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Abstract

For a positive integer d and a nonnegative number ξ, let N(d, ξ) be the number of α ∈ Q of degree at
most d and Weil height at most ξ. We prove upper and lower bounds on N(d, ξ). For each fixed ξ > 0,
these imply the asymptotic formula log N(d, ξ) ∼ ξd2 as d→∞, which was conjectured in a question at
Mathoverflow [https://mathoverflow.net/questions/177206/].
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1. Introduction

For an algebraic number α of degree d over Q with conjugates α1 = α, α2, . . . , αd and
minimal polynomial

ad(x − α1) · · · (x − αd) = ad xd + · · · + a1x + a0 ∈ Z[x],

where ad > 0, we denote by H(α) := max0≤ j≤d |a j| the height of α and by

M(α) := ad

d∏
i=1

max{1, |αi|}

the Mahler measure of α. For α ∈ Q, these quantities are related by the inequalities

H(α)2−d ≤ M(α) ≤ H(α)
√

d + 1 (1.1)

(see, for instance, [15] and [16, Lemma 3.11]).
Set

M(d,T ) := #{α ∈ Q : degα = d, M(α) ≤ T },
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where #A stands for the cardinality of the set A. For d ≥ 2 and

Vd := 2d+1(d + 1)b(d−1)/2c
b(d−1)/2c∏

i=1

(2i)d−2i

(2i + 1)d+1−2i ,

the asymptotic formula

M(d,T ) =
dVd

2ζ(d + 1)
T d+1 + O(T d(log T )b2/dc) as T →∞

has been established in [2] and [10]. (Throughout, ζ(s) is the Riemann zeta-function.)
See also [1, 11, 17] and the references therein for some generalisations. In [9], this
formula is given with an explicit error term: for any d ≥ 3 and any T ≥ 1,∣∣∣∣∣M(d,T ) −

dVd

2ζ(d + 1)
T d+1

∣∣∣∣∣ ≤ 3.37 · 15.01d2
· T d.

This inequality gives the asymptotic formula for M(d, T ) as d →∞ in the range
log T � d2. (Here and below, the notation v� w means that the inequality v ≥ cw
holds with some positive constant c.) By [2, Theorem 4], this asymptotic formula holds
in a wider range log T � d log d, but with slightly larger error term in T . However,
for small T , for example, T fixed at T = 2, the problem of finding the correct order
of M(d, T ) is wide open. See, for instance, the papers [3, 5, 13]. More precisely,
from the main result of [5] one can derive M(d, 2) > cd5 with some absolute constant
c > 0, whereas the best known upper bound is only M(d, 2) < 2(1+ε)d for any ε > 0 and
d ≥ d(ε) [6]. Another interesting case, T = 1, corresponds to the constant

C := lim sup
d→∞

log M(d, 1)
log d

, (1.2)

which has been studied by Erdős [7] and Pomerance [14]. This constant can be
expressed as the number of solutions of the equation φ(n) = d for n ∈ N (when d is
fixed), where φ is Euler’s totient function, and bounds can be found using tools from
analytic number theory. Erdős and Pomerance showed that 0.55 < C ≤ 1 and Erdős
conjectured that C = 1 [8].

In the upper bound direction, for d sufficiently large and any T ≥ 1, we showed
in [6] that the number of integer polynomials of degree d and with positive leading
coefficient, nonzero constant coefficient and Mahler measure at most T is bounded
above by T d(1+16 log log d/log d)e3.58

√
d for d large enough. Furthermore, the factor e3.58

√
d

can be removed for T ≥ 1.32. The roots of any such polynomial, irreducible over Q
and whose coefficients are relatively prime, give d algebraic numbers of degree d and
Mahler measure at most T . Hence, the main result of [6] yields the inequality

M(d,T ) < dT d(1+16 log log d/log d) (1.3)

for each T ≥ 1.32 and each sufficiently large integer d, say d ≥ d0.
In this paper, we consider the related quantity

N(d, ξ) := #{α ∈ Q : degα ≤ d, h(α) ≤ ξ},
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where
h(α) :=

log M(α)
degα

is the Weil height of α. Using [2, Theorem 4] and following the approach of [10], for
ξ � log d, one can derive the asymptotic formula

N(d, ξ) ∼
dVdeξd(d+1)

2ζ(d + 1)
as d→∞. (1.4)

In [12], the problem of finding the asymptotic formula for N(d, 1) (noting that ξ = 1 is
much less than log d), or, less ambitiously, for log N(d, 1) as d→∞, has been raised.
From the discussion in [12] and also from (1.4), one can conjecture that the expected
formula is

log N(d, 1) ∼ d2 as d→∞. (1.5)
In this note, we prove the following theorem, which implies (1.5).

Theorem 1.1. For each ξ ≥ 2d−1 log d and each sufficiently large d,

−
d log d

2
< log N(d, ξ) − ξd2 <

17ξd2 log log d
log d

.

It is clear that Theorem 1.1 yields the asymptotic formula

log N(d, ξ) ∼ ξd2 as d→∞ and
ξd

log d
→∞.

