Bull. Austral. Math. Soc. Vol. 59 (1999) [391-402]

POLYTOPES OF ROOTS OF TYPE A_N

SOOJIN CHO

Polytopes of roots of type A_{n-1} are investigated, which we call P_n . The polytopes, P_n^+ , of positive roots and the origin have been considered in relation to other branches of mathematics [4]. We show that exactly *n* copies of P_n^+ forms a disjoint cover of P_n . Moreover, those *n* copies of P_n^+ can be obtained by letting the elements of a subgroup of the symmetric group S_n generated by an *n*-cycle act on P_n^+ . We also characterise the faces of P_n and some facets of P_n^+ , which we believe to be useful in some optimisation problems. As by-products, we obtain an interesting identity on the number of lattice paths and a triangulation of the product of two simplices.

1. INTRODUCTION

The polytope P_n^+ of positive roots of type A_{n-1} and the origin has been considered by Gelfand, Graev and Postnikov in relation to hypergeometric functions [4]. Many combinatorial problems have been considered: for example, the volume is calculated and some facets are characterised. In this article, we consider the polytope P_n of all roots of type A_{n-1} in relation to the polytope P_n^+ . P_n itself is an object of interest since it is related to many combinatorial objects. Notice that P_n is a Young orbit polytope corresponding to the partition (n-1,1), which was introduced as a framework for many combinatorial optimisation problems [8]. Moreover, the set of roots of type A_{n-1} is the set of minimal null designs of a certain type [2]. Hence, it is worth characterising the faces of P_n . It is also interesting to observe how the polytope P_n^+ sits inside P_n and calculate the volume of P_n .

In this paper, we characterise all faces of P_n and give a proof for the characterisation of certain facets of P_n^+ . Then we use these results to show that exactly *n* copies of P_n^+ form a disjoint (in the sense that the intersection has volume zero in \mathbb{R}^{n-1}) cover of P_n , and there, the cyclic group generated by a Coxeter element (*n*-cycle) plays a role. While proving the main theorem, we also obtain an interesting identity on the number of lattice paths and a triangulation of the product of two simplices.

We refer to [1] and [10] for detailed information on convex polytopes, while we give some basic definitions. A (convex) polytope is the convex hull $Conv(K) = \left\{\sum_{i=1}^{l} \lambda_i u_i : \right\}$

Received 29th September, 1998

This work was supported by KOSEF through GARC at SNU.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

$$\sum_{i} \lambda_{i} = 1, \lambda_{i} \ge 0$$
 of a finite set $K = \{\mathbf{u}_{1}, \dots, \mathbf{u}_{l}\}$ in \mathbb{R}^{d} for some d . The dimension of

a polytope $\operatorname{Conv}(K)$ is the dimension of its affine hull $\left\{\sum_{i=1}^{l} \lambda_i \mathbf{u}_i : \sum_i \lambda_i = 1\right\}$, that is, the size of the largest affinely independent subset of K subtracted by 1. For vectors \mathbf{u} , $\mathbf{v} \in \mathbb{R}^d$, let (\mathbf{u}, \mathbf{v}) denote the usual inner product in \mathbb{R}^d . A face of a polytope $P \in \mathbb{R}^d$ is any set of the form $F = P \cap \{\mathbf{x} \in \mathbb{R}^d : (\mathbf{c}, \mathbf{x}) = c_0\}$, where $\mathbf{c} \in \mathbb{R}^d$, $c_0 \in \mathbb{R}$ and $(\mathbf{c}, \mathbf{x}) \leq c_0$ for all $\mathbf{x} \in P$. The dimension of a face is the dimension of its affine hull. P itself is a face with $(\mathbf{0}, \mathbf{x}) \leq 0$, and \emptyset is a face given by $(\mathbf{0}, \mathbf{x}) \leq -1$. We call these faces trivial. A face F of a polytope P is called a facet if the dimension of F is one less than the dimension of P. Observe that faces are characterised as the subsets of P, whose elements maximise a given linear functional. In the definition, we can replace \mathbf{c}, c_0 by $-\mathbf{c}$ and $-c_0$, respectively. Hence, the faces of a polytope are also characterised as subsets of P whose elements minimise a linear functional.

We denote the elementary vectors of \mathbb{R}^n by ε_i , i = 1, ..., n. Then P_n^+ is the convex hull of $\{\varepsilon_i - \varepsilon_j : i < j\}$ and the origin, and P_n is the convex hull of $\{\varepsilon_i - \varepsilon_j : i \neq j\}$. Obviously, the dimension of P_n and P_n^+ is n-1.

In Section 2, the polytope P_n is considered and all faces are characterised. In Section 3, we first summarise some combinatorial results of Gelfand, Graev and Postnikov. Then, in Section 4, P_n and P_n^+ are considered together and the main theorem is proved that shows how the two polytopes are related.

