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Abstract

Magmatic activity in the Sakarya Zone, an important segment of theAlpine orogenic belt, continues
intermittently from the middle Carboniferous to Miocene. In this study, we provide
geochronological and geochemical data from the Dağdibi Pluton in the eastern Sakarya Zone to
present some inferences on the source region and petrogenesis of the middle Eocene magmatism.
U–Pb zircon geochronology from two granodiorite samples gives middle Eocene ages of
44.75± 0.92 and 45.01± 0.59Ma. The pluton ismainly composed of K-feldspar, plagioclase, quartz,
Mg-hornblende/actinolite, Fe–Ti oxides and small amounts of biotite, and secondary chlorite and
epidote. Parental magma of the intrusive rocks has a high-K calc-alkaline affinity with
metaluminous character. The oxygen fugacity values vary between −18 and −17. The rocks show
slightly radiogenic 87Sr/86Sr(i) (0.704845–0.705726) ratios and ϵNdi values between −0.96 and
þ0.52. Pb–Pb isotope ratios are typical for those of the lower continental crust. ϵHf(i) values of the
zircons range from 0.14 to 10.26. The geochemical and isotopic features of the pluton point to a
parental magma derived from a depleted mantle that was metasomatized by fluids during previous
subduction events. The volumetric abundances of the rock types are decreased as the silica content
increase, implying that the fractional crystallization is the most important process during the
formation of the present compositional range of the pluton. Amphibole, plagioclase and Fe–Ti
oxides are the fractionated phases while K-feldspar is largely accumulated. In the light of the data
presented above, slab breakoff is regarded as the geodynamic process responsible for the formation
of the Dağdibi Pluton in the middle Eocene.

1. Introduction

The Dağdibi Pluton is located in the eastern part of the Sakarya Zone, Turkey, a crustal segment
lying in the middle parts of the Alpine-Himalayan Orogenic Belt. Although the igneous rocks
with ages varying from Carboniferous to Miocene are found in the eastern Sakarya Zone, those
formed in the time interval from the Late Cretaceous to the end of Eocene are very common
(Sipahi, 2005, 2017, 2019; Arslan & Aslan, 2006; Boztuğ et al. 2007; Kaygusuz et al. 2012, 2018,
2020; Temizel et al. 2012; Aydınçakır, 2014; Sipahi & Sadıklar, 2014; Gücer et al. 2017; Dokuz
et al. 2019; Sipahi et al. 2020a, 2020b, 2022; Gücer, 2021). Particularly the eastern part of the
Sakarya Zone is therefore regarded as a paleo-magmatic arc and a natural laboratory to study the
tectonic and petrogenetic processes that occurred through the time interval from the final stages
of subduction to post-collision. Geochemical data are widely used to discriminate the tectonic
settings of igneous rocks during their formation. However, magmas formed during active
subduction and collision can bear similar geochemical compositions because their trace element
budgets are closely related to their abundance in protolith (e.g., Roberts & Clemens 1993; Dokuz
et al. 2019). Thus, additional data from other disciplines, such as structural geology, stratigraphy
and sedimentology, are needed to arrive at a realistic tectonic setting for magmatic rocks.

Although there are plenty of studies on the Eocene igneous rocks in the eastern Sakarya Zone
(Fig. 1a), the cause of the Eocene magmatism is still not fully understood. Late Cretaceous
subduction-related magmatism was followed, after a magmatic stagnation of ~10–12 Ma, by a
short-lived adakitic magmatism that occurred in a time span from 56 to 50 Ma with a peak at
around 52–50 Ma (Karslı et al. 2010; Eyüboğlu et al. 2011; Dokuz et al. 2013; Gücer, 2021) and
then a non-adakitic magmatism varying in age from 50 to 38 Ma (Boztuğ et al. 2004; Arslan &
Aslan, 2006; Karslı et al. 2012; Eyüboğlu et al. 2017; Sipahi et al. 2017; Kaygusuz et al. 2018;
Dokuz et al. 2019; Sipahi et al. 2022).
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The Dağdibi Pluton is one of themembers of themiddle Eocene
non-adakitic plutons. We present U–Pb zircon geochronology,
whole-rock geochemistry, Sr–Nd–Pb isotopes and microprobe

data to contribute to our understanding of petrogenetic and
geodynamic processes acted during the middle Eocene
magmatism.

Figure 1. (Colour online) (a) Distributions of the plutonic rocks of Late Cretaceous and Eocene ages in the eastern part of the Sakarya Zone and (b) Geological map of the Dağdibi
Pluton and surrounding area. 1: Karslı et al. (2012); 2: Taner (1977); 3: Moore et al. (1980); 4: Çınar (1975); 5: Delaloye et al. (1972); 6: Boztuğ et al. (2007); 7: Karslı et al. (2007);
8: Arslan & Aslan (2006); 9: JICA (1986); 10: Sipahi et al. (2022); 11: Sipahi et al. (2017); 12: Boztuğ et al. (2004).
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2. Geological setting

Basement rocks of the Sakarya Zone are represented by early
Carboniferous metamorphic rocks (Topuz et al. 2007; Dokuz et al.
2022), and middle to late Carboniferous granitic (Dokuz, 2011;
Kaygusuz et al. 2012) and rhyolitic rocks (Dokuz et al. 2017a). The
basement metamorphic and rhyolitic rocks are unconformably
overlain by the upper Carboniferous sedimentary rocks (Okay &
Leven, 1996; Dokuz et al. 2023). Late Permian and Triassic rocks,
which are common as allochthonous blocks within the accre-
tionary complexes of the central and western Sakarya Zone, are
absent in the eastern Sakarya Zone. The time period from the Late
Triassic to Early Jurassic is regarded as the birth of the Neotethys
Ocean behind the ribbon-shaped Cimmerian Continent, which
was separated from the northern margin of Gondwana during the
closure of the Paleotethys Ocean (Şengör & Yılmaz, 1981; Dokuz &
Sünnetçi, 2019). The Early Jurassic is represented by sedimentary
and basic volcanic rocks that lie unconformably over the Variscan
basement (Dokuz & Tanyolu, 2006) and some basic to
intermediate plutonic rocks (Dokuz et al. 2006; Eyüboğlu et al.
2016; Karslı et al. 2017). The Late Jurassic-Early Cretaceous period
is characterized by platform-type carbonates and few magmatic
rocks (Dokuz et al. 2017b).

The sedimentary rocks deposited in the Late Cretaceous in the
eastern Sakarya Zone show distinct facies differences from north to
south related to the northward subduction of the Neotethyan
oceanic lithosphere (Yılmaz & Boztuğ, 1996; Şengör et al. 2003;
Sipahi & Sadıklar, 2014; Kandemir et al. 2019). A sedimentary
succession in the fore-arc side to the south temporally corresponds
to at least four different volcano-sedimentary units in the back-arc
side to the north (Aydin et al. 2020; Oğuz-Saka et al. 2023). Upper
Cretaceous granitic rocks are dominated in the inner-arc
environment of the eastern Sakarya Zone (Yılmaz & Boztuğ,
1996; Şengör et al. 2003; Sipahi et al. 2018a).

