ALGEBRAIC NUMBERS WITH BOUNDED DEGREE AND WEIL HEIGHT

ARTŪRAS DUBICKAS

(Received 12 March 2018; accepted 8 May 2018; first published online 18 July 2018)

Abstract

For a positive integer d and a nonnegative number ξ, let $N(d, \xi)$ be the number of $\alpha \in \overline{\mathbb{Q}}$ of degree at most d and Weil height at most ξ. We prove upper and lower bounds on $N(d, \xi)$. For each fixed $\xi>0$, these imply the asymptotic formula $\log N(d, \xi) \sim \xi d^{2}$ as $d \rightarrow \infty$, which was conjectured in a question at Mathoverflow [https://mathoverflow.net/questions/177206/].

2010 Mathematics subject classification: primary 11R06; secondary 11R09.
Keywords and phrases: Mahler measure, Weil height, counting function, irreducible polynomial.

1. Introduction

For an algebraic number α of degree d over \mathbb{Q} with conjugates $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$ and minimal polynomial

$$
a_{d}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right)=a_{d} x^{d}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x],
$$

where $a_{d}>0$, we denote by $H(\alpha):=\max _{0 \leq j \leq d}\left|a_{j}\right|$ the height of α and by

$$
M(\alpha):=a_{d} \prod_{i=1}^{d} \max \left\{1,\left|\alpha_{i}\right|\right\}
$$

the Mahler measure of α. For $\alpha \in \overline{\mathbb{Q}}$, these quantities are related by the inequalities

$$
\begin{equation*}
H(\alpha) 2^{-d} \leq M(\alpha) \leq H(\alpha) \sqrt{d+1} \tag{1.1}
\end{equation*}
$$

(see, for instance, [15] and [16, Lemma 3.11]).
Set

$$
M(d, T):=\#\{\alpha \in \overline{\mathbb{Q}}: \operatorname{deg} \alpha=d, M(\alpha) \leq T\},
$$

[^0]where \#A stands for the cardinality of the set A. For $d \geq 2$ and
$$
V_{d}:=2^{d+1}(d+1)^{\lfloor(d-1) / 2\rfloor} \prod_{i=1}^{\lfloor(d-1) / 2\rfloor} \frac{(2 i)^{d-2 i}}{(2 i+1)^{d+1-2 i}},
$$
the asymptotic formula
$$
M(d, T)=\frac{d V_{d}}{2 \zeta(d+1)} T^{d+1}+O\left(T^{d}(\log T)^{\lfloor 2 / d\rfloor}\right) \quad \text { as } T \rightarrow \infty
$$
has been established in [2] and [10]. (Throughout, $\zeta(s)$ is the Riemann zeta-function.) See also [1, 11, 17] and the references therein for some generalisations. In [9], this formula is given with an explicit error term: for any $d \geq 3$ and any $T \geq 1$,
$$
\left|M(d, T)-\frac{d V_{d}}{2 \zeta(d+1)} T^{d+1}\right| \leq 3.37 \cdot 15.01^{d^{2}} \cdot T^{d}
$$

This inequality gives the asymptotic formula for $M(d, T)$ as $d \rightarrow \infty$ in the range $\log T \gg d^{2}$. (Here and below, the notation $v \gg w$ means that the inequality $v \geq c w$ holds with some positive constant c.) By [2, Theorem 4], this asymptotic formula holds in a wider range $\log T \gg d \log d$, but with slightly larger error term in T. However, for small T, for example, T fixed at $T=2$, the problem of finding the correct order of $M(d, T)$ is wide open. See, for instance, the papers [3,5,13]. More precisely, from the main result of [5] one can derive $M(d, 2)>c d^{5}$ with some absolute constant $c>0$, whereas the best known upper bound is only $M(d, 2)<2^{(1+\varepsilon) d}$ for any $\varepsilon>0$ and $d \geq d(\varepsilon)$ [6]. Another interesting case, $T=1$, corresponds to the constant

$$
\begin{equation*}
C:=\limsup _{d \rightarrow \infty} \frac{\log M(d, 1)}{\log d} \tag{1.2}
\end{equation*}
$$

which has been studied by Erdős [7] and Pomerance [14]. This constant can be expressed as the number of solutions of the equation $\phi(n)=d$ for $n \in \mathbb{N}$ (when d is fixed), where ϕ is Euler's totient function, and bounds can be found using tools from analytic number theory. Erdős and Pomerance showed that $0.55<C \leq 1$ and Erdős conjectured that $C=1$ [8].