2. Polytopes P_n

In this section, we consider the polytope $P_n = \text{Conv} \{\varepsilon_i - \varepsilon_j : i \neq j, i, j \in [n]\}$ of all roots of type A_{n-1} . Note that P_n is a special case of the polytopes called generalised permutahedrons since it is a convex hull of all the vectors given by all permutations of the vector $(1, -1, 0, \ldots, 0) \in \mathbb{R}^n$. (Permutahedron Π_{n-1} is a classical object defined as the convex hull of all vectors of permutations of the vector $(1, 2, \ldots, n)$, see [10].) We give an explicit description of every face of P_n . P_n is obtained from Π_{n-1} by identifying many vertices, hence the faces of P_n are the ones collapsed down from the faces of Π_{n-1} . Remember that the k-faces of Π_{n-1} are in one to one correspondence with the ordered partitions of the set [n] into n - k non-empty parts. Hence Theorem 1 does not surprise us.

Each face of a (finite) convex hull can be described as a subset of the given polytope, which maximises (or minimises) a linear functional. So, to investigate the faces of P_n , we consider all possible linear functionals defined on \mathbb{R}^n . Observe that every linear functional f can be written as

$$f(\mathbf{y}) = \sum_{i \in I} \lambda_i y_i - \sum_{j \in J} \lambda_j y_j \text{ for } \lambda_i \ge 0, \ \lambda_j > 0 \text{ and } I \cap J = \emptyset, \ I \cup J = [n],$$

where $\mathbf{y} = (y_1, y_2, \dots, y_n).$

THEOREM 1. Every m-dimensional (m = 0, ..., n - 2) face of P_n is given by the convex hull of the vectors in $\{\varepsilon_i - \varepsilon_j : i \in I, j \in J\}$ where I, J are disjoint non-empty subsets of [n] such that |I| + |J| = m + 2. Hence, there is a one to one correspondence between the set of non-trivial faces of P_n and the set of ordered partitions of subsets of [n] with two blocks, where the dimension of the face corresponding to (I, J) is |I| + |J| - 2.

PROOF: For a given non-zero linear functional $f(\mathbf{y}) = \sum_{i \in I} \lambda_i y_i - \sum_{j \in J} \lambda_j y_j$, $\lambda_i \ge 0$, $\lambda_j > 0$, determining a non-trivial face F, where (I, J) is a partition of [n], we define (I', J') as follows:

- 1. If $I \neq \emptyset$ and $J \neq \emptyset$, then $I' = \{i : \lambda_i = \max(\lambda_l : l \in I)\}, J' = \{j : \lambda_j = \max(\lambda_l : l \in J)\},\$
- 2. If $I = \emptyset$ then $I' = \{i : \lambda_i = \min(\lambda_l : l \in J)\}, J' = \{j : \lambda_j = \max(\lambda_l : l \in J)\}, J' = \{j : \lambda_j = \max(\lambda_l : l \in J)\}, J' = \{j : \lambda_j = \max(\lambda_j : l \in J)\}, J' = \{j : \lambda_j \in J\}, J' = \{$
- 3. If $J = \emptyset$ then $I' = \{i : \lambda_i = \max(\lambda_l : l \in I)\}, J' = \{j : \lambda_j = \min(\lambda_l : l \in I)\}$.

If $I = \emptyset$ (hence J = [n]) and λ_j is a constant for all $j \in J$, then $F = P_n$. If $J = \emptyset$ and λ_i is a constant for all $i \in I$, then $F = P_n$ also. Hence, $I' \neq \emptyset$, $J' \neq \emptyset$ and $I' \cap J' = \emptyset$. Note that F is the convex hull of the vectors in $\{\varepsilon_i - \varepsilon_j : i \in I', j \in J'\}$, hence $I' \neq \emptyset$ and $J' \neq \emptyset$ are determined uniquely and independently of the choice of a linear functional f which characterises the given face. Conversely, for a pair of disjoint non-empty subsets I, J of [n], if we define $f_{IJ}(\mathbf{y}) = \sum_{i \in I} y_i - \sum_{j \in J} y_j$, then the convex hull of vectors in $\{\varepsilon_i - \varepsilon_j : i \in I, j \in J\}$ is the face which maximises f_{IJ} in P_n .

Now, we show that the dimension of the face of P_n , determined by disjoint nonempty subsets I, J of [n] is |I| + |J| - 2. Let a = |I|, b = |J| and $I = \{i_1, \ldots, i_a\}$, $J = \{j_1, \ldots, j_b\}$. Then

$$X = \{\varepsilon_{i_1} - \varepsilon_{j_l} : l = 1, \dots, b\} \cup \{\varepsilon_{i_l} - \varepsilon_{j_1} : l = 2, \dots, a\}$$

is a linearly independent set of minimal vectors, hence is an affinely independent set. In addition, for any $i \in I$, $j \in J$, $\varepsilon_i - \varepsilon_j$ is in X or

$$\varepsilon_i - \varepsilon_j = (\varepsilon_i - \varepsilon_{j_1}) - (\varepsilon_{i_1} - \varepsilon_{j_1}) + (\varepsilon_{i_1} - \varepsilon_j),$$

an affine combination of vectors in X. Hence, X is an affine basis of the face we are considering, and the dimension of the face is |X| - 1 = b + a - 1 - 1 = a + b - 2.