Adakitic rocks emplaced approximately 10–12 Ma after the
collision of the Anatolides with Sakarya Zone are a single rock-
record formed in the late Palaeocene to early Eocene period (Topuz
et al. 2005; Eyüboğlu et al. 2011; Dokuz et al. 2013). Non-adakitic
magmatic rocks began to form in the region almost coevally with
the final stage of the adakitic rocks (Aydınçakır, 2014) and
continued to middle Eocene (Arslan et al. 2013). The middle
Eocene units in the eastern Sakarya Zone crop out in east-west
trending semi-isolated areas and are represented mainly by
volcano-sedimentary rocks. Basalt, andesite and lesser trachytes
with a predominantly calc-alkaline to some alkaline geochemical
tendencies are the dominant rock types (Arslan and Aslan, 2006;
Temizel et al. 2012; Göçmengil et al. 2018). The Eocene plutonic
rocks with a compositional range from gabbro to granite are more
common in the central to northern parts of the eastern Sakarya
Zone and offer similar geochemical characteristics with those of
the extrusive rocks (Eyüboğlu et al. 2016, 2017; Dokuz et al. 2019;
Sipahi et al. 2022).

The Dağdibi Pluton intruded into the Upper Cretaceous
volcanic and sedimentary rocks. The volcanic rocks comprise
basalt, andesite, dacite and associated pyroclastic rocks (Figs. 1b
and 2). Sedimentary rocks consist of grey sandy limestone and
limestone. The Upper Cretaceous limestone includes olistoliths of
the Upper Jurassic-Early Cretaceous low-grade contact metamor-
phic limestone. The Dağdibi Pluton, which is the youngest unit of
the study area, cuts all the older units (Figs. 1b and 2a) and crops
out in an area of about 12 km2 with an oval shape extending in
southwest–northeast directions (Fig. 1b). The pluton contains

mafic microgranular enclaves ranging in size from 0.5 to 5 cm.
They are angular in shape and darker in colour and have finer-
grained texture than their host pluton. A skarn zone was developed
at the limestone contact of the pluton in the eastern boundary.
Along this contact, the limestone was transformed into marble and
in places recrystallized.

3. Analytical methods

U–Pb Ages: The U–Pb zircon geochronology of the selected
samples was performed at the Korea Basic Science Institute
Laboratory (South Korea). Cathodoluminescence (CL) images
were taken to determine the points to be analyzed on the zircon
grains and to control the internal structures of zircon grains.
Zircon U–Th–Pb isotopes were measured using SHRIMP
(Sensitive High-Resolution Ion Microprobe) IIe/MC at the
Korea Basic Science Institute. A 2–4 nA mass-filtered O2 primary
beam was focussed on an elliptical spot with a diameter of
20 × 25 μmwith a 120 μ Kohler aperture on the polished surface of
the zircon with an accelerating voltage of 10 kV. Each spot was
scanned with a primary beam for 2–3 min prior to analysis and
then analyzed with a single electron multiplier for five cycles. FC1
(1099Ma; Paces &Miller, 1993) and SL13 (U = 238 ppm) standard
zircons were used for Pb/U calibration and U abundances,
respectively. Th/U ratios were calculated using a fractionation
factor derived from 232Th16Oþ/238U16Oþ measured against 208Pb/
206Pb of the SL13 standard, while Pb/U ratios were calibrated
against FC1 using the power law relationship between Pbþ/Uþ and
UOþ/Uþ. Common Pb was removed by the correction method of
207Pb (<1000Ma for dates) or 204Pb (>1000Ma for dates) using the
model of Stacey &Kramers (1975). Data processing was carried out
using SQUID 2.50 and Isoplot 4.15 programs running under
Excel® (Ludwig, 2012). Zircons with high U concentrations
(>2500 ppm) were corrected using the algorithm of Williams &
Hergt (2000).

Whole Rock Geochemistry: Representative samples were
selected for major, trace, and rare earth element (REE) analyses
at the commercial ACME Laboratories, Ltd., Vancouver, Canada.
Major elements were measured with inductively coupled plasma–
atomic emission spectrometry after fusion with LiBO2. The 0.2 g of
powder sample and 1.5 g of LiBO2 flux were mixed in a graphite
crucible and subsequently heated to 1050°C for 15 min for trace
elements and REE analyses. ICP-AES was used to measure major
oxide elements and ICP-MS to measure trace and REEs.

Mineral Chemistry: Microprobe analyses were made on five
samples from the studied pluton at the Geology and Mineral
Research Laboratory of the New Mexico Institute of Mining and
Technology, USA. Plagioclase, K-feldspar, biotite, amphibole,
pyroxene and Fe-Ti oxide minerals were analyzed using a
CAMECA-SX 100 brand microprobe-3 wavelength dispersive
(WD) spectrometry device. The device worked with the 15 kV
voltage and 20 nA.

Sr, Nd, Pb isotopes Analysis: Rb–Sr, Sm–Nd, and Pb–Pb isotope
geochemistry analyzes of five samples were performed with
Thermal IonizationMass Spectrometry (TIMS) Laboratory at New
Mexico State University (USA). Isotopic measurements were made
by TIMS on a VG Sector 30 mass spectrometer. Samples analyzed
were loaded on rhenium layers either on monofilament Cathodian
beads only or on the sidewall of the triple filament junction. The
repeatability of the 87Rb/86Sr and 147Sm/144Nd ratios is within 0.3%
and the 87Sr/86Sr and 143Nd/144Nd ratios are within ±0.0000025
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and ±0.00003, respectively. An analysis of the NBS 987 standard
yielded values of 0.710226 (11), 0.710213 (13), 0.710219 (10), and
0.710260 (11). Pb samples were analyzed using the middle filament
position of a set of Cathode beads. The samples were loaded in a
matrix of silica gel and phosphoric acid and using 5% HNO3.
Approximately 2 μL of silica gel was placed on the filament and
1 μL of phosphoric acid was added. Standards were also loaded and
analyzed using the same procedures. The average of standard
treatments was determined as 206Pb/204Pb= 16.844, 207Pb/
204Pb= 15.379 and 208Pb/204Pb= 36.199. The deviations from
the standards are within 0.2%. Ramos (1992) provided detailed
analytical procedures for isotopic measurements of Sr and Nd.