In the upper bound direction, for d sufficiently large and any $T \geq 1$, we showed in [6] that the number of integer polynomials of degree d and with positive leading coefficient, nonzero constant coefficient and Mahler measure at most T is bounded above by $T^{d(1+16 \log \log d / \log d)} e^{3.58 \sqrt{d}}$ for d large enough. Furthermore, the factor $e^{3.58 \sqrt{d}}$ can be removed for $T \geq 1.32$. The roots of any such polynomial, irreducible over \mathbb{Q} and whose coefficients are relatively prime, give d algebraic numbers of degree d and Mahler measure at most T. Hence, the main result of [6] yields the inequality

$$
\begin{equation*}
M(d, T)<d T^{d(1+16 \log \log d / \log d)} \tag{1.3}
\end{equation*}
$$

for each $T \geq 1.32$ and each sufficiently large integer d, say $d \geq d_{0}$.
In this paper, we consider the related quantity

$$
N(d, \xi):=\#\{\alpha \in \overline{\mathbb{Q}}: \operatorname{deg} \alpha \leq d, h(\alpha) \leq \xi\}
$$

where

$$
h(\alpha):=\frac{\log M(\alpha)}{\operatorname{deg} \alpha}
$$

is the Weil height of α. Using [2, Theorem 4] and following the approach of [10], for $\xi \gg \log d$, one can derive the asymptotic formula

$$
\begin{equation*}
N(d, \xi) \sim \frac{d V_{d} e^{\xi d(d+1)}}{2 \zeta(d+1)} \quad \text { as } d \rightarrow \infty \tag{1.4}
\end{equation*}
$$

In [12], the problem of finding the asymptotic formula for $N(d, 1)$ (noting that $\xi=1$ is much less than $\log d$), or, less ambitiously, for $\log N(d, 1)$ as $d \rightarrow \infty$, has been raised. From the discussion in [12] and also from (1.4), one can conjecture that the expected formula is

$$
\begin{equation*}
\log N(d, 1) \sim d^{2} \quad \text { as } d \rightarrow \infty \tag{1.5}
\end{equation*}
$$

In this note, we prove the following theorem, which implies (1.5).
Theorem 1.1. For each $\xi \geq 2 d^{-1} \log d$ and each sufficiently large d,

$$
-\frac{d \log d}{2}<\log N(d, \xi)-\xi d^{2}<\frac{17 \xi d^{2} \log \log d}{\log d}
$$

It is clear that Theorem 1.1 yields the asymptotic formula

$$
\log N(d, \xi) \sim \xi d^{2} \quad \text { as } d \rightarrow \infty \quad \text { and } \quad \frac{\xi d}{\log d} \rightarrow \infty
$$

Of course, equation (1.4) immediately implies this asymptotic formula, but only in the range $\xi \gg \log d$. We also remark that, for $0 \leq \xi \leq d^{-1}(\log d)^{-3}$, by combining a Dobrowolski-type bound with the above mentioned results [7, 8, 14], one gets

$$
\log N\left(d_{k}, \xi\right) \sim C \log d_{k} \quad \text { as } d_{k} \rightarrow \infty
$$

where C is the constant defined in (1.2) and $\left(d_{k}\right)_{k=1}^{\infty}$ is some increasing sequence of positive integers.

In fact, the lower bound on $\log N(d, \xi)-\xi d^{2}$ as claimed in Theorem 1.1 will be proved for $d \geq 1.784 \cdot 10^{8}$. In principle, some explicit constant D_{0} such that the upper bound of Theorem 1.1 for $\log N(d, \xi)-\xi d^{2}$ is true for each $d \geq D_{0}$ can also be given. However, it depends on the corresponding bound $d \geq d_{0}$ in (1.3), which was not calculated in [6], so we will not give it here.

