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1. Introduction

It is well known that no rational number is approximable to order higher
than 1. Roth [3] showed that an algebraic number is not approximable to order
greater than 2. On the other hand it is easy to construct numbers, the Liouville
numbers, which are approximable to any order (see [2], p. 162). We are led to the
question, "Let Nn(cc,P) denote the number of distinct rational points with de-
nominators ^ n contained in an interval (a,jS). What is the behaviour of
NB(a,a + I/n) as a varies on the real line?" We shall prove that

and that there are "compressions" and "rarefactions" of rational points on the
real line.

Given a real number a, define the density of rational points at a, denoted by
Z)(a), by

W: shall prove that D(a) is a constant for irrational a and that D(p/q), where
(p,q) = 1, is a function of q only.

We now state the results. Throughout this paper [a] denotes the greatest
integer less or equal to a, and the constant implied by the 0-notation is an absolute
constant.

THEOREM 1. For any real a, Nn(z,ot. + 1/n) ^ \{n + 1).

THEOREM 2. Given any integers m and n satisfying 0 ^ m ^ K« + 1)> there
exists an a (indeed a rational a) such that Nn(a,a + 1 /n) = m.

THEOREM 3. If m, n > 0 are integers, then
243
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• 0 if m = 0

(1.1)
rr- Z 4>{r) + O(mlogm) otherwise,

m + \) r = 1

where (j)(r) is Euler's ^-function.

It is easy to prove that

(m m + 1\ .T /— m — 1 — m

and that, if m s m'(modn), then

/m m + 1\ /m' m' + 1\

It now follows that if Nn(m/n, (m + l)/n)is known for m = 0,1,2, •••[i(n —1)],
then Nn(mln,(m + l)/n) is known for all m.

COROLLARY 3.1 If m > 1, then

(1.2) . ) (

The next two theorems enable us to estimate iVn(a, a + 1 /n) if we can find a
rational point with "small" denominator near a.

THEOREM 4. / / 0 < v ̂  1, (p, g) = 1, q > 0, fften

O i/

n lvJ? / r \ <j>{r)
— 2v 11 1 hO(v^logv^) otherwise.

COROLLARY 4.1 / / 0 < v g 1, (p, q) = 1, q > 0, then

(1.4) —Nn (—,—+—) =-^- + 01 )

q )

COROLLARY 4.2 / / n > 0, v > 0 and n + v = 1,

The next theorem helps us to estimate Nn(a, a + 1 /n) when no rational point
in the interval (a, a + 1/n) has a small denominator of order 0(nE), £ < i-
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THEOREM 5. If fi>0, then

(1.5) Nn (Z- + A , 2 . + ^ t i ) = ^n + Bn + 0{(n + l)q\og(n
\q n q n ]

where

and

1 ["?+9:i / r \ S(r)
(1.7) 5 = — I ( l - - _ — ?!L±.

The following two theorems are on the density of rational points at a point
on the real line.

THEOREM 6. If(p,q) = 1,

« r= l
and, for large q,

^

q) n2 \ q

THEOREM 7. / / a is irrational, then

2. Proof of theorems 1 and 2

PROOF OF THEOREM 1. Suppose that

Xj X2 Xr Xj X2 Xs

Vi ' y2 " • rr ' yt" y2' '" yM'

are the distinct rational points in (a, a + 1 /n) satisfying

1 ^ 3̂1 ^ y2 - S yr < in < yl ^ ... ^ y's ^ n.

For every yt ^ \n, there exists integers ch y's+i, x's+i such that

c,X; = x;+ ; and in < c;y; = j s ' + i ^ n.

It is easy to see that no two of

y[, y2---y's, y*+u-~ y'r+s

are equal, for yj = y'k implies
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y\ n

This contradicts that the open interval (a, a + 1 In) is of length 1 In. Hence

Nn (<x,cc + - i j = r + s ^ n - [> ] g K« + 1).

PROOF OF THEOREM 2. Clearly 0 < 1 \y < 1 /n only if y > «. So

Next we see that if 0 < m ^ \n, then because 1 /(« - m) ^ 2/n the only rational
numbers with denominators < n contained in the interval

/ 1 1 1 \
\n — m n' n — m /

are
1 1
n ' n - 1' ' n - m + 1 '

Hence

— m n n — m/

Lastly if m = i(n + 1), then n is odd and

2 1 2 2 2
n n-m + 1 n n + l n(n + 1)

Thus

\ n n ] n(n +1)

This completes the proof of Theorem 2.

