and $\mathcal{S}=\left\{\left(I^{\prime}, J^{\prime}, g_{I^{\prime} J^{\prime}}\right): g_{I^{\prime} J^{\prime}}\left(I^{\prime}\right)=I, g_{I^{\prime} J^{\prime}}\left(J^{\prime}\right)=J\right.$, for $g_{I^{\prime} J^{\prime}} \in G$ and $\left.1 \in I^{\prime}, n \in J^{\prime}\right\}$. Then $\left\{g_{I^{\prime} J^{\prime}}\left(F_{I^{\prime} J^{\prime}}^{+}\right):\left(I^{\prime}, J^{\prime}, g_{I^{\prime} J^{\prime}}\right) \in \mathcal{S}\right\}$ forms a set of disjoint sub-faces of $F_{I J}$.

Proof: Note that for $\left(I^{\prime}, J^{\prime}\right) \in \mathcal{S}$, since $g_{I^{\prime}} J^{\prime}$ is a power of the n-cycle ($12 \ldots n$) and $1 \in I^{\prime}, n \in J^{\prime}$, there must be $i \in J$ such that $i+1 \in I$. (If $g_{I^{\prime} J^{\prime}}=i d$, then $i=n$, $i+1=1$.)

Let $\left(I_{1}, J_{1}, g_{I_{1} J_{1}}\right),\left(I_{2}, J_{2}, g_{I_{2} J_{2}}\right) \in \mathcal{S}$ be distinct and $g_{I_{1} J_{1}}\left(F_{I_{1} J_{1}}^{+}\right), g_{I_{2} J_{2}}\left(F_{I_{2} J_{2}}^{+}\right)$be subfaces of $F_{I J}$. Then there are two numbers i_{1}, i_{2} such that $i_{1}, i_{2} \in J, i_{1}+1, i_{2}+1 \in I$ and $g_{I_{1} J_{1}}(1)=i_{1}+1, g_{I_{2} J_{2}}(1)=i_{2}+1$ (hence $g_{I_{1} J_{1}}(n)=i_{1}, g_{I_{2} J_{2}}(n)=i_{2}$). Without loss of generality, we assume that $i_{1}<i_{2}$. (If $i_{1}=i_{2}$ then $g_{I_{1} J_{1}}(n)=g_{I_{2} J_{2}}(n)$ so $g_{I_{1} J_{1}}=g_{I_{2} J_{2}} \in G$. Hence $I_{1}=g_{I_{1} J_{1}}^{-1}(I)=g_{I_{2}}^{-1} J_{2}(I)=I_{2}$ and $J_{1}=J_{2}$.) We let $A=\left\{i_{2}+1, \ldots, n, 1, \ldots, i_{1}\right\}$, $|A|=a \neq 0$ (if $i_{2}=n$ then $A=\left\{1, \ldots, i_{1}\right\}$) and $B=[n]-A,|B|=b \neq 0$. If there is $\varepsilon_{k}-\varepsilon_{l} \in g_{I_{1} J_{1}}\left(F_{I_{1} J_{1}}^{+}\right) \cap g_{I_{2} J_{2}}\left(F_{I_{2} J_{2}}^{+}\right)$such that $k \in A, l \in B$, then $g_{I_{1} J_{1}}^{-1}(k)<g_{I_{1} J_{1}}^{-1}(l)$ but $A=g_{I_{1} J_{1}}\left(\left\{i_{2}-i_{1}+1, \ldots, n\right\}\right)$ and $B=g_{I_{1} J_{1}}\left(\left\{1, \ldots, i_{2}-i_{1}\right\}\right)$, hence we have a contradiction. The same argument excludes the case $k \in B, l \in A$ also. Therefore, the vertices of $g_{I_{1} J_{1}}\left(F_{I_{1} J_{1}}^{+}\right) \cap g_{I_{2} J_{2}}\left(F_{I_{2} J_{2}}^{+}\right)$are $\varepsilon_{k}-\varepsilon_{l}$ where ($k \in A \cap I$ and $l \in A \cap J$) or ($k \in B \cap I$ and $l \in B \cap J$). The biggest possible number of affinely independent
vertices of $g_{I_{1} J_{1}}\left(F_{I_{1} J_{1}}^{+}\right) \cap g_{I_{2} J_{2}}\left(F_{I_{2} J_{2}}^{+}\right)$is $(a-1)+(b-1)=n-2$. Hence the dimension of $g_{I_{1} J_{1}}\left(F_{I_{1} J_{1}}^{+}\right) \cap g_{I_{2} J_{2}}\left(F_{I_{2} J_{2}}^{+}\right)$is strictly less than $n-2$.