For $\log M(d, T)$, by applying the same arguments, we get the following bounds.
Theorem 1.2. For each $T \geq 38 d^{3 / 2}(\log d)^{2}$ and each sufficiently large d,

$$
-\frac{d \log d}{2}<\log M(d, T)-d \log T<\frac{17 d \log T \log \log d}{\log d}
$$

We will prove the lower bound on $\log M(d, T)-d \log T$ for each $d \geq 6$. Note that Theorem 1.2 implies the asymptotic formula

$$
\log M(d, T) \sim d \log T \quad \text { as } d \rightarrow \infty \quad \text { and } \quad \frac{\log T}{\log d} \rightarrow \infty
$$

In the next section, we give some auxiliary results and combine them into Lemma 2.3. Then, in Section 3, we give the proofs of the theorems.

2. Auxiliary results

Let $d, H \geq 2$ be two integers. Consider the set $P(d, H)$ of integer polynomials defined by

$$
P(d, H):=\left\{a_{d} x^{d}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]: a_{d}>0, a_{0} \neq 0, \max _{0 \leq j \leq d}\left|a_{j}\right| \leq H\right\} .
$$

In [4, Theorem 1], we showed that the number of integer polynomials reducible over \mathbb{Q} and of degree d and height at most H is less than

$$
2 H(2 H+1)^{d-1}+2 d H(2 H+1)^{d-1}(\log (2 H))^{2} .
$$

Here, the first term corresponds to the polynomials whose free term is zero. Since the polynomials with $a_{d}<0$ are also counted in the above formula, we can remove the factor 2 from the second term and restate this result as shown in the following lemma.

Lemma 2.1. For any integers $d, H \geq 2$, the number of polynomials in $P(d, H)$ reducible over \mathbb{Q} is less than

$$
d H(2 H+1)^{d-1}(\log (2 H))^{2}
$$

Of course, the coefficients of a polynomial irreducible over \mathbb{Q} are not necessarily coprime (for instance, the coefficients of $2 x^{2}-6 x+2$ are all divisible by 2). For this reason, we also need the following result.

Lemma 2.2. For any integers $d \geq 6$ and $H \geq 6 d$, the set $P(d, H)$ contains at least

$$
\frac{2^{d} H^{d+1}}{\zeta(d+1)}-d 2^{d+2} H^{d}
$$

polynomials $a_{d} x^{d}+\cdots+a_{1} x+a_{0}$ satisfying $\operatorname{gcd}\left(a_{d}, \ldots, a_{1}, a_{0}\right)=1$.
Proof. Let g be an integer in the range $1 \leq g \leq H$. Suppose there are $N_{g}(H)$ polynomials in $P(d, H)$ satisfying $\operatorname{gcd}\left(a_{d}, \ldots, a_{1}, a_{0}\right)=g$. Our aim is to estimate $N_{1}(H)$ from below. Clearly,

$$
\# P(d, H)=2 H^{2}(2 H+1)^{d-1}
$$

since there are H possibilities for $a_{d}, 2 H$ possibilities for a_{0}, and $2 H+1$ possibilities for each a_{j}, where $j=1, \ldots, d-1$. Consequently,

$$
N_{1}(H)+N_{2}(H)+\cdots+N_{H}(H)=2 H^{2}(2 H+1)^{d-1}
$$

Observe that $N_{g}(H)=N_{1}(\lfloor H / g\rfloor)$ for $g=1, \ldots, H$. Hence,

$$
\sum_{g=1}^{H} N_{1}(\lfloor H / g\rfloor)=2 H^{2}(2 H+1)^{d-1}
$$

Now, by the Möbius inversion formula,

$$
\begin{equation*}
N_{1}(H)=\sum_{g=1}^{H} \mu(g) 2\lfloor H / g\rfloor^{2}(2\lfloor H / g\rfloor+1)^{d-1} . \tag{2.1}
\end{equation*}
$$

Split the sum on the right-hand side of (2.1) into two sums $N_{1}(H)=S_{1}+S_{2}$, where S_{1} is taken over g in the interval $1 \leq g \leq\lfloor H / d\rfloor$ and S_{2} is over $\lfloor H / d\rfloor+1 \leq g \leq H$. Since $H / g \leq d$, we find that

$$
\left|S_{2}\right| \leq(H-\lfloor H / d\rfloor) 2(H / g)^{2}(2 H / g+1)^{d-1}<2 d^{2}(2 d+1)^{d-1} H .
$$