Lu–Hf isotope Analysis: Lu–Hf isotope analysis on single
zircons of the pluton was made using a LA-MC-ICPMS with Nu
Plasma II, Nu instrumentsþNewWave Research 193 nMArF, ESI
at the Korea Basic Science Institute (KBSI). Instrument parameters
include a spot size 50 μm, a 10 Hz repetition rate, and energy
density of 6–8 J/cm2, dwell time 60 s for Hf isotope analysis of
zircon. The interference of 176Lu and 176Yb on the 176Hf signal was
corrected by using Chu et al. (2002) and Vervoort et al. (2004),
respectively. Mass bias of measured Hf isotopic ratios was
corrected to 179Hf/177Hf= 0.7325, using an exponential correction
law (Russel et al. 1978; Patchett et al. 1981). The 176Lu/177Hf and
176Yb/177Hf ratios were calculated after Iizuka & Hirata (2005).
Data reduction was carried out using Iolite 2.5 running within Igor

Pro 6.3.5.5 software program (Paton et al. 2011). All ratios were
calculated with 2σ errors. During the sample analysis, to evaluate
the precision and accuracy of 176Hf/177Hf ratios, two reference
zircons 91500 (0.282297; Griffin et al. 2000) and Plešovice
(0.282482; Sláma et al. 2008) were repeatedly analyzed at the
beginning and end of each analytical session, and at regular
intervals during session.

4. Results

4.a. Petrography

The contacts of the Dağdibi Pluton are discordant with
surrounding rocks (Fig. 2). Fe skarn mineralization was developed
between the pluton and limestone–andesite contact in the Kopuz
area (Sipahi et al. 2018b).

The Dağdibi Pluton consists, in decreasing order of abundance,
of quartz diorite, granodiorite and granite with a zonal structure.
The granodiorite and granite are located in the central portions of
the pluton (see Fig. 1b). The rocks of the pluton show medium-
grained, monzonitic, poikilitic and micrographic textures.
Orthoclase, plagioclase (An16–40), quartz, biotite, hornblende
and augite are the major mineral phases found in the rocks, and
zircon and apatite are the accessory minerals. Sericite, chlorite,
epidote and clay minerals are found as secondary phases.

Figure 2. (Colour online) Field, outcrop and
hand-sample photos of the studied pluton. (a)
Contact between granodiorite, marble and
volcanic rocks (C3, K-21), (b) Diorite (C8B) and
(c) Hand-sample of granite.
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The quartz diorite samples include, in decreasing order of
abundance, plagioclase, hornblende, quartz, orthoclase, biotite and
opaque minerals (Table S1; Fig. 3). Biotite is added to above
mentioned major phases in the granodiorites. The granite has
quartz, orthoclase, plagioclase, hornblende, biotite and opaque
minerals (Table S1; Fig. 3).

Hornblende is in euhedral and subhedral forms. Some of them
show twinning and some others are slightly chloritized. Plagioclase
has euhedral and subhedral forms and is slightly sericitized and
partially fractured. It shows albite twinning and commonly
presents ring zoning with sieve texture. Orthoclase occurs in the
form of subhedral small crystals and shows in places Carlsbad
twinning. Poikilitic and perthitic textures are observed in some
orthoclase crystals. Small hornblende, plagioclase and opaque
mineral inclusions are observed in areas where poikilitic texture is
found. Orthoclase has altered into clay and sericite. Myrmekitic
texture is seen between orthoclase and plagioclase. Quartz is found
as large and small anhedral crystals. Quartz with subhedral
orthoclase fills the gaps between the other minerals. Wavy
extinction is observed in some quartz crystals. Biotite is in the form
of euhedral to subhedral crystals and slightly altered into chlorite.
Opaque minerals consist of magnetite and pyrite.

4.b. Mineral chemistry

The chemical compositions of the plagioclase, K-feldspar,
amphibole, biotite and magnetite from the samples of the pluton
are given in supplementary Table S2.

Plagioclase: Compositional zoning is, more or less, a ubiquitous
feature of the plagioclases from the pluton. It is indicated by the
variation of anorthite (An) end-member from 10.25 in the rim to
61.95 in the core (Fig. 4a). As shown by An–Ab–Or classification
diagram (Smith & Brown, 1988), rim composition of the
plagioclases is largely oligoclase and anorthite increase towards
the core of the plagioclases generally reaches up to andesine and, to
a very lesser extent, labradorite composition (Fig. 4a).

Orthoclase: In contrast to plagioclase, SiO2 content of
orthoclase does not display a large variation. A similar situation
is valid for the Al2O3 and K2O contents as well. All these show the
absence of an important compositional zoning in orthoclase
(Fig. 4a). The Or end-member of the orthoclase varies fromOr93 in
the cores to Or83 in the rims (Table S2).

Hornblende: Amphiboles display calcic composition (Caþ
Na>1; 0>Na<0.5;) and plots in Mg-hornblende and actinolite
fields in the amphibole classification diagram of Leake et al. (1997)
(Fig. 4b). The rims of amphiboles show actinolite composition. Si
and Alt contents of hornblende increase together. The MnO and
TiO2 contents of hornblende vary from 0.27 to 1.08 wt% and 0.10
to 2.03 wt%, respectively, and Mg/(MgþFe2þ) ratios between 0.56
and 0.76. Hornblende generally contains low F (0.19 to 0.55 wt%)
and Cl (0.02 to 0.29 wt%), indicating that there is no volatile
enrichment during its formation.

Biotite: Feþ2/(Feþ2þMg) and Mg/(MgþFe2þ) ratios of biotite
are between 0.39 and 0.49, and 0.51 and 0.61, respectively. Biotite is
the product of solid solution series between phlogopite and annite
end-members and has 60% phlogopite and 40% annite that is
slightly closer to the magnesium-rich phlogopite end (Fig. 4c).

Magnetite-ilmenite: Magnetite contains 0.06 to 0.34 wt% of
TiO2 and 91.42 to 93.27 wt% of FeOt, and same major oxide
contents in ilmenite vary from 46.97 to 48.27 wt% and 45.44 to
48.04 wt%, respectively (Table S2). Magnetite is the product of
ulvospinel-magnetite solid melt, and mostly has compositions

close to the magnetite end (Fig. 4f). Ilmenite is located between
ilmenite and hematite.

4.c. U–Pb zircon geochronology

In order to determine the timing of magma emplacement and
constrain its crystallization age, U–Pb zircon SHRIMP dating was
performed on two granodiorite samples (Tables S3). Zircons are
generally small to moderate crystals varying in size between 70 and
310 μm (Fig. 5a). They are commonly elongated grains, mostly
euhedral to subhedral in shape and partly fractured. The
compositional zoning is a common feature of the zircon grains,
indicating that zirconminerals are of magmatic origin. Xenocrystic
core is rarely observed. Zircon grains from the sample C1 have
Th/U ratios in the range of 0.57 to 1.29 (Table S3). The minimum
206Pb/238U (1σ) age is 42.7 ± 1 Ma and the highest 206Pb/238U (1σ)
age is 48.0 ± 2 Ma (Fig. 5a and b). The weighted average
(concordia) age is 44.75 ± 0.92 Ma (MSWD= 1.2) for the sample
C1 and 45.01 ± 0.59 Ma (MSWD = 2.0) for the sample C4, which
correspond to the Lutetian (Eocene) and is interpreted as the
intrusion age of the pluton (Fig. 5b).