For a given disjoint pair (I, J) of subsets of $[n]$, we let $P_{I J}$ be the convex hull generated by the vectors in $\left\{\varepsilon_{i}-\varepsilon_{j}: i \in I, j \in J\right\} \cup\{0\}$.

The main theorem is the following.
Theorem 16. [Main Theorem]

$$
\bigcup_{g \in G} g\left(P_{n}^{+}\right)=P_{n}
$$

Furthermore, if $g_{1}\left(P_{n}^{+}\right) \cap g_{2}\left(P_{n}^{+}\right) \neq \emptyset$ for $g_{1} \neq g_{2} \in G$, then the volume of the intersection is 0 .

Proof: The disjointness of $g\left(P_{n}^{+}\right)$follows from Proposition 15. Therefore, we are only left to show that $G\left(P_{n}^{+}\right)$is not only a part of P_{n} but also P_{n} itself. It is sufficient to show that

$$
\begin{equation*}
|G| \operatorname{Vol}_{H_{n}^{+}}\left(P_{n}^{+}\right)=n \operatorname{Vol}_{H_{n}^{+}}\left(P_{n}^{+}\right)=\sum_{i=1}^{n-1}\binom{n}{i} t_{i, n-i} \tag{1}
\end{equation*}
$$

where $t_{i, n-i}$ is the volume of $P_{I J},|I|=i$ and $|J|=n-i$, since

$$
P_{n}=\bigcup_{\substack{(I J J) \\ I U=[n]}} P_{I J}
$$

Note that $\left.t_{i, n-i}=\binom{n-2}{i-1} /(n-1)!\right)$ by Corollary 12 , since $P_{I J},|I|=i,|J|=n-j$, is exactly the same polytope as $P_{\{1, \ldots, i\}\{i+1, \ldots, n\}}^{+}$.

By Theorem 8, the left hand side of Eqation (1) is

$$
\frac{n C_{n-1}}{(n-1)!}=\frac{\binom{2(n-1)}{n-1}}{(n-1)!}
$$

and the right hand side of Eqation (1) is

$$
\frac{\sum_{i=1}^{n-1}\binom{n}{i}\binom{n-2}{i-1}}{(n-1)!}
$$

Equation (1) is verified because of the following well known equation: for fixed integers k, l, m,

$$
\sum_{r}\binom{k}{r}\binom{l}{m-r}=\binom{k+l}{m}
$$

Remark 1. The n-cycle ($12 \ldots n$) is a Coxeter element of S_{n}. Hence, Theorem 16 explains how the Coxeter elements of type A_{n-1} play a role in one way. However, Theorem 16 does not hold for the other types of root systems (at least for B_{2} and G_{2}). To understand Theorem 16 in the wider context of finite reflection groups (or Coxeter groups), n-cycles of S_{n} might have to be interpreted differently (other than Coxeter elements), or a more general rule would be needed which covers the A_{n} case. Although we could not find a general version (in the context of Coxeter groups) of Theorem 16, we believe that it is a very interesting property in itself.

Example 1. The following picture is P_{4}, which is a 3-dimensional polytope. The shaded region is the intersection of P_{4}^{+}with the boundary of P_{4}. It is easy to check that exactly 4 copies of the shaded region form the boundary of P_{4}.