COROLLARY 2. For m = 0, 1, ..., n - 2, the number of m-dimensional faces of P_n is

$$\binom{n}{m+2}(2^{m+2}-2).$$

PROOF: By Theorem 1, the number of m-dimensional faces is the number of ordered partitions of (m + 2)-subsets of [n] with two blocks. The result is immediate since $\sum_{l=1}^{m+1} \binom{m+2}{l} = 2^{m+2} - 2.$ 0

Remember that a *d*-dimensional polytope is *simple* if every vertex is in *d* facets.

 P_n is not a simple polytope if n > 3, whereas the permutahedron COROLLARY 3. Π_{n-1} is always simple.

PROOF: When we fix a vertex $\varepsilon_i - \varepsilon_j$ in P_n , the number of facets containing $\varepsilon_i - \varepsilon_j$ is $\sum_{l=0}^{n-2} \binom{n-2}{l} = 2^{n-2}$ which is strictly bigger than the dimension n-1 of P_n , if n > 3.

As a reminder, a *simplex* is the convex hull of vectors in $U = {u_1, ..., u_l}$ with the property that U is an affinely independent set. Also, an *m*-simplex Δ_m is a simplex of dimension m. Given two polytopes $P \subseteq \mathbb{R}^p$ and $Q \subseteq \mathbb{R}^q$, the product of two polytopes is also a convex polytope $P \times Q = \{(\mathbf{u}, \mathbf{v}) : \mathbf{u} \in P, \mathbf{v} \in Q\} \subseteq \mathbb{R}^{p+q}$.

COROLLARY 4. Every nontrivial face of P_n is a product of two simplices. Moreover, if the face F corresponds to a disjoint pair of non-empty subsets I, J, then the face is the product of a (|I| - 1)-simplex and a (|J| - 1)-simplex.

PROOF: Let $P = \operatorname{Conv}(\varepsilon_i : i \in I) \simeq \Delta_{|I|-1}$ and $Q = \operatorname{Conv}(\varepsilon_i : j \in J) \simeq \Delta_{|J|-1}$, then by Theorem 1, F is affinely isomorphic to $P \times Q$. Π

3. Combinatorics of P_{r}^{+}

In this section, we summarise some combinatorial results from [4] about the polytope P_n^+ . These will be needed in Section 4.

Let H_n^+ be the sublattice in \mathbb{Z}^n generated by $\varepsilon_i - \varepsilon_j$, $1 \leq i < j \leq n$ and $\operatorname{Vol}_{H_n^+}$ be the form of volume on the space $H_n^+ \otimes_{\mathbb{Z}} \mathbb{R}$ such that volume of the identity cube is equal to 1.

DEFINITION 5: Let $\Gamma = \{(i,j) : 1 \leq i < j \leq n\}$ be a tree on the set [n]. Γ is admissible if there are no $1 \leq i < j < k \leq n$ such that both (i, j) and (j, k) are edges of Γ . We say that Γ has intersections if there are $1 \leq i < k < j < l \leq n$ such that (i, j) and (k, l)are edges of Γ . Γ is defined to be *standard* if it is admissible and there is no intersection. For a given standard tree Γ , let $\mathcal{I}_{\Gamma} = \{\varepsilon_i - \varepsilon_j : 1 \leq i < j \leq n, (i, j) \text{ is an edge of } \Gamma\}.$ Let $\Theta = \{\mathcal{I}_{\Gamma} : \Gamma \text{ is a standard tree on } [n]\}$. It is well known that \mathcal{I}_{Γ} , where Γ is a standard tree, forms a basis of the linear space $H_n^+ \otimes_{\mathbb{Z}} \mathbb{R}$. Hence $\operatorname{Conv}(\mathcal{I}_{\Gamma} \cup \{0\})$ is an (n-1)-dimensional simplex and we let $\Delta_{\mathcal{I}_{\Gamma}}$ be this simplex.

THEOREM 6. Θ is a local triangulation of P_n^+ , in other words,

$$\bigcup_{\mathcal{I}_{\Gamma}\in\Theta}\Delta_{\mathcal{I}_{\Gamma}}=P_{n}^{+}$$

and $\Delta_{\mathcal{I}_{\Gamma_1}} \cap \Delta_{\mathcal{I}_{\Gamma_2}}$ is the common face of $\Delta_{\mathcal{I}_{\Gamma_1}}$ and $\Delta_{\mathcal{I}_{\Gamma_2}}$ for all $\mathcal{I}_{\Gamma_1}, \mathcal{I}_{\Gamma_2} \in \Theta$.

[4]

LEMMA 7. $(n-1)! \operatorname{Vol}_{H_n^+} \Delta_{\mathcal{I}_{\Gamma}} = 1$ for any $\mathcal{I}_{\Gamma} \in \Theta$.

THEOREM 8. The number of standard trees on [n] is equal to the Catalan number

$$C_{n-1} = \frac{1}{n} \binom{2(n-1)}{n-1}.$$

Hence, by Theorem 6 and Lemma 7,

$$(n-1)! \operatorname{Vol}_{H_n^+}(P_n^+) = C_{n-1}.$$

For a disjoint pair (I, J) of subsets of [n], let

$$S_{IJ} = \{ \varepsilon_i - \varepsilon_j : i \in I, \ j \in J, \ i < j \}.$$

DEFINITION 9: Let I, J be disjoint subsets of [n] such that $I \cup J = [n]$ and $1 \in I, n \in J$. We let Γ be a tree on [n].