So, in view of

$$
2 d^{2}(2 d+1)^{d-1}<2 d^{2}(13 d / 6)^{d-1} \leq 2 d^{2}(13 H / 36)^{d-1}<0.5 H^{d-1}
$$

we conclude that

$$
\left|S_{2}\right|<0.5 H^{d}
$$

To evaluate the sum

$$
\begin{equation*}
S_{1}:=\sum_{g=1}^{\lfloor H / d\rfloor} \mu(g) 2\lfloor H / g\rfloor^{2}(2\lfloor H / g\rfloor+1)^{d-1}, \tag{2.2}
\end{equation*}
$$

we first show that the difference between $2\lfloor H / g\rfloor^{2}(2\lfloor H / g\rfloor+1)^{d-1}$ and $2^{d}(H / g)^{d+1}$ is small, and then investigate

$$
\begin{equation*}
S_{0}:=\sum_{g=1}^{\lfloor H / d\rfloor} \mu(g) 2^{d}(H / g)^{d+1} . \tag{2.3}
\end{equation*}
$$

Indeed, both numbers, $2\lfloor H / g\rfloor^{2}(2\lfloor H / g\rfloor+1)^{d-1}$ and $2^{d}(H / g)^{d+1}$, belong to the interval

$$
\left(2(y-1)^{2}(2 y-1)^{d-1}, 2 y^{2}(2 y+1)^{d-1}\right]
$$

where $y:=H / g \geq 2$. Thus, the difference between them does not exceed the length of the interval, namely,

$$
2 y^{2}(2 y+1)^{d-1}-2(y-1)^{2}(2 y-1)^{d-1}<\frac{(2 y+1)^{d+1}-(2 y-2)^{d+1}}{2}
$$

By the mean value theorem, the latter difference equals $1.5(d+1) y_{0}^{d}$ for some y_{0} in the interval $[2 y-2,2 y+1]$. Consequently,

$$
\left|2\lfloor H / g\rfloor^{2}(2\lfloor H / g\rfloor+1)^{d-1}-2^{d}(H / g)^{d+1}\right|<1.5(d+1)(2 H / g+1)^{d} .
$$

Combining this with (2.2) and (2.3), we derive

$$
\left|S_{1}-S_{0}\right| \leq 1.5(d+1) \sum_{g=1}^{\lfloor H / d\rfloor}(2 H / g+1)^{d} .
$$

The first term in the above sum is $(2 H+1)^{d}$. The quotient of the g th term and the first term is

$$
\begin{aligned}
\frac{(2 H / g+1)^{d}}{(2 H+1)^{d}}=\frac{(2 H+g)^{d}}{(2 H+1)^{d}} \cdot \frac{1}{g^{d}} & \leq \frac{(2 H+H / d)^{d}}{(2 H+1)^{d}} \cdot \frac{1}{g^{d}} \\
& <\left(1+\frac{1}{2 d}\right)^{d} \cdot \frac{1}{g^{d}}<\frac{1.65}{g^{d}}
\end{aligned}
$$

It follows that

$$
\left|S_{1}-S_{0}\right|<1.5(d+1) \frac{1.65}{\zeta(d)}(2 H+1)^{d}<\frac{2.5(d+1)}{\zeta(d)}(2 H+1)^{d}
$$

Therefore, applying the inequality

$$
\begin{equation*}
\left(1+\frac{1}{2 H}\right)^{d} \leq\left(1+\frac{1}{12 d}\right)^{d}<1.09 \tag{2.4}
\end{equation*}
$$

we conclude that

$$
\begin{equation*}
\left|S_{1}-S_{0}\right|<\frac{(3 d+3)(2 H)^{d}}{\zeta(d)}<3.5 d 2^{d} H^{d} \tag{2.5}
\end{equation*}
$$

Next, since the Dirichlet series that generates the Möbius function is the inverse of the Riemann zeta function, from (2.3) we find that

$$
\frac{S_{0}}{2^{d} H^{d+1}}=\sum_{g=1}^{\lfloor H / d\rfloor} \frac{\mu(g)}{g^{d+1}}=\frac{1}{\zeta(d+1)}-\sum_{g=\lfloor H / d\rfloor+1}^{\infty} \frac{\mu(g)}{g^{d+1}}
$$