4.d. Geochemistry

4.d.1. Major, trace and REEs
Geochemical compositions of the analyzed samples are presented
in supplementary Table S4. Similar to the distribution shown in the
modal QAP diagram, the samples have a wide compositional range
from diorite to granite in the classification diagram of Middlemost
(1994) (Fig. 6a). Samples fall in the field of rocks with magnesian
affinity in the diagram of Frost et al. (2001).

The samples with ASI [molar Al2O3/(CaOþNa2OþK2O)]
values lower than 1 are metaluminous in character (Fig. 6d). They
present a high K calc-alkaline composition in the K2O-SiO2

diagram (Le Maitre, 1989).
Major oxides and some trace elements versus SiO2 diagrams

show almost linear covariations (Fig. 7), suggesting that fractional
crystallization (FC) is an effective tool in the development of
compositional range in the pluton. Negative correlations of CaO,
MgO, Al2O3, Fe2O3t, TiO2 and P2O5 against SiO2 are distinct,
whereas K2O and Na2O display positive relationships. Trace
elements, except for Sr, also generally show an obvious positive
correlation against SiO2. The scattered distribution observed in Ni
may be partially related to weathering, contamination or magma
mixture.

In the primitive mantle-normalized multi-element diagram
(Fig. 8a), the samples of the Dağdibi Pluton present enrichments of
large ion lithophile elements (LILE) such as Rb, Ba and Th

Figure 3. (Colour online) QAP diagram (modified from Streckeisen, 1976) for the
modally analyzed samples of the pluton.
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generally over 100 times relative to high field strength elements
(HFSE). Negative anomalies in Nb, P and Ti, and a positive
anomalies in Pb are quite pronounced (Fig. 8a), which are typical
for those formed in subduction and post-collisional settings with
protoliths metasomatized via the addition of solutions during the
previous subduction.

REEdistributions of the samples normalized to chondrite (Boynton,
1984) are shown in Fig. 8b. Light rare earth elements (LREE) are more

enriched in the granodiorite samples than those of the others. The
LREEs are generally moderately fractionated compared to HREEs (La
N/LuN= 4.12–7.90) and samples have moderate to strong negative Eu
anomalies (Eu/Eu *= 0.55–0.82) (Fig. 8b).

4.d.2. Sr, Nd and Pb isotope geochemistry
Mean age of 45 Ma was used for the calculations of 87Sr/86Sr(i),
ϵNd(i) values, andNd depletedmantlemodel ages (TDM1 andTDM

2;

Figure 4. (Colour online) (a) The An–Ab–Or classification diagram for the feldspars of the pluton (modified from Smith & Brown, 1988; data of K-55 and K-40 from Sipahi et al.
2018b). (b) Classification of amphiboles from the pluton (modified from Leake et al. 1997; data of K-55 and K-40 from Sipahi et al. 2018b). (c) Si vs Fe2þ/(Fe2þþMg) diagram for
biotites. (d) Al2O3-FeO(t) for biotites (symbols are same as Fig. 4c). (e) MgO–FeO(t) –Al2O3 diagram for biotite (modified from Speer, 1987; symbols are same as Fig. 4c). (f) Ti–Fe2þ–
Fe3þ diagram for magnetite and ilmenite minerals (modified from Bacon & Hirschmann, 1988).
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Table S5). 87Sr/86Sr(i) ratios and ϵNd(45Ma) values vary in narrow
ranges from 0.704845 to 0.705726 and –1.42 toþ0.08, respectively.

In the ϵNd(45Ma)-87Sr/86Sr(45Ma) diagram, all the analysed
samples are grouped in the mantle array close to the bulk silicate
Earth except for a sample plotting just outside the mantle array
(Fig. 9a). Also shown on the plot are the fields of other plutonic
rocks from the same region for comparison. The Dağdibi samples
have lesser radiogenic isotope ratios compared to those of the Late
Cretaceous and middle Eocene granitic rocks.

Pb isotope ratios of the rocks vary between 18.206 and 18.621
for 206Pb/204Pb(i), 15.590 and 15.628 for 207Pb/204Pb(i) and 37.743
and 39.520 for 208Pb/204Pb(i) (Table S5). While the isotope ratios of
the 206Pb/204Pb(i) and 207Pb/204Pb(i) are distributed in a narrow
range, the 208Pb/204Pb(i) isotope ratios exhibit a wide distribution. A
positive correlation is observed in the isotope diagrams of 206Pb/
204Pb(i) versus 207Pb/204Pb(i) and 208Pb/204Pb(i) of the samples
(Fig. 9b and c). The Dağdibi samples fall in the field of lower crust
and the upper part of the Northern Hemisphere Reference Line
(NHRL). In addition, all the samples are located between the
Enriched Mantle I (EM I) and Enriched Mantle II (EM II) fields
and plot closer to the field of EM II reservoir (Fig. 9b and c). The
samples of the Dağdibi Pluton have Pb isotope ratios resembling
characteristically those of the lower crust (Fig. 9b) as observed in
the other middle Eocene plutons in the region such as Eğrikar and
Karadağ (Sipahi et al. 2018b).

4.d.3. Hf isotope geochemistry
The Lu–Hf isotopes of the zircons were determined to make
estimations on the possible mantle source(s) of the studied
rocks. ϵHf(i) values of zircons from the granodiorite samples
range fromþ0.14 toþ10.26 (Table S6). The 176Hf/177Hf(i) ratios

of the studied zircons plot on the depleted mantle (DM) line
(Fig. 10a). The ϵHf(i) values show a narrow range and plot
between depleted mantle and chondrite uniform reservoir
(CHUR) lines (Fig. 10b and c). The Hf isotopes of the zircons
yield TDM1 (single-stage Hf isotope) model ages of 0.277 to
0.623 Ma (Table S6) and offer a uniform property, suggesting
derivation from the same source for the Middle Eocene
magmatism.