3. Lemmas

In this section we prove the lemmas required for the proofs of Theorems 3-7.
Consider the set

of s consecutive integers with c + 1 as the first element. Let Tc,s(r) denote the
number of integers in the set SCiS, which are relatively prime to r. We use d(f) to
denote the number of divisors of r. Note that if r | s, then

d\r
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We prove

LEMMA 1. For all integers c, s > 0, we have

247

and

PROOF. By theorem 261 of ([1], p. 234), we deduce for c ^ 0 that

So for c ^ 0,

Hence

rc,s(r) — T0,s + c ~ r0,c

*e.Ar)-y<Kr) im-BK
=g 2 l

rf|r

If c < 0, then there exists an integer a such that c' = c + ar > 0 and tCjS(r)

So

- 1,

as required.
Let Tr(of, /?) be the number of integers, relatively prime to r, which are contained

in the open interval (a,jS). We prove

LEMMA 2. For all a. and /?, a < /?, we

PROOF. Let s be the number of integers in (a,/?), then

for some c. It follows from Lemma 1 that
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>(r) s<Kr) Q3 - a - s)<Kr)

^ d(r).

LEMMA 3. For all positive integer n

£ d(r) = it log n + (2y - l)n + O(>)
r = l

where y is Enter's constant.

PROOF. This is proved in [2], p. 264.

LEMMA 4. (c / . [ l ] , p. 131. 7.23-24) Let n be a positive integer. Then

(b)

PROOF, (a) is proved in [2], p. 268
(b) can be proved similarly.

4. Proofs of theorems 3, 4 and 5

PROOF OF THEOREM 3. We have shown in the proof of Theorem 2 that

Given r > 0, let

r m

Obviously Sr is empty if r > m. Moreover if m ^ r ^ 1, then

rn
— e Sr if and only if — > y > and (r,y) = 1.

We deduce that the number of rational points in Sr is xr{m /(m + 1), rn /m). By
Lemma 2,

/ r« m\ _ (rn nr \ 4>{r)
Xr\m + V mj ~ \m m + 1} r +*r

m(m + 1)
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where

Therefore

N

By Lemma 3,

(m m

m

E
. — 1

Distribution

+ 1\

VII

m

of

n
71 -

rational points

d(r).

m

h i ) r = 1

r) = O(m log m).

249

This proves Theorem 3.

PROOF OF COROLLARY 3.1 Using Lemma 4, we see that

ro(m + 1) ,.„! ^ m(m
1 3m2 /mlogm\

+ 1) rc2 I m(m + 1)/

n2 \ m
The proof is complete.

PROOF OF THEOREM 4. To determine Nn(p/q,p/q + v/n), 0 < v ̂  1, we look
for rational numbers x/y such that

(x,y) = l, n ^ y ^ l

and

Q <X p _xq-yp <V

y q yq n '

Since at most one of m/n, m an integer, is in the interval (p/q,p/q + v/n), we
shall neglect the rational points with denominator n and let

Sr = Jy: xq-yp = r, (x,y) = 1, n > y ^ 1,-^ > -^- > 0 j .

Here Sr is empty if r > [yq}. We assume [v#] ^ r ^ 1.
Since (p,g) = 1, there exist integers xo,j>o such that

- yop = !•

Moreover, all integral solutions of

(4.1) xq - yp = r

are given by

(4.2) x = rx0 + pt, y = ry0 + qt.

https://doi.org/10.1017/S1446788700013008 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013008


250 T. K. Sheng [8]

Now (4.2) implies (r, t) | (x, y) and hence (r, t) = 1. It follows that

— e S , if and only if (r,i) = 1 and n> ryo + qt > ,

which can be reduced to

1L _ rll > t > UL - r2l
q q vq2 q

Thus the number of elements in Sr is equal to

(AX\ lrn ry° " ryA " /i r ^ ^ r ) j -«
\vq2 q q q / q \ vq) r

where | t\T | ^ d(r) by Lemma 2. So by Lemma 3,

which is (1.3) and the proof is complete.