This leads to

$$
\begin{aligned}
\left|S_{0}-\frac{2^{d} H^{d+1}}{\zeta(d+1)}\right| & \leq 2^{d} H^{d+1} \sum_{g=\lfloor H / d\rfloor+1}^{\infty} \frac{1}{g^{d+1}}<\frac{2^{d} H^{d+1}}{d\lfloor H / d\rfloor^{d}} \\
& <\frac{2^{d} H^{d+1}}{d(H / d-1)^{d}} \leq \frac{2^{d} H^{d+1}}{d(5 H / 6 d)^{d}}=2.4^{d} d^{d-1} H \\
& \leq 2.4^{d}(H / 6)^{d-1} H<0.1 H^{d} .
\end{aligned}
$$

Combining this with (2.1)-(2.3) and (2.5), we deduce that

$$
\begin{aligned}
\left|N_{1}(H)-\frac{2^{d} H^{d+1}}{\zeta(d+1)}\right| & =\left|S_{2}+S_{1}-S_{0}+S_{0}-\frac{2^{d} H^{d+1}}{\zeta(d+1)}\right| \\
& \leq\left|S_{2}\right|+\left|S_{1}-S_{0}\right|+\left|S_{0}-\frac{2^{d} H^{d+1}}{\zeta(d+1)}\right| \\
& <0.5 H^{d}+3.5 d 2^{d} H^{d}+0.1 H^{d}<d 2^{d+2} H^{d} .
\end{aligned}
$$

This yields the required lower bound on $N_{1}(H)$ and proves the lemma.
From Lemmas 2.1 and 2.2 we will derive the following lemma.
Lemma 2.3. For any $d \geq 6$ and any $H \geq 37 d(\log d)^{2}$ there are at least

$$
\begin{equation*}
d 2^{d-1} H^{d+1} \tag{2.6}
\end{equation*}
$$

algebraic numbers of degree d and height at most H.
Proof. Lemmas 2.1 and 2.2 imply that, for $d \geq 6$ and $H \geq 6 d$,

$$
I(d, H)>\frac{2^{d} H^{d+1}}{\zeta(d+1)}-d 2^{d+2} H^{d}-d H(2 H+1)^{d-1}(\log (2 H))^{2}
$$

where $I(d, H)$ is the number of irreducible polynomials in $\mathbb{Z}[x]$ lying in the set $P(d, H)$.

By (2.4), we have $(2 H+1)^{d}<1.09 \cdot 2^{d} H^{d}$. It follows that

$$
d H(2 H+1)^{d-1}<\frac{d}{2}(2 H+1)^{d}<d 2^{d} H^{d}
$$

and hence

$$
d 2^{d+2} H^{d}+d H(2 H+1)^{d-1}(\log (2 H))^{2}<d 2^{d} H^{d}\left(4+(\log (2 H))^{2}\right)
$$

Therefore,

$$
\begin{aligned}
I(d, H) & >2^{d} H^{d}\left(H \zeta(d+1)^{-1}-4 d-d(\log (2 H))^{2}\right) \\
& >2^{d} H^{d}\left(0.98 H-4 d-d(\log (2 H))^{2}\right)
\end{aligned}
$$

Note that the function

$$
u(x):=\frac{0.24 x}{4+(\log x)^{2}}-d
$$

is increasing in $x>0$. Furthermore, one can easily verify that, for each $d \geq 6$,

$$
u\left(74 d(\log d)^{2}\right)=d\left(\frac{17.76(\log d)^{2}}{4+\left(\log \left(74 d(\log d)^{2}\right)\right)^{2}}-1\right)>0
$$

Hence, $u(x)>0$ for $x \geq 74 d(\log d)^{2}$. Now, assuming that

$$
H \geq 37 d(\log d)^{2}
$$

and $d \geq 6$, from $u(2 H)>0$ we deduce that

$$
0.98 H-4 d-d(\log (2 H))^{2}>0.5 H
$$

Therefore,

$$
I(d, H)>2^{d} H^{d} \cdot 0.5 H=2^{d-1} H^{d+1}
$$

This implies (2.6), since each of these polynomials (with positive leading coefficients) gives d algebraic numbers of degree d and height at most H.