4.d.4. Temperature and pressure
The amphibole-plagioclase thermometer: T = 0.667 P–48.98 þ Y/–
0.0429–0.008314 LnK, is an empirical formula proposed by Blundy
& Holland (1990), is widely used to calculate the crystallization
temperature of magmas. Here, pressure (P) is calculated from
amphibole minerals that developed in contact with each other at
equilibrium crystallization. For Xab< 0.5, Y = −8.06þ25.5(1−Xab)2

is used. If Xab> 0.5, thenY=0. The K value with the formula (Si-4/8-
Si)Xab is a special number. Requirements for using this thermometer
are that amphibole–plagioclase equilibrium crystallization should be
accompanied by biotite, quartz, K-feldspar, pyroxene, Fe–Ti oxides
± spheneminerals and plagioclase should have a less calcic character
than An92. Additionally, the Si cationic value of the amphibole
developing in contact with plagioclase should be lower than 7.8. The
temperatures calculated for the rocks of the pluton range between
625 and 744 °C (Table S7) for granodiorite, 662 ºC for diorite.

A formula proposed by Luhr et al. (1984) for biotite
thermometer was also used to check the crystallization temper-
atures. The biotite crystallization temperatures for the investigated
plutonic rocks are in the range of 627–762ºC for granodiorite and
735–781 ºC for diorite (Table S8), consistent with those of
amphibole–plagioclase thermometer.

Figure 5. (Colour online) Selected zircon crystals from the granodiorite samples C1 and C4. (a) cathodoluminescence (CL) images of zircon crystals and the location of analyzed
spots and (b) 206Pb/238U–207Pb/235U Wetherill Concordia diagrams with insets of probability distribution-age diagrams.
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Ilmenite–magnetite thermometer: The ILMAT program
(Lepage, 2003) was used to calculate the temperature and oxygen
fugacity values for the studied rocks. The approaches suggested by
Spencer & Lindsley (1981) and Andersen & Lindsley (1985) were
used to calculate the temperature values. The chemical compo-
sitions of magnetite and ilmenite give the mean crystallization
temperatures in the range from 561 to 583 ºC according to Spencer
& Lindsley (1981)’ and from 567 to 591 ºC according to Andersen
& Lindsley (1985) (Table S9). The oxygen fugacity values are in the
range of −18.35 to −17.04 for the diorites.

Zircon and apatite saturation temperatures calculated from
whole-rock geochemical analysis of rock samples (Watson &
Harrison, 1983; Hanchar &Watson, 2003; Miller et al. 2003) range
from 767 to 802 °C and 886 to 900 °C for granite, 744 to 797 °C and
857 to 890 °C for granodiorite, 699 to 753 °C and 740 to 852 °C for
diorite, respectively (Table S10).

The amphibole geothermometer and geobarometer:
Crystallization temperature of magma is calculated by using the
Si in amphibole (Mg hornblende in this study) according to the
formula (T (°C) = −151.487 × Si*þ 2041) of Ridolfi et al. (2010)
(Table S11). The amphibole compositions of samples yield the
crystallization temperatures in the range of 691 to 792 °C for the

Dağdibi Pluton. There is a linear relationship between the total
aluminium content of amphiboles and increasing pressure and
temperature (Hammarstrom & Zen, 1986; Hollister et al. 1987;
Johnson & Rutherford, 1989; Schmidt, 1992). Al(T) in hornblende
crystallized in granitoid magmas is known as the pressure indicator
and used for pressure calculations with various calibrations. The
pressure values of amphiboles, whose sub-species are determined as
actinolite and Mg–hornblende, were calculated according to the
Al–hornblende geobarometer of Hammarstrom & Zen (1986),
Hollister et al. (1987), Johnson&Rutherford (1989), Schmidt (1992)
and Mutch et al. (2016), but in this study the pressure values
calculated from Mg–hornblende were preferred (Table S11). The
pressure conditions during the crystallization of amphiboles vary
between 0.38 and 2.45 kbar according to Schmidt (1992) and 0.97
and 2.19 kbar according to Mutch et al. (2016). The cooling depth
(1 kbar= 2.7 km) corresponding to these pressures ranges from 2.6
to 5.9 km. The negative and very low-pressure values of amphiboles
are interpreted as the effect of alteration and a low degree of
metamorphism and so were not used. Al content in Ca-amphiboles
increases with increasing degree of metamorphism (Leake, 1964;
Graham, 1974). The calculated pressures and temperatures of
amphiboles from the Dağdibi Pluton show a linear relationship.

Figure 6. (Colour online) Chemical classification diagrams. (a) SiO2 vs Na2OþK2O diagram (Middlemost et al. 1985), (b) SiO2 vs (FeOt/FeOtþMgO), c) SiO2 vs (Na2OþK2OþCaO) and
d) ASI vs A/NK diagram (Frost et al. 2001).
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5. Discussion

5.a. Age of the pluton

Igneous activity that occurred in a time interval from the Late
Cretaceous to the end of the Eocene occupies the largest area in the
eastern Sakarya Zone (Fig. 1a). Considering that the region had a
magmatic arc position in the Late Cretaceous and evolved into a
syn to post-collisional setting in the Eocene, precise determination
of the ages of the igneous rocks is of great importance. This
discrimination becomes much more important when considering
that the Late Cretaceous plutonic bodies were intruded later by
magmas of the middle Eocene plutonic bodies in the inner-arc
setting (Dokuz et al. 2019).

U–Pb zircon ages of 44.75 ± 0.92 and 45.01 ± 0.59 Ma refer the
intrusion age of the parental magma for the Dağdibi Pluton to the
middle Eocene. So, it is one of the numerous members of the post-
collisional plutonic bodies of middle Eocene age in the eastern
Sakarya Zone. The Sisdağı Pluton (41 Ma, Karslı et al. 2012), Erik
Granitoid (42 Ma, Sipahi et al. 2017), Kaletaş Pluton (44 Ma;
Arslan & Aslan, 2006), Karadağ Diorite (44 Ma, Sipahi et al. 2022)

and Bayburt Plutons (44–45 Ma; Eyüboğlu et al. 2017) are some
other examples of this group in the surrounding region.
Interestingly, while the Eocene magmatic activity in northwest
Anatolia is mostly between 54 and 45 Ma (Okay et al. 2022), there
is a significant number of the plutonic activities in the Sakarya
Zone ranging in age predominantly from 46 to 36 Ma (Fig. 11).

5.b. Mineral chemistry

Mg-rich biotite is rather known as the product of water-saturated
magmatic systems (Patiño Douce & Johnston, 1991). The water in
the system is supplied by the dehydration of the subducted
material, and some of the Fe in the environment is used in the
amphibole and Fe–Ti oxide is formed with the other Fe amount.
The chemical composition of Mg-rich biotite implies that the
pluton might have been formed from a water-saturated calc-
alkaline magma in subduction-related setting.

Biotites crystallizing in calc-alkali, alkali and peraluminous
granitic magmas differ significantly in their Al2O3, FeOt and MgO
contents and therefore provide important information about the

Figure 7. (Colour online) SiO2 content of pluton
versus CaO, MgO, Al2O3, Fe2O3

t, TiO2, Na2O, K2O
and P2O5. and trace (Ba, Rb, Sr and Ni) element
contents distributions.
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tectonic settings of magmas (Abdel-Fattah, 1994). When biotites
are put to the Al2O3-FeOt discrimination diagram, they have
grouped in the field of subduction-related magmas (Fig. 4d; Abdel-
Fattah, 1994).