- 1. Γ is of type (I, J) if for every edge (i, j), i < j, in Γ , $i \in I$ and $j \in J$.
- 2. Let $\Theta_{IJ} = \{\mathcal{I}_{\Gamma} : \Gamma \text{ is standard of type } (I, J)\}, \text{ and } P_{IJ}^+ = \operatorname{Conv}(S_{IJ} \cup \{0\}).$
- 3. A word w of type (p,q) is the sequence $w = (w_1, w_2, \ldots, w_{p+q}), w_r \in \{0,1\}$ such that $|\{r : w_r = 0\}| = p$ and $|\{r : w_r = 1\}| = q$. Let $w = (w_1, w_2, \ldots, w_{p+q})$ and $w' = (w'_1, w'_2, \ldots, w'_{p+q})$ be two words of type (p,q). We say that w' exceeds w if $w'_1 + \cdots + w'_r \ge w_1 + \cdots + w_r$ for all $r = 1, 2, \ldots, p + q$. If we present a word w of type (p,q) as the path P_w from (0,0) to (p,q) by the correspondence $1 \leftrightarrow N, 0 \leftrightarrow E$, where N, Emean north and east respectively, then w' exceed w if and only if $P_{w'}$ is above the path P_w .
- 4. Let $I = \{1\} \cup I', J = \{n\} \cup J'$. Let |I'| = p, |J'| = q and $I' \cup J' = \{t_1 < t_2 < \cdots < t_{p+q}\}$. Associate with the pair (I, J) the word $w_{IJ} = (w_1, w_2, \ldots, w_{p+q})$ of type (p, q) such that $w_r = 0$ if $t_r \in I$ and $w_r = 1$ if $t_r \in J$ for all $r = 1, 2, \ldots, p + q$.

LEMMA 10. $(n-1)! \operatorname{Vol}_{H_n^+} \Delta_{\mathcal{I}_{\Gamma}} = 1$ for each $\mathcal{I}_{\Gamma} \in \Theta_{IJ}$, where (I, J) is a pair of disjoint subsets of [n] such that $I \cup J = [n]$ and $1 \in I$, $n \in J$.

THEOREM 11. Let (I, J) be a pair of disjoint subsets of [n] such that $I \cup J = [n]$ and $1 \in I$, $n \in J$. Then, Θ_{IJ} forms a local triangulation of P_{IJ}^+ . Moreover, the number of standard trees of type (I, J) is equal to the number of words w' of type (|I| - 1, |J| - 1), which exceeds the word $w = w_{IJ}$.

COROLLARY 12. If $I = \{1, 2, ..., i\}$ and $J = \{i + 1, i + 2, ..., n\}$ then $w_{IJ} = \{0, ..., 0, 1, ..., 1\}$, hence (n - 1)! times the volume of P_{IJ}^+ is the number of paths from (0, 0) to (i - 1, n - i - 1), which is $\binom{n-2}{i-1}$.

https://doi.org/10.1017/S0004972700033062 Published online by Cambridge University Press

4. P_n AND P_n^+

In this section, we look at the polytope P_n in relation to P_n^+ . We first characterise the facets (which do not contain the origin) of P_n^+ . (In [4], there is a statement about the facets of P_n^+ , but it is slightly incorrect and there is no proof given, so we give a proof of the characterisation of the facets of P_n^+ .) Then, we prove the main theorem which shows how P_n^+ sits inside P_n . From this observation, we obtain an interesting identity on the number of paths, and find a triangulation of the product of two simplices. Remember that $S_{IJ} = \{\varepsilon_i - \varepsilon_j : i \in I, j \in J, i < j\}$, for a pair of disjoint subsets I, J of [n].

PROPOSITION 13. Let \mathcal{A} be the set of facets of P_n^+ which do not contain the origin, and $\mathcal{B} = \{(I, J) : I \cup J = [n], I \cap J = \emptyset \text{ and } 1 \in I, n \in J\}$. Then there is a one to one correspondence between \mathcal{A} and \mathcal{B} , such that the corresponding facet of $(I, J) \in \mathcal{B}$ is $\text{Conv}(S_{IJ})$.

PROOF: Note that when n = 3, the Proposition is clear. Let F be a facet of P_n^+ not containing the origin, and $S = \{\varepsilon_i - \varepsilon_j \in F\}$. We also let $f(\mathbf{y}) = \sum_{i \in I} \lambda_i y_i - \sum_{j \in J} \lambda_j y_j$, where $I \cap J = \emptyset, I \cup J = [n], \lambda_i \ge 0, \lambda_j > 0$, be a corresponding linear functional such that F maximises f on P_n^+ . Moreover, let M be the maximum value of f on P_n^+ . We let (I', J') be the disjoint pair of non-empty subsets of [n] given in the proof of Theorem 1. If $S_{I'J'} \ne \emptyset$ then $S = S_{I'J'}$. Moreover, if $I' \cup J' \ne [n]$, then we can ignore the number missed in the union of I' and J' and the case goes down to the case n - 1. Hence F can not be a facet, by induction. Hence $I' \cup J' = [n]$. If $1 \notin I'$ or $n \notin J'$, then 1 or n is completely ignored in $S_{I'J'}$ hence, by induction again, $1 \in I', n \in J'$.