3. Proofs of the theorems

Proof of Theorem 1.1. We will apply Lemma 2.3 with

$$
H:=\left\lfloor e^{\xi d}(d+1)^{-1 / 2}\right\rfloor
$$

and d so large that $H \geq 37 d(\log d)^{2}$. (Recall that $\xi \geq 2 d^{-1} \log d$, so the inequality $H \geq 37 d(\log d)^{2}$ holds for $d \geq 1.784 \cdot 10^{8}$.) Then, by (1.1) and (2.6), each of those $\geq d 2^{d-1} H^{d+1}$ algebraic numbers α has degree d and Weil height

$$
h(\alpha)=\frac{\log M(\alpha)}{d} \leq \frac{\log (H(\alpha) \sqrt{d+1})}{d} \leq \frac{\log e^{\xi d}}{d}=\frac{\xi d}{d}=\xi .
$$

Hence, for all $d \geq 1.784 \cdot 10^{8}$ and $\xi \geq 2 d^{-1} \log d$,

$$
\begin{aligned}
N(d, \xi) & \geq d 2^{d-1}\left\lfloor e^{\xi d}(d+1)^{-1 / 2}\right\rfloor^{d+1}>d 2^{d-1}\left(\frac{e^{\xi d}-\sqrt{d+1}}{\sqrt{d+1}}\right)^{d+1} \\
& >\frac{d 2^{d-1}\left(e^{\xi d} / 2\right)^{d+1}}{\sqrt{d+1}(d+1)^{d / 2}}=\frac{d / 4}{\sqrt{d+1}(1+1 / d)^{d / 2}} \cdot \frac{e^{\xi d(d+1)}}{d^{d / 2}}>\frac{e^{\xi d^{2}}}{d^{d / 2}}
\end{aligned}
$$

This implies the required lower bound on $\log N(d, \xi)$.
For the upper bound, we first observe that, by (1.1), each $\alpha \in \overline{\mathbb{Q}}$ of degree d whose Mahler measure is bounded by T, satisfies

$$
H(\alpha) \leq 2^{d} M(\alpha) \leq 2^{d} T .
$$

Thus,

$$
\begin{equation*}
M(d, T) \leq\left(2^{d+1} T+1\right)^{d+1}<\left(2^{d+2} T\right)^{d+1}=2^{(d+1)(d+2)} T^{d+1} \tag{3.1}
\end{equation*}
$$

Next, observe that each α of degree at most d and Weil height at most ξ satisfies $M(\alpha) \leq e^{\xi \operatorname{deg} \alpha} \leq e^{\xi d}$. Now, using (1.3) with $T=e^{\xi d}$ for j in the range $d_{0} \leq j \leq d$, where d_{0} is so large that (1.3) is true for $d \geq d_{0}$, and (3.1) for $j<d_{0}$, we deduce that

$$
\begin{aligned}
N(d, \xi) & \leq \sum_{j=0}^{d} M\left(j, e^{\xi d}\right)=\sum_{j=0}^{d_{0}-1} M\left(j, e^{\xi d}\right)+\sum_{j=d_{0}}^{d} M\left(j, e^{\xi d}\right) \\
& \leq \sum_{j=0}^{d_{0}-1} 2^{(j+1)(j+2)} e^{\xi d(j+1)}+\sum_{j=d_{0}}^{d} j e^{\xi d j(1+16 \log \log j / \log j)} \\
& <d_{0} 2^{\left(d_{0}+1\right)\left(d_{0}+2\right)} e^{\xi d d_{0}}+d^{2} e^{\xi d^{2}(1+16 \log \log d / \log d)} \\
& <e^{\xi d^{2}(1+17 \log \log d / \log d)}
\end{aligned}
$$

for d large enough. This proves the required upper bound.
Proof of Theorem 1.2. By (1.3), we find that

$$
M(d, T)<T^{d(1+17 \log \log d / \log d)}
$$

for $T \geq 1.32$ and d large enough. This implies the claimed upper bound.
To prove the lower bound, apply Lemma 2.3 with

$$
H:=\left\lfloor T(d+1)^{-1 / 2}\right\rfloor,
$$

where $T \geq 38 d^{3 / 2}(\log d)^{2}$ and $d \geq 6$. Then, by (1.1) and (2.6), each of those $\geq d 2^{d-1} H^{d+1}$ algebraic numbers has degree d and Mahler measure at most T. Consequently, using the bounds $T-\sqrt{d+1}>T / 2$ and $d \geq 6$, we deduce that