FeOt/MgO ratio of biotite crystallizing in anorogenic-alkaline
magmas (forming A-type granites) is on average 7.04. While FeOt/
MgO ratio in biotite crystallizing from the peraluminous magmas
(S-type granites) is 3.48, this ratio of biotite in the calc-alkaline
magmas (I-type granites) of orogenic belts decreases to 1.76 with
the increasing Mg in biotite. The FeOt/MgO ratio in the studied
biotite minerals ranges from 1.70 to 1.18, indicating that the biotite
minerals were developed in I-type granitoid magmas with calc-
alkaline nature in subduction-related setting. The compositions of
biotites plot in the field III in the MgO-FeOt-Al2O3 triangle
diagram (Speer, 1987) where it is found with “hornblende,
pyroxene, or olivine” (Fig. 4e).

5.c. Thermometer, pressure and oxygen fugacity

The temperature values obtained for the rocks of the Dağdibi
Pluton are similar to those found in the Dölek, Sarıçiçek, Sorkunlu,
Üzengili and Arslandede plutons (388–1196 °C, Eyüboğlu
et al. 2017).

Figure 8. (Colour online) (a) Primitive mantle-normalized multielement diagram for
the studied samples of the Dağdibi Pluton (Sun &McDonough, 1989) and (b) chondrite-
normalized REE diagram for the samples (Boynton, 1984).

Figure 9. (Colour online) Distributions of the Dağdibi samples in the isotope
correlation diagrams. (a) ϵNd(45Ma)–87Sr/86Sr(45Ma) isotope correlation and age taken as
45 Ma, (b) 206Pb/204Pb(i) vs 207Pb/204Pb(i) and (c) 206Pb/204Pb(i) vs 208Pb/204Pb(i) isotope
diagrams. NHRL: North Hemisphere Reference Line (Hart, 1984); EMI and EMII:
Enrichment Mantle I and II (Zindler & Hart, 1986); LC: lower crust (Kempton et al. 1997);
UC: upper crust (Mason et al. 1996); HIMU: high μmantle (Zindler & Hart, 1986); Atlantic
MORBs: Atlantic middle ocean rift basalt. Derinoba and Kayadibi Granites (Kaygusuz
et al. 2012), Eğrikar Monzogranite (Sipahi et al. 2018a), Karadağ Intrusion (Sipahi et al.
2022).
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Amphibole-plagioclase barometer yields pressure values for the
Dağdibi Pluton similar to those of other Eocene plutons fromBayburt
(0.1 to 2.2 kbar, Kaygusuz et al. 2018), but lower than those of the
Dölek-Sarıçiçek-Üzengil-Arslandede plutons (0.3 to 8.2 kbar,
Eyüboğlu et al. 2017). The crystallization depths (1 kbar= 2.7 km)
estimated from the calculated pressure values of the amphiboles
correspond to some places between 3 and 6 km in the upper crust.

Since the original oxygen fugacity of granitic magmas cannot
be determined precisely due to slow cooling, only the relative
approaches and calculations can be provided (Anderson &
Smith, 1995; Kemp, 2004). Oxygen fugacity (log10ƒO2) values of
the Dağdibi Pluton are in the range of −18 to −17 similar to
those found in the Eocene Dölek-Sarıçiçek plutons (−15 to −21)
and a granitoid body (−20 to −12) from Bayburt (Kaygusuz
et al. 2018).

There is no consensus on the water content of amphibole-
containing magmas. It varies from 2 to 3 wt% according to Luhr
(1992) and is around 6wt% on average, according toMerzbacher &
Eggler (1984). Calculated H2O values of the amphibole in this
study change from 1.68 to 4.17 wt%. The presence of hydrousmafic
minerals (amphibole and biotite) and apatite in samples points to
high water and volatile content of magma. If the temperature of
magma is so high with such a high-water content, it can rise to the
shallow depths of the continental crust without crystallizing
completely (Helmy et al. 2004).

5.d. Petrogenesis of the Pluton

The Dağdibi Pluton has high K-calk-alkaline (Fig. 6c) and
metaluminous (ASI<1) character. Two models have been
proposed regarding the origins of high-K calc-alkaline magmas.
These are (1) partial melting of basic lower crustal rocks at
relatively high pressure (Roberts &Clemens, 1993) and (2)mixture
of magmas derived from crustal and mantle sources
(Barbarin, 1999).

The samples of the pluton display weak to moderate REE
fractionations ((La/Yb)N= 5.90 to 21.31) in chondrite-normalized
diagram, low Sr/Y ratios (6.67 to 24.16) and high Y (13.7 to
30.1 ppm) and Yb (1.48 to 3.29 ppm) contents. The rocks of the
pluton display high-K calc-alkaline and I-type character and have
relatively low Ni (1.6 to 113.9 ppm) contents with relatively low
Mg-numbers (22–44) and a wide range of silica content
(SiO2= 52.36 to 71.81 wt%). The samples show enrichment in
large ion lithophile (LIL) elements, negative Nb and Ta anomalies
and positive Pb anomalies. Negative anomalies in Nb, P and Ti are
the typical features of subduction-related magmas. Abundance of
large ion lithophile elements in themantle is usually revealed by the
additions of solutions from the subducted slab (McCulloch &
Gamble, 1991). All these data indicate that the rocks were formed
by the mixing of melts derived from lower crust (amphibolitic) and
lithospheric mantle sources.

5.d.1. Fractional crystallization and assimilation
The positive and negative trends of some major and trace elements
with the increasing SiO2 imply that FC has played an important
role during the development of the pluton. High CaO and Sr
contents and slightly negative Sr and Eu anomalies indicate
plagioclase fractionation. The trends in the Rb/Sr versus Sr and Ba/
Sr versus Sr diagrams suggest that plagioclase differentiation has
played an important role in the formation of the present
composition of the rocks (Fig. 12). The negative trends in
Al2O3, MgO, CaO, Fe2O3t values against SiO2 and the increase in
K2O and Ba contents can be attributed to amphibole and calcic
plagioclase fractionation. The increase in K2O and Rb with
increasing SiO2 indicates that they are the products of accumu-
lation rather than fractionation of K-feldspar and biotite. The
decrease in P2O5 and TiO2 contents with increasing SiO2 indicates
apatite and titanite differentiation. The increase in Y and Zr
indicates the accumulation of accessory minerals such as zircon
and titanite.