As a corollary of Theorem 8 and Theorem 16, we have the following.
Corollary 17.

$$
\operatorname{Vol}_{H_{n}^{+}}\left(P_{n}\right)=n \mathrm{Vol}_{H_{n}^{+}}\left(P_{n}^{+}\right)=\frac{1}{(n-1)!}\binom{2(n-1)}{n-1} .
$$

Some facets of P_{n} are a union of images of facets of P_{n}^{+}. If we use the identity on the volume then we obtain an interesting result.

Corollary 18. For given n, i, j such that $i+j=n, i \neq 0, j \neq 0$ let $\lambda=$ $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{i}\right)$ be a sequence of non-zero integers such that $\sum_{l=1}^{i} \lambda_{l}=n$. Then the number of paths from $(0,0)$ to $(i-1, j-1)$, equally $\binom{n-2}{i-1}$, is equal to the sum

$$
\sum_{\substack{\left(\lambda_{h(1)}, \ldots, \lambda_{h}(i), \lambda_{h(i)} \neq 1 \\
h \in(1,2, \ldots, i)\right.}} \begin{aligned}
& \text { number of paths from }(0,0) \text { to }(i-1, j-1) \\
& \text { which exceed } P_{\left(\lambda_{h(1)}, \ldots, \lambda_{h(i)}\right)},
\end{aligned}
$$

where $P_{\left(m_{1}, \ldots, m_{l}\right)}=\phi\left(m_{1}\right) \ldots \phi\left(m_{l-1}\right) \psi\left(m_{l}\right)$ is the path from $(0,0)$ to $(i-1, j-1)$ obtained from (m_{1}, \ldots, m_{l}) by the following correspondence

$$
\phi(m)=\underbrace{N \ldots N}_{m-1 \text { times }} E,
$$

and

$$
\psi(m)=\underbrace{N \ldots N}_{m-2 \text { times }}
$$

Proof: Define two subsets of [n] by

$$
I=\left\{1,1+\lambda_{1}, 1+\lambda_{1}+\lambda_{2}, \ldots, 1+\lambda_{1}+\cdots+\lambda_{i-1}\right\}
$$

and $J=[n]-I$. Then $|I|=i,|J|=j$ and $(n-1)!\operatorname{Vol}_{H_{n}^{+}}\left(P_{I J}\right)$ is the number of paths from $(0,0)$ to $(i-1, j-1)$ by Corollary 12. On the other hand, by Proposition 15 and Theorem 16, $\operatorname{Vol}_{H_{n}^{+}}\left(P_{I J}\right)=\sum_{\left(I^{\prime}, J^{\prime}, I_{I^{\prime} J^{\prime}}\right) \in \mathcal{S}} \operatorname{Vol}_{H_{n}^{+}}\left(P_{I^{\prime} J^{\prime}}^{+}\right)$. Remember that \mathcal{S} was defined by

$$
\mathcal{S}=\left\{\left(I^{\prime}, J^{\prime}, g_{I^{\prime} J^{\prime}}\right): g_{I^{\prime} J^{\prime}}\left(I^{\prime}\right)=I, g_{I^{\prime} J^{\prime}}\left(J^{\prime}\right)=J, \text { for } g_{I^{\prime} J^{\prime}} \in G \text { and } 1 \in I^{\prime}, n \in J^{\prime}\right\} .
$$

Moreover, by Theorem $7,(n-1)!\mathrm{Vol}_{H_{n}^{+}}\left(P_{I^{\prime} J^{\prime}}^{+}\right)$is the number of paths from $(0,0)$ to ($i-1, j-1$) which exceed the word $w_{I^{\prime} J^{\prime}}$.