$$
\begin{aligned}
M(d, T) & \geq d 2^{d-1}\left\lfloor T(d+1)^{-1 / 2}\right\rfloor^{d+1}>d 2^{d-1}\left(\frac{T-\sqrt{d+1}}{\sqrt{d+1}}\right)^{d+1} \\
& >d 2^{d-1}(d+1)^{-(d+1) / 2}\left(\frac{T}{2}\right)^{d+1}=\frac{d T^{d+1}}{4 \sqrt{d+1}(d+1)^{d / 2}} \\
& >\frac{2 d T^{d} \sqrt{d+1}}{4 \sqrt{d+1} d^{d / 2}(1+1 / d)^{d / 2}}=\frac{d / 2}{(1+1 / d)^{d / 2}} \cdot \frac{T^{d}}{d^{d / 2}}>\frac{T^{d}}{d^{d / 2}},
\end{aligned}
$$

which gives the claimed lower bound.

References

[1] F. Barroero, 'Algebraic S-integers of fixed degree and bounded height', Acta Arith. 167 (2015), 67-90.
[2] S.-J. Chern and J. D. Vaaler, 'The distribution of values of Mahler's measure', J. reine angew. Math. 540 (2001), 1-47.
[3] A. Dubickas, 'Nonreciprocal algebraic numbers of small measure', Comm. Math. Univ. Carolin. 45 (2004), 693-697.
[4] A. Dubickas, 'Bounding univariate and multivariate reducible polynomials with restricted height', Period. Math. Hungar., to appear.
[5] A. Dubickas and J. Jankauskas, 'Nonreciprocal algebraic numbers of small Mahler's measure', Acta Arith. 157 (2013), 357-364.
[6] A. Dubickas and S. V. Konyagin, 'On the number of polynomials of bounded measure', Acta Arith. 86 (1998), 325-342.
[7] P. Erdôs, 'On the normal number of prime factors of $p-1$ and some other related problems concerning Euler's ϕ-function', Quart. J. Math. (Oxford Ser.) 6 (1935), 205-213.
[8] P. Erdős, 'On pseudoprimes and Carmichael numbers', Publ. Math. Debrecen 4 (1956), 201-206.
[9] R. Grizzard and J. Gunther, 'Slicing the stars: counting algebraic numbers, integers, and units by degree and height', Algebra and Number Theory 11 (2017), 1385-1436.
[10] D. Masser and J. D. Vaaler, 'Counting algebraic numbers with large height. I', in: Diophantine Approximation, Festschrift for Wolfgang Schmidt, Developments in Mathematics, vol. 16 (eds. H. P. Schlickewei et al.) (Springer, Vienna, 2008), 237-243.
[11] D. Masser and J. D. Vaaler, 'Counting algebraic numbers with large height. II', Trans. Amer. Math. Soc. 359 (2007), 427-445.
[12] Mathoverflow, 'Asymptotics for algebraic numbers of height less than one', Question 177206 https://mathoverflow.net/questions/177206/.
[13] M. Mignotte, 'On algebraic integers of small measure', in: Topics in Classical Number Theory (Budapest, 1981), Colloq. Math. Soc. János Bolyai 34, II (ed. G. Halász) (North-Holland, Amsterdam, 1984), 1069-1077.
[14] C. Pomerance, 'Popular values of Euler's function', Mathematika 27 (1980), 84-89.
[15] W. Specht, 'Abschätzungen der Wurzeln algebraischer Gleichungen', Math. Z. 52 (1949), 310-321.
[16] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables, Grundlehren der Mathematischen Wissenschaften, 326 (Springer, Berlin, 2000).
[17] M. Widmer, 'Integral points of fixed degree and bounded height', Int. Math. Res. Not. IMRN 2016(13) (2016), 3906-3943.

ARTŪRAS DUBICKAS, Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
e-mail: arturas.dubickas@mif.vu.lt

[^0]: This research was funded by the European Social Fund according to the activity Improvement of researchers qualification by implementing world-class R\&D projects of Measure no. 09.3.3-LMT-K-712-01-0037.
 (C) 2018 Australian Mathematical Publishing Association Inc.