The most felsic granite specimen of the pluton has a high
content of SiO2 (71wt%pri) and a lowMg-number (24), supporting
that the mineral fractionation is an important process for the
formation of felsic rocks. The most primitive sample has 52 wt%
SiO2 and a Mg-number value of 31. If the primitive rocks of the
pluton had been formed by direct partial melting of mantle
peridotites, the Mg# values of the samples should have been higher

Figure 10. (Colour online) (a) 176Hf/177Hf(i) vs TDM1(t) (Ga), (b) ϵHf(t) vs TDM1(t) (Ga), c)
ϵHf(t) vs U–Pb zircon age (Ma) from the granodiorite samples.

Middle Eocene Dağdibi Pluton in the eastern Sakarya Zone, Turkey 1203

https://doi.org/10.1017/S001675682300033X Published online by Cambridge University Press

https://doi.org/10.1017/S001675682300033X


than 65. Linear elemental variations (Fig. 7) along with low SiO2

values suggest that even the primitive rocks of the pluton might
have been formed by crystal fractionation from a more primitive
basaltic magma. An alternative way to produce such high-K calc-
alkaline andesitic magmas is that they may have formed through
high degree of partial melting of calc-alkaline mafic crustal rocks at
lower crust (Roberts & Clemens, 1993).

The negative Nb (Ta) and positive Pb anomalies (Fig. 8) point
to subduction influence on the rocks and/or crustal contamination.
Such depleted Nb values and other high-field strength elements
may have also resulted from crustal contamination. This inference
is consistent with the high Th (4.4 to 18 ppm) and Pb (1.5 to
30.6 ppm) contents of the samples that imply the contributions of
crustal contamination since the crustal components are rich in Th
(3.5 ppm) and Pb (8 ppm) (Taylor & McLennan, 1985). The 87Sr/
86Sr(i) ratios, on the other hand, are nearly constant against
increasing SiO2, indicating that FC played a greater role than
crustal contamination during the evolution of the Dağdibi Pluton.

5.d.2. Magma mixing
Some researchers (e.g, Grove & Donelly-Nolan, 1986; Hildreth &
Moorbath, 1988) suggest that I-type granitoids are generally
resulted from the interaction of basaltic magma with crustal

components via assimilation-fractional crystallization (AFC) or
have formed by magma mixing. Nevertheless, some other
researchers (Chappell & White, 1992; Rapela & Pankhurst,
1996) have pointed out that relatively high siliceous magmas
could have formed as a result of the FC ofmagmas derived from the
lower crust. The presence of some disequilibrium textures
(prismatic-cellular plagioclase growth, K-feldspars with poikilitic
texture, etc.) in the rocks implies that interaction of two magmas
with different chemical compositions have also played some role
during the development of these rocks (Fig. 3). This inference is
also confirmed by the presence of mafic microgranular enclaves.

Curvilinear relationships between trace element ratios are also a
feature of rocks formed as a result of magma mixing (Perugini &
Poli, 2004). The curvilinear trends shown in the Rb/Sr versus Ti/Zr
and the Sr/Rb versus Sr diagrams (Fig. 13a and b) also imply the
contribution of mixing of two different end-member components
during the generation of the pluton.

5.e. Magma source

Low SiO2 (52 wt%) contents, calc-alkaline and I-type character-
istics of the less fractionated rocks point to the involvement of
metaigneous rocks as the source in the crust or lithospheric mantle.

Figure 11. (Colour online) The U–Pb zircon ages of the Eocene
plutons from the eastern Sakarya Zone. 1-Bayburt: Kaygusuz
et al. (2018, 2020); 2-İspir: Dokuz et al. (2019); 3-Sisdağı: Karslı
et al. (2012); 4-Bayburt: Eyüboğlu et al. (2017); 5-Çamlıhemşin:
Dokuz et al. (2019); 6-Gümüşhane: Arslan & Aslan (2006); 7-
Gümüşhane: JICA (1986); 8-Karadağ Intrusion: Sipahi et al.
(2018b); 9-Kaçkar: Boztuğ et al. (2007); 10-Giresun: Boztuğ et al.
(2004); 11-Erik Granitoid: Sipahi et al. (2017); 12-Camiboğazı
Granitoid: Kaygusuz et al. (2014); 13-Kopuz-Dağdibi: this study.

Figure 12. (Colour online) Distributions of the samples in (a) Rb/Sr vs. Sr and (b) Ba/Sr vs. Sr diagrams. Kılıçkaya Granitoid (Kaygusuz & Öztürk, 2015).
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The mafic microgranular enclaves are the most important
indicator of the mixture of newly advected basic magma derived
from the mantle with the fractionated and partly crystallized
previous magma (Barbarin & Didier, 1992).

In the primitive mantle- and chondrite-normalized diagrams,
pronounced negative anomalies are shown in Nb, P and Ti, and
positive anomalies in Rb, Th, K and Pb, and enrichments in LILEs
and light REEs relative to theHFSE and heavy REEs. These features
are generally typical for the rocks with mantle wedge and crustal
origin. I-type and high-K nature of the rocks can be formed by the
partial melting of calc-alkaline basic and intermediate rocks in the
crust (Roberts & Clemens, 1993). Magmas derived from these
sources may produce granitic rocks via FC and/or crustal
contamination. Granitic composition may also be produced by

low degree of partial melting of the basic lower crust (Roberts &
Clemens, 1993). The studied rocks display a wide range of Y/Nb
ratio (1.73 to 5.48). This implies both themantle and crustal origins
for the rocks because Y/Nb ratio is lower than 1.2 for mantle rocks
and higher than 1.2 for crustal rocks (Eby, 1992). Nb/Ta ratio is
17.5 for the rocks originated from the mantle and is in between 11
and 12 for the magmas derived from the crustal igneous protoliths
(Green, 1995). The Nb/Ta ratios of the studied samples are
between 9.40 and 16.00, consistent with both the mantle and
crustal rocks as a source. The absence of a clear differentiation in
the medium and heavy REEs and low Sr/Y ratios (6.9 to 22.7)
indicate that garnet was not a phase in the magma source (Fig. 8b).

The studied rocks are located in the lithospheric mantle field in
the Nb/La versus La/Yb diagram (Fig. 13c) and close to the point of

Figure 13. (Colour online) Distributions of the samples in various bivariation diagrams. (a) Rb/Sr vs Ti/Zr diagram, (b) Sr/Rb-Sr diagram of granitoid samples, (c) Nb/La vs La/Yb
diagram, (d) Ce/Pb vs Ce diagram, (e) SiO2 vs Sr/Y discrimination diagram (Moritz et al. 2020) and (f) La/Sm vs Sm/Yb diagram. Primitive mantle data from Hofmann (1988),
continental crust, middle ocean rift basalt (MORB), ocean island basalts (OIB) and arc volcanic data from Schmidberger & Hegner (1999). Adakite field according to Richards &
Kerrich (2007), Adakite-like rocks of the eastern Sakarya Zone from Topuz et al. (2005, 2011) and Dokuz et al. (2013). Non-adakitic rocks of the eastern Sakarya Zone from
Aydınçakır (2014), Kaygusuz & Öztürk (2015) and Dokuz et al. (2019). Andean orogenic arc data from Petford & Atherton (1996) and Haschke et al. (2002).
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average lower crustal rocks. However, on the Ce/Pb versus Ce
diagram (Fig. 13d), the samples display a large variation from
MORBþOIB field to continental crust (arc volcanics) due to the
decreasing Ce/Pb ratios.