Suppose that $S_{I'J'} = \emptyset$. We first state two basic facts.

- 1. $\{l : \varepsilon_l \varepsilon_j \in S \text{ or } \varepsilon_i \varepsilon_l \in S\} = [n]$, since with an (n-1)-set, the maximum dimension of a face is n-3.
- 2. M > 0, since the origin is not contained in F.

There are two cases to be considered, either I and J are non-empty, or one of I, J is empty.

Suppose that $I \neq \emptyset$ and $J \neq \emptyset$. Note that, by considering the elements in I' in the context of fact 1, we have $S_{I'J-J'} \cap S \neq \emptyset$ or $S_{I'I-I'} \cap S \neq \emptyset$, and those two cases are exclusive because of the difference of the possible values of M. (If $S_{I'I'} \cap S \neq \emptyset$ then the maximum of f on P_n^+ is 0, contrary to fact 2.)

We assume that $S_{I'J-J'} \cap S \neq \emptyset$. Then

$$S \subset S_{I'J-J'} \cup S_{I-I'J'} \cup S_{I-I'J-J'} \cup S_{J-J'J'} \cup S_{J-J'J-J'}$$

396

Let

[7]

$$I_1 = \{i \in I - I' : \varepsilon_i - \varepsilon_j \in S \text{ for some } j \in J'\}$$

$$I_2 = \{i \in I - I' : \varepsilon_i - \varepsilon_j \in S \text{ for some } j \in J - J'\}$$

$$J_1 = \{j \in J - J' : \varepsilon_i - \varepsilon_j \in S \text{ for some } i \in I'\}$$

$$J_2 = \{j \in J - J' : \varepsilon_i - \varepsilon_j \in S \text{ for some } i \in I - I'\}$$

$$J_3 = \{i \in J - J' : \varepsilon_i - \varepsilon_j \in S \text{ for some } j \in J'\}$$

$$J_4 = \{i \in J - J' : \varepsilon_i - \varepsilon_j \in S \text{ for some } j \in J - J'\}$$

$$J_5 = \{j \in J - J' : \varepsilon_i - \varepsilon_j \in S \text{ for some } i \in J - J'\}$$

Then $I_1 \cap I_2 = \emptyset$ because of the possible values of M. (Note that λ_i is constant on I'.) Moreover, J_1, J_2, \ldots, J_5 are mutually disjoint sets: It is easy to show that J_1, J_2, J_5 are mutually disjoint and J_3, J_4 are disjoint. To show that $J_2 \cap J_3 = \emptyset$, assume that there is $\varepsilon_j \in J_2 \cap J_3$; then $\varepsilon_i - \varepsilon_j \in S$ and $\varepsilon_j - \varepsilon_{j'} \in S$ for some $i \in I - I', j' \in J'$. Since $i < j < j', \varepsilon_i - \varepsilon_{j'} \in P_n^+$ and $f(\varepsilon_i - \varepsilon_{j'}) = f(\varepsilon_i - \varepsilon_j) + f(\varepsilon_j - \varepsilon_{j'}) = 2M > M$, we have a contradiction. Other cases can be proved in the same way.

We also define two subsets J'_1 and J'_2 of J' by

$$J'_{1} = \{ j \in J' : \varepsilon_{i} - \varepsilon_{j} \in S \text{ for some } i \in I - I' \}$$

$$J'_{2} = \{ j \in J' : \varepsilon_{i} - \varepsilon_{j} \in S \text{ for some } i \in J - J' \}$$

Then $J'_1 \cap J'_2 = \emptyset$. Now, if we count the possible number of affinely independent vectors in S, by the proof of Theorem 1, it is at most

$$(|I'| + |J_1| - 1) + (|I_1| + |J'_1| - 1) + (|I_2| + |J_2| - 1) + (|J_3| + |J'_2| - 1) + (|J_4| + |J_5| - 1) \le |I| + |J| - 5 = n - 5 .$$

Hence, S can not make an (n-2)-dimensional face.

If we assume that $S_{I'I-I'} \cap S \neq \emptyset$, then

As we did for the previous case, we define five mutually disjoint subsets I_1, \ldots, I_5 of I-I', four mutually disjoint subsets J_1, \ldots, J_4 of J - J' and two disjoint subsets J'_1, J'_2 of J'. Then, the number of possible affinely independent vectors is at most

$$(|I'| + |I_1| - 1) + (|J_1| + |J'_1| - 1) + (|I_2| + |I_3| - 1) + (|J_2| + |J_3| - 1) + (|I_4| + |J_4| - 1) + (|I_5| + |J'_2| - 1) \le |I| + |J| - 6 = n - 6 .$$

Hence S can not make a facet.

As for second case, we assume that $J = \emptyset$. Applying fact 1 to the elements of I', we have $S \subset S_{I'I-I'-J'}$ and the number of affinely independent vectors of S is at most $|I'| + |I - I' - J'| - 1 = |I - J'| - 1 \leq n - 2$. Therefore S can not form a facet. The proof for the case $I = \emptyset$ goes just the same.