For a given subset $A=\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}$ of $[n]$, such that $1=a_{1}<a_{2}<\cdots<a_{i}$, we define the type of A as type $(A)=\left(a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{i}-a_{i-1}, n+1-a_{i}\right)$. Then type $(I)=$ $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{i}\right)$. Note that $\left(I^{\prime}, J^{\prime}, g_{I^{\prime} J^{\prime}}\right) \in \mathcal{S}$ if and only if type $\left(I^{\prime}\right)=\left(\lambda_{h(1)}, \lambda_{h(2)}, \ldots, \lambda_{h(i)}\right)$ for some $h \in\langle(1,2, \ldots, i)\rangle$ and $\lambda_{h(i)} \neq 1$ since if $\lambda_{h(i)}=1$ then $1, n \in I^{\prime}$. Hence, we are only left to show that the path $P_{w_{i^{\prime}},}$, is exactly the same as $P_{\text {type }\left(I^{\prime}\right)}$, and this is immediate from Definition 9, (4).

Example 2. Let $n=6, i=3, j=3, \lambda=(1,3,2)$, and let $N_{P_{\left(m_{1}, m_{2}, m_{3}\right)}}$ be the number of paths from $(0,0)$ to $(2,2)$ which exceed $P_{\left(m_{1}, m_{2}, m_{3}\right)}$. Then
the number of paths from $(0,0)$ to $(2,2)$

$$
=N\left(P_{(1,3,2)}\right)+N\left(P_{(2,1,3)}\right)=3+3=\binom{4}{2}
$$

since $P_{(1,3,2)}=E N N E$ and $P_{(2,1,3)}=N E E N$.
Corollary 19. There is a triangulation with no new vertices of $\Delta_{p} \times \Delta_{q}$, $p, q \geqslant 0$, with $\binom{p+q}{p}$ simplices, where Δ_{i} is the i-dimensional simplex.

Proof: Let $I=\{1,2, \ldots, p+1\}, J=\{p+2, p+3, \ldots, p+q+2\}$ then $F_{I J} \cong \Delta_{p} \times \Delta_{q}$ by Corollary 4 . Now, Corollary 12 finishes the proof.

References

[1] A. Brøndsted, An introduction to conver polytopes, Graduate Texts in Mathematics 90 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).
[2] S. Cho, 'Minimal null designs and a density theorem of posets', European J. Combin. 19 (1998), 433-440.
[3] P. Frankl and J. Pach, 'On the number of sets in a null t-design', European J. Combin. 4 (1983), 21-23.
[4] I.M. Gelfand, M.I. Graev and A. Postnikov, 'Combinatorics of hypergeometric functions associated with positive roots', in Arnold-Gelfand Mathematical Seminars 1993-1995 (Birkhäuser Boston, Boston, MA, 1997), pp. 205-221.
[5] R.L. Graham, S.-Y. R. Li and W.-C.W. Li, 'On the structure of t-designs', SIAM J. Discrete Math. 1 (1980), 8-14.
[6] J. Humphreys, Reflection groups and coxeter groups, Cambridge Studies in Advanced Mathematics 29 (Cambridge University Press, Cambridge, 1990).
[7] R.A. Liebler and K.H. Zimmermann, 'Combinatorial S_{n}-modules as codes', J. Algebraic Combin. 4 (1995), 47-68.
[8] S. Onn, 'Geometry, complexity, and combinatorics of permutation polytopes', J. Combin. Theory Ser. A 64 (1993), 31-49.
[9] B.E. Sagan, The symmetric group. Representations, combinatorial algorithms and symmetric functions, Wadsworth \& Brooks/Cole Mathematics Series (Wadsworth, Inc., Pacific Grove, CA, 1991).
[10] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152 (Springer-Verlag, Berlin, Heidelberg, New York, 1995).

ChungGu NaRae Apt. 102-901
ChunMin-Dong, Yusong-Gu
Taejon 305-390
Korea
e-mail: sjcho@math.kaist.ac.kr

[^0]: Received 29th September, 1998
 This work was supported by KOSEF through GARC at SNU.