Of course, equation (1.4) immediately implies this asymptotic formula, but only in
the range ξ � log d. We also remark that, for 0 ≤ ξ ≤ d−1(log d)−3, by combining a
Dobrowolski-type bound with the above mentioned results [7, 8, 14], one gets

log N(dk, ξ) ∼ C log dk as dk →∞,

where C is the constant defined in (1.2) and (dk)∞k=1 is some increasing sequence of
positive integers.

In fact, the lower bound on log N(d, ξ) − ξd2 as claimed in Theorem 1.1 will be
proved for d ≥ 1.784 · 108. In principle, some explicit constant D0 such that the
upper bound of Theorem 1.1 for log N(d, ξ) − ξd2 is true for each d ≥ D0 can also
be given. However, it depends on the corresponding bound d ≥ d0 in (1.3), which was
not calculated in [6], so we will not give it here.

For log M(d,T ), by applying the same arguments, we get the following bounds.

Theorem 1.2. For each T ≥ 38d3/2(log d)2 and each sufficiently large d,

−
d log d

2
< log M(d,T ) − d log T <

17d log T log log d
log d

.

We will prove the lower bound on log M(d, T ) − d log T for each d ≥ 6. Note that
Theorem 1.2 implies the asymptotic formula

log M(d,T ) ∼ d log T as d→∞ and
log T
log d

→∞.

In the next section, we give some auxiliary results and combine them into
Lemma 2.3. Then, in Section 3, we give the proofs of the theorems.
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2. Auxiliary results

Let d, H ≥ 2 be two integers. Consider the set P(d, H) of integer polynomials
defined by

P(d,H) :=
{
ad xd + · · · + a1x + a0 ∈ Z[x] : ad > 0, a0 , 0, max

0≤ j≤d
|a j| ≤ H

}
.

In [4, Theorem 1], we showed that the number of integer polynomials reducible over
Q and of degree d and height at most H is less than

2H(2H + 1)d−1 + 2dH(2H + 1)d−1(log(2H))2.

Here, the first term corresponds to the polynomials whose free term is zero. Since the
polynomials with ad < 0 are also counted in the above formula, we can remove the
factor 2 from the second term and restate this result as shown in the following lemma.

Lemma 2.1. For any integers d,H ≥ 2, the number of polynomials in P(d,H) reducible
over Q is less than

dH(2H + 1)d−1(log(2H))2.

Of course, the coefficients of a polynomial irreducible over Q are not necessarily
coprime (for instance, the coefficients of 2x2 − 6x + 2 are all divisible by 2). For this
reason, we also need the following result.

Lemma 2.2. For any integers d ≥ 6 and H ≥ 6d, the set P(d,H) contains at least

2dHd+1

ζ(d + 1)
− d2d+2Hd

polynomials ad xd + · · · + a1x + a0 satisfying gcd(ad, . . . , a1, a0) = 1.

Proof. Let g be an integer in the range 1 ≤ g ≤ H. Suppose there are Ng(H)
polynomials in P(d,H) satisfying gcd(ad, . . . ,a1,a0) = g. Our aim is to estimate N1(H)
from below. Clearly,

#P(d,H) = 2H2(2H + 1)d−1,

since there are H possibilities for ad, 2H possibilities for a0, and 2H + 1 possibilities
for each a j, where j = 1, . . . , d − 1. Consequently,

N1(H) + N2(H) + · · · + NH(H) = 2H2(2H + 1)d−1.

Observe that Ng(H) = N1(bH/gc) for g = 1, . . . ,H. Hence,

H∑
g=1

N1(bH/gc) = 2H2(2H + 1)d−1.

Now, by the Möbius inversion formula,

N1(H) =

H∑
g=1

µ(g)2bH/gc2(2bH/gc + 1)d−1. (2.1)
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Split the sum on the right-hand side of (2.1) into two sums N1(H) = S 1 + S 2, where
S 1 is taken over g in the interval 1 ≤ g ≤ bH/dc and S 2 is over bH/dc + 1 ≤ g ≤ H.
Since H/g ≤ d, we find that

|S 2| ≤ (H − bH/dc)2(H/g)2(2H/g + 1)d−1 < 2d2(2d + 1)d−1H.

So, in view of

2d2(2d + 1)d−1 < 2d2(13d/6)d−1 ≤ 2d2(13H/36)d−1 < 0.5Hd−1,

we conclude that
|S 2| < 0.5Hd.

To evaluate the sum

S 1 :=
bH/dc∑
g=1

µ(g)2bH/gc2(2bH/gc + 1)d−1, (2.2)

we first show that the difference between 2bH/gc2(2bH/gc + 1)d−1 and 2d(H/g)d+1 is
small, and then investigate

S 0 :=
bH/dc∑
g=1

µ(g)2d(H/g)d+1. (2.3)

Indeed, both numbers, 2bH/gc2(2bH/gc + 1)d−1 and 2d(H/g)d+1, belong to the