For a given facet F, we produced $(I', J') \in \mathcal{B}$ so that $F = \text{Conv}(S_{I'J'})$ and the choice is unique as we proved in Theorem 1.

Conversely, if we have $(I, J) \in \mathcal{B}$ then $F = \text{Conv}(S_{IJ})$ is a facet, since $1 \in I, n \in J$. Moreover, since $f_{IJ}(\mathbf{y}) = \sum_{i \in I} y_i + \sum_{j \in J} y_j$ is a linear functional producing F, this is the inverse process of what we did above.

Observe that S_n (the symmetric group on n letters) acts on P_n as a linear transformation in the obvious way, by $\sigma \in S_n$ sending the vertex $\varepsilon_i - \varepsilon_j$ to another vertex $\varepsilon_{\sigma(i)} - \varepsilon_{\sigma(j)}$ (geometric representation of S_n). Let G be the cyclic subgroup of S_n generated by the *n*-cycle (12...n). Let F_{IJ} be the corresponding facet of P_n and F_{IJ}^+ be the corresponding facet of P_n^+ of the given pair of disjoint subsets I, J such that $I \cup J = [n]$. (For $F_{IJ}^+, 1 \in I$ and $n \in J$ should be satisfied also.) We say that a convex polytope F' is a *sub-face* of a face F of a polytope P if F' and F have the same dimension and $F' \subseteq F$. Two sub-faces of a given face are said to be *disjoint* if the dimension of the intersection is strictly less than the dimension of the given face.

PROPOSITION 14. Let (I, J), (I', J') be two pairs of disjoint subsets of [n] such that $I \cup J = I' \cup J' = [n]$ and $1 \in I'$, $n \in J'$. Let $g \in G$. Then $g(F_{I'J'}^+)$ is a sub-face of F_{IJ} if and only if g(I') = I and g(J') = J.

PROOF: The 'if' part is trivial. Let us assume that $g(F_{I'J'}^+)$ is a sub-face of F_{IJ} . Then $g(S_{I'J'}) \subseteq \{\varepsilon_i - \varepsilon_j : i \in I, j \in J\}$. Note that for each $i \in I'$ (or $j \in J'$), $\varepsilon_i - \varepsilon_n$ $(\varepsilon_1 - \varepsilon_j \text{ respectively})$ is in $S_{I'J'}$, hence $g(i) \in I$ and $g(j) \in J$. The proof is completed since $I \cup J = I' \cup J' = [n]$.

PROPOSITION 15. Let *I*, *J* be a pair of disjoint subsets of [n] such that $I \cup J = \{n\}$ and $S = \{(I', J', g_{I'J'}) : g_{I'J'}(I') = I, g_{I'J'}(J') = J, \text{ for } g_{I'J'} \in G \text{ and } 1 \in I', n \in J'\}$. Then $\{g_{I'J'}(F_{I'J'}^+) : (I', J', g_{I'J'}) \in S\}$ forms a set of disjoint sub-faces of F_{IJ} .

PROOF: Note that for $(I', J') \in S$, since $g_{I'J'}$ is a power of the *n*-cycle $(12 \dots n)$ and $1 \in I'$, $n \in J'$, there must be $i \in J$ such that $i + 1 \in I$. (If $g_{I'J'} = id$, then i = n, i + 1 = 1.)

Let $(I_1, J_1, g_{l_1} J_1)$, $(I_2, J_2, g_{I_2} J_2) \in S$ be distinct and $g_{I_1} J_1(F_{I_1}^+)$, $g_{I_2} J_2(F_{I_2}^+ J_2)$ be subfaces of F_{IJ} . Then there are two numbers i_1, i_2 such that $i_1, i_2 \in J$, $i_1 + 1$, $i_2 + 1 \in I$ and $g_{I_1J_1}(1) = i_1 + 1$, $g_{I_2J_2}(1) = i_2 + 1$ (hence $g_{I_1J_1}(n) = i_1$, $g_{I_2J_2}(n) = i_2$). Without loss of generality, we assume that $i_1 < i_2$. (If $i_1 = i_2$ then $g_{I_1J_1}(n) = g_{I_2J_2}(n)$ so $g_{I_1J_1} = g_{I_2J_2} \in G$. Hence $I_1 = g_{I_1J_1}^{-1}(I) = g_{I_2J_2}^{-1}(I) = I_2$ and $J_1 = J_2$.) We let $A = \{i_2 + 1, \ldots, n, 1, \ldots, i_1\}$, $|A| = a \neq 0$ (if $i_2 = n$ then $A = \{1, \ldots, i_1\}$) and B = [n] - A, $|B| = b \neq 0$. If there is $\varepsilon_k - \varepsilon_l \in g_{I_1J_1}(F_{I_1J_1}^+) \cap g_{I_2J_2}(F_{I_2J_2}^+)$ such that $k \in A$, $l \in B$, then $g_{I_1J_1}^{-1}(k) < g_{I_1J_1}^{-1}(l)$ but $A = g_{I_1J_1}(\{i_2 - i_1 + 1, \ldots, n\})$ and $B = g_{I_1J_1}(\{1, \ldots, i_2 - i_1\})$, hence we have a contradiction. The same argument excludes the case $k \in B$, $l \in A$ also. Therefore, the vertices of $g_{I_1J_1}(F_{I_1J_1}^+) \cap g_{I_2J_2}(F_{I_2J_2}^+)$ are $\varepsilon_k - \varepsilon_l$ where $(k \in A \cap I$ and $l \in A \cap J)$ or $(k \in B \cap I$ and $l \in B \cap J$). The biggest possible number of affinely independent vertices of $g_{I_1J_1}(F_{I_1J_1}^+) \cap g_{I_2J_2}(F_{I_2J_2}^+)$ is (a-1) + (b-1) = n-2. Hence the dimension of $g_{I_1J_1}(F_{I_1J_1}^+) \cap g_{I_2J_2}(F_{I_2J_2}^+)$ is strictly less than n-2.