The Eocene post-collisional magmatism in the eastern Sakarya
Zone has been separated into two: an early Eocene adakite-like
(Topuz et al. 2005, 2011; Dokuz et al. 2013) and middle Eocene
non-adakite-like (Aydınçakır, 2014; Dokuz et al. 2019). In the SiO2

versus Sr/Y diagram, our samples are located in the field of normal
arc rocks but closer to the field of the early-middle Eocene adakitic
rocks (Fig. 13e). The La/Sm and Sm/Yb ratios of the rocks vary
from 3.75 to 8.97 and 1.38 to 1.92, respectively, while the adakitic
rocks are in between 7.3 to 10.6 and 2.3 to 7.6 (Fig. 13f). These La/
Sm and Sm/Yb ratios are different from those of the Andean-type
arc rocks.

The Sm-Ndmodel ages of the studied rocks are Neoproterozoic
(0.83 Ga) and Mesoproterozoic (0.81–1.02 Ga), and their Pb
isotope compositions are characteristically similar to those of the
sub-continental crust.

The samples having high and positive ϵHf(t) values (0.14 to
10.26; mean 4.53) match with those derived from an enriched
mantle source and with minor crustal contamination. That ϵHf(t)
values cluster between 4 and 7, while 1.07 and 12 are obtained only
in one analysis; these values are consistent with zircon formation
from relatively juvenile magmas. Consistent with Th/U values,
much of which generally have Th/U< 0.1, indicative of a probable
magmatic origin (Fig. 5c). All these features indicate the derivation
of the Dağdibi Pluton from a juvenile source.

5.f. Tectonic setting

The rocks of the Dağdibi Pluton have I-type and high K calc-
alkaline character. They are enriched in LREE (Rb, Ba and K) and
poor in HREE (Nb and Ti). All these features are typical for the
rocks formed in arc settings (Floyd & Winchester, 1975; Rogers &
Hawkesworth, 1989; Sajona et al. 1996). However, it is worth to
remember here that the rocks formed during the post-collisional
stages could also show subduction-related features (Roberts &
Clemens, 1993). Hence, the results obtained from the tectonic
discrimination diagrams do not always provide a clear distinction
for the middle Eocene rocks of the eastern Sakarya Zone and need
to be evaluated together with sedimentological, stratigraphical and
structural data.

5.g. Geodynamic implications

There is a substantial consensus on that the northern branch of the
Neotethys Ocean was closed by a northward subduction beneath
the Sakarya Zone in Turkey (Şengör & Yılmaz, 1981) and can be
followed by its oceanic remnants along the İzmir-Ankara-Erzincan
Suture (Okay & Tüysüz, 1999). Although docking of the
Anatolides with the Sakarya Zone happened at a time around
the Late Cretaceous (latest Campanian), the hard collision did not
occur until the Palaeocene, based on the regional stratigraphy. This
is the conclusion of almost all the geologists who studied the region
(e.g., Şengör & Yılmaz, 1981; Okay & Tüysüz, 1999; Okay et al.
2001; Topuz et al. 2005; Sosson et al. 2010; Karslı et al. 2011; Dokuz
et al. 2019; Kandemir et al. 2019). Final igneous products of this
oceanic closure display a relatively K-rich nature compared to
those formed in its earlier stages (Karslı et al. 2018; Aydın et al.
2020; Oğuz-Saka et al. 2023). The Sakarya Zone and the Anatolides
have stayed under the effects of a compressional regime
throughout the Palaeocene-early Eocene. (Kandemir et al. 2019).

Adakite-like rocks are the first igneous products of this syn- to
post-collisional period (Dokuz et al. 2013, 2019; Gücer, 2021).
They intruded into the crust in the early Eocene (55–50 Ma)
following a magmatic lull up to 10 to 12 Ma after the final
subduction-related products at around 72 Ma (Topuz et al. 2005;
Eyüboğlu et al. 2011; Karslı et al. 2011). This period was followed
by a non-adakitic igneous activity in the middle Eocene without
any gap. The igneous products show a range in age from 50 to 43
Ma and carry more or less geochemical features identical to those
formed in arc settings (Dokuz et al. 2019; Sipahi et al. 2022; this
study). The subduction imprints are diminished or completely
erased in the rocks formed in the age span of 43 to 36Ma (Eyüboğlu
et al. 2017; Dokuz et al. 2019). The rocks of this time span
commonly have hybrid geochemical characteristics taken from
both the subduction and upwelling asthenosphere.

There are various geodynamic models proposed for the
explanation of the Early Cenozoic post-collisional magmatism in
the eastern Sakarya Zone. These are melting of lower crust due to
the crustal thickening (Topuz et al. 2005), lithospheric delamina-
tion (e.g. Arslan et al. 2013; Temizel et al. 2016) and slab break-off
(e.g. Keskin et al. 2008; Dilek et al. 2010; Altunkaynak et al. 2012;
Dokuz et al. 2019; Gücer, 2021). The authors consider that the slab-
breakoff model best explains the Early Cenozoic post-collisional
magmatism in the Sakarya Zone as outlined in Dokuz et al. (2019).

6. Conclusions

U–Pb SHRIMP zircon ages (45.01 ± 0.59 Ma and 44.75 ± 0.92 Ma)
indicate that the Dağdibi Pluton in the eastern Sakarya Zone,
Turkey, is one of the small members of the large plutonic activity in
the middle Eocene. The rocks of the pluton vary in composition
from diorite through granodiorite to granite and display high-K
calc-alkali, metaluminous and I-type affinities. Plagioclase shows a
compositional range from labradorite (An62) to oligoclase (An10).
Fractionation of plagioclase, hornblende and Fe-Ti oxide was
effective during the formation of the pluton. Disequilibrium
textures, curvilinear variations of element ratios and mafic
magmatic enclaves are regarded as the indicators of magma
mixing. Mineral compositions and P–T estimations show that the
parental magma of the pluton was emplaced at ~3 to 6 km crustal
depths and crystallized at temperatures of 625 and 792 °C. Slab
breakoff, which occurred approximately 10 to 12 Ma after the
collision of Anatolide-Tauride Block with the Sakarya Zone in the
Late Cretaceous (late Campanian), is regarded as the geodynamic
process responsible for the formation of the middle Eocene
magmatism in the eastern Sakarya Zone.
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