PROOF OF COROLLARY 4.1 It follows easily from Lemma 4 that

and that

So

, o / l o g [ v g ] \ 3v | 0

\ ) n2q r = 1 V vq/ r qn2 vq2n2 \ q

PROOF OF COROLLARY 4.2 This follows from

Nn (I- - H.,2-)=N ( - ^ ^- + *
" \q n' q) "\ q q n

PROOF OF THEOREM 5. If x[y is in (p/q + nln, p/q + (fi + l)/n) and

±s y ^ n, then

H x p xq — yp /x + 1

n y q yq w

Putting xq — yp = r, we obtain from the above inequalities,

rn rn

M 0* + 1)?
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As in Theorem 4, neglecting rational points with denominator n, we let

Here SP is empty if r > (ju + l)q. Moreover if x/ye Sr then

rn rn
\xq (/z + Y)q

and

n > y > , + y, if Ifiq + q] ^ r ^ [/zg + 1].

Using the same argument in Theorem 4, we deduce that the number of elements
in Sr is equal to

and is equal to

(4-5) j i ' -
where | r\r\ ̂  d(r). It now follows from (4.4) and (4.5) that

q n q n

where A, B are given in (1.6) and (1.7). Using Lemma 3, we obtain (1.5). This
proves Theorem 5.

5. The function D (a)

In this section, we prove the theorems on the density of rational points.

PROOF OF THEOREM 6. Putting v = \, we obtain from (1.3) that

It now follows from this equation and

2 n , 4 / "\ 1 > 1 2n

that

Nn I— --^—,— + — = — E 1 r i j L + O(glog4).
" \ 4 2 « ' 4 2 n / 4 , - i \ 9 / r

Hence
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1 I
as required.

For large q, using Lemma 4, we see that

and the proof of Theorem 6 is complete.

PROOF OF THEOREM 7. Given an irrational real number a, let [ao,ai,a2, •••]
be the infinite simple continued fraction representation of a and let

denote the convergents. It is well known that

1±
<ls

and that qs<qs+1 if s > 0.

We may suppose then that

(5.1)

<
1

Now for every n, there exists an s such that

(5.2) q2
s<2n^ql+1.

We consider separately the cases

ql < In ^ q*, q? < In ^ K Ŝ
K, fcgs

K < 2n ^ gs
2

+1;

if either of ^ j , K^ îs greater than ^ j + L, then one or more of the cases does not arise.
We prove that if (5.2) holds, then

Case 1. Suppose that q* g,2n£ q£ Then
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and there exist positive numbers //, v satisfying fi + v = 1 such that

a 1 = Ps **
In qs n

and

2n #s n

It now follows from Corollary 4.2 that

2n' 2n/ n "\qs n q, n

, since n

Case 2. Suppose that Kq* < 2n ^ q*+1.

Here

Ps+l
— a

1

qs+i

and there exist positive numbers fi,v such that fi + v = 1,

So

In

~2n
By Corollary 4.2,

In In) n2 \ qs+1

because qs < qs+1 < q*'1 and Kq* < In.

Case 3. Suppose that q* < In ^ K ^ . Writing p for p4, q for qs and putting

2n = (2^ + l)gK,
we obtain

(5.4) 1 < 2/i + 1 ^ K and — = 2 ^ + 1

5K 2n
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In (5.1), if a - pjq = l / « \ then by (5.4),

(5.5) l_J_,Z

q n q n

On the other hand if a - p/q = - 1 lqK, then

"\q n 'q n j

q n q n

Using (1.5) we obtain, from (5.5) or (5.6),

where A, B are given in (1.6) and (1.7). Clearly, as K > 2,

(2yU + l)q«

= O llogKq

We now prove

n2 \ q

First suppose fi^q. Then by Lemma 4,
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1
B = (la+Mzi\ ffi

\ 1 I r

Thus (5.3) is true if n ;> g.

Next we suppose 0 < fi<l/q. Then [/*#] = 0. So A = 0 and

Thus (5.3) is true if 0 < p < 1 /«.

Lastly suppose 1/q ^fj.<q. Then using Lemma 4, we see that

A =

and

r-i I 0* + 1)4 / r 9 ,- i I 0i +1)4

+ O /log q \

_6 _ 3C2/I + 1) /log g \
^ 2 (Ai + 1)^2 \ « /

Thus

^ \ 4

We have shown that (5.3) is true if

This proves Theorem 7.

The author would like to thank Professor E. S. Barnes for his help in proving
the results of this paper.
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