For a given disjoint pair (I, J) of subsets of [n], we let P_{IJ} be the convex hull generated by the vectors in $\{\varepsilon_i - \varepsilon_j : i \in I, j \in J\} \cup \{0\}$.

The main theorem is the following.

THEOREM 16. [Main Theorem]

$$\bigcup_{g \in G} g(P_n^+) = P_n$$

Furthermore, if $g_1(P_n^+) \cap g_2(P_n^+) \neq \emptyset$ for $g_1 \neq g_2 \in G$, then the volume of the intersection is 0.

PROOF: The disjointness of $g(P_n^+)$ follows from Proposition 15. Therefore, we are only left to show that $G(P_n^+)$ is not only a part of P_n but also P_n itself. It is sufficient to show that

$$|G| \operatorname{Vol}_{H_n^+}(P_n^+) = n \operatorname{Vol}_{H_n^+}(P_n^+) = \sum_{i=1}^{n-1} \binom{n}{i} t_{i,n-i},$$
(1)

where $t_{i,n-i}$ is the volume of P_{IJ} , |I| = i and |J| = n - i, since

$$P_n = \bigcup_{\substack{\{I,J\}\\I \cup J = \{n\}}} P_{IJ}.$$

Note that $t_{i,n-i} = \left(\binom{n-2}{i-1}/(n-1)!\right)$ by Corollary 12, since P_{IJ} , |I| = i, |J| = n-j, is exactly the same polytope as $P^+_{\{1,\dots,i\}\{i+1,\dots,n\}}$.

By Theorem 8, the left hand side of Eqation (1) is

$$\frac{nC_{n-1}}{(n-1)!} = \frac{\binom{2(n-1)}{n-1}}{(n-1)!},$$

and the right hand side of Eqation (1) is

$$\frac{\sum_{i=1}^{n-1} {n \choose i} {n-2 \choose i-1}}{(n-1)!}$$

Equation (1) is verified because of the following well known equation: for fixed integers k, l, m,

$$\sum_{r} \binom{k}{r} \binom{l}{m-r} = \binom{k+l}{m}.$$

0

[9]

S. Cho

[10]

REMARK 1. The *n*-cycle (12...n) is a Coxeter element of S_n . Hence, Theorem 16 explains how the Coxeter elements of type A_{n-1} play a role in one way. However, Theorem 16 does not hold for the other types of root systems (at least for B_2 and G_2). To understand Theorem 16 in the wider context of finite reflection groups (or Coxeter groups), *n*-cycles of S_n might have to be interpreted differently (other than Coxeter elements), or a more general rule would be needed which covers the A_n case. Although we could not find a general version (in the context of Coxeter groups) of Theorem 16, we believe that it is a very interesting property in itself.

EXAMPLE 1. The following picture is P_4 , which is a 3-dimensional polytope. The shaded region is the intersection of P_4^+ with the boundary of P_4 . It is easy to check that exactly 4 copies of the shaded region form the boundary of P_4 .

As a corollary of Theorem 8 and Theorem 16, we have the following. COROLLARY 17.

$$\operatorname{Vol}_{H_n^+}(P_n) = n \operatorname{Vol}_{H_n^+}(P_n^+) = \frac{1}{(n-1)!} \binom{2(n-1)}{n-1}.$$

Some facets of P_n are a union of images of facets of P_n^+ . If we use the identity on the volume then we obtain an interesting result.

COROLLARY 18. For given n, i, j such that i + j = n, $i \neq 0$, $j \neq 0$ let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_i)$ be a sequence of non-zero integers such that $\sum_{l=1}^{i} \lambda_l = n$. Then the number of paths from (0,0) to (i-1, j-1), equally $\binom{n-2}{i-1}$, is equal to the sum

$$\sum_{\substack{(\lambda_{h(1)},\dots,\lambda_{h(i)}),\lambda_{h(i)}\neq 1\\\lambda\in\{(1,2,\dots,i)\}}} \text{number of paths from } (0,0) \text{ to } (i-1,j-1)$$
which exceed $P_{(\lambda_{h(1)},\dots,\lambda_{h(i)})}$,

Polytopes of roots

where $P_{(m_1,\ldots,m_l)} = \phi(m_1)\ldots\phi(m_{l-1})\psi(m_l)$ is the path from (0,0) to (i-1,j-1) obtained from (m_1,\ldots,m_l) by the following correspondence

$$\phi(m) = \underbrace{N \dots N}_{m-1 \text{ times}} E,$$

and

$$\psi(m) = \underbrace{N \dots N}{m-2 \ times}$$

PROOF: Define two subsets of [n] by

$$I = \{1, 1 + \lambda_1, 1 + \lambda_1 + \lambda_2, \dots, 1 + \lambda_1 + \dots + \lambda_{i-1}\}$$

and J = [n] - I. Then |I| = i, |J| = j and $(n - 1)! \operatorname{Vol}_{H_n^+}(P_{IJ})$ is the number of paths from (0,0) to (i - 1, j - 1) by Corollary 12. On the other hand, by Proposition 15 and Theorem 16, $\operatorname{Vol}_{H_n^+}(P_{IJ}) = \sum_{(I',J',g_{I'J'})\in S} \operatorname{Vol}_{H_n^+}(P_{I'J'}^+)$. Remember that S was defined by

$$\mathcal{S} = \{ (I', J', g_{I'J'}) : g_{I'J'}(I') = I, g_{I'J'}(J') = J, \text{ for } g_{I'J'} \in G \text{ and } 1 \in I', n \in J' \}.$$

Moreover, by Theorem 7, $(n-1)! \operatorname{Vol}_{H_n^+}(P_{I'J'}^+)$ is the number of paths from (0,0) to (i-1, j-1) which exceed the word $w_{I'J'}$.

For a given subset $A = \{a_1, a_2, \ldots, a_i\}$ of [n], such that $1 = a_1 < a_2 < \cdots < a_i$, we define the type of A as $type(A) = (a_2 - a_1, a_3 - a_2, \ldots, a_i - a_{i-1}, n+1-a_i)$. Then $type(I) = (\lambda_1, \lambda_2, \ldots, \lambda_i)$. Note that $(I', J', g_{I'J'}) \in S$ if and only if $type(I') = (\lambda_{h(1)}, \lambda_{h(2)}, \ldots, \lambda_{h(i)})$ for some $h \in \langle (1, 2, \ldots, i) \rangle$ and $\lambda_{h(i)} \neq 1$ since if $\lambda_{h(i)} = 1$ then $1, n \in I'$. Hence, we are only left to show that the path $P_{w_{I'J'}}$ is exactly the same as $P_{type(I')}$, and this is immediate from Definition 9, (4).

EXAMPLE 2. Let n = 6, i = 3, j = 3, $\lambda = (1,3,2)$, and let $N_{P_{(m_1,m_2,m_3)}}$ be the number of paths from (0,0) to (2,2) which exceed $P_{(m_1,m_2,m_3)}$. Then

the number of paths from (0,0) to (2,2)

$$= N(P_{(1,3,2)}) + N(P_{(2,1,3)}) = 3 + 3 = \binom{4}{2},$$

since $P_{(1,3,2)} = ENNE$ and $P_{(2,1,3)} = NEEN$.

COROLLARY 19. There is a triangulation with no new vertices of $\Delta_p \times \Delta_q$, $p, q \ge 0$, with $\binom{p+q}{p}$ simplices, where Δ_i is the *i*-dimensional simplex.

PROOF: Let $I = \{1, 2, \dots, p+1\}, J = \{p+2, p+3, \dots, p+q+2\}$ then $F_{IJ} \cong \Delta_p \times \Delta_q$ by Corollary 4. Now, Corollary 12 finishes the proof.

S. Cho

REFERENCES

- [1] A. Brøndsted, An introduction to convex polytopes, Graduate Texts in Mathematics 90 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).
- S. Cho, 'Minimal null designs and a density theorem of posets', European J. Combin. 19 (1998), 433-440.
- P. Frankl and J. Pach, 'On the number of sets in a null t-design', European J. Combin. 4 (1983), 21-23.
- [4] I.M. Gelfand, M.I. Graev and A. Postnikov, 'Combinatorics of hypergeometric functions associated with positive roots', in Arnold-Gelfand Mathematical Seminars 1993-1995 (Birkhäuser Boston, Boston, MA, 1997), pp. 205-221.
- [5] R.L. Graham, S.-Y. R. Li and W.-C.W. Li, 'On the structure of t-designs', SIAM J. Discrete Math. 1 (1980), 8-14.
- [6] J. Humphreys, *Reflection groups and coxeter groups*, Cambridge Studies in Advanced Mathematics **29** (Cambridge University Press, Cambridge, 1990).
- [7] R.A. Liebler and K.H. Zimmermann, 'Combinatorial S_n-modules as codes', J. Algebraic Combin. 4 (1995), 47-68.
- [8] S. Onn, 'Geometry, complexity, and combinatorics of permutation polytopes', J. Combin. Theory Ser. A 64 (1993), 31-49.
- B.E. Sagan, The symmetric group. Representations, combinatorial algorithms and symmetric functions, Wadsworth & Brooks/Cole Mathematics Series (Wadsworth, Inc., Pacific Grove, CA, 1991).
- [10] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152 (Springer-Verlag, Berlin, Heidelberg, New York, 1995).

ChungGu NaRae Apt. 102-901 ChunMin-Dong, Yusong-Gu Taejon 305-390 Korea e-mail: sjcho@math.kaist.ac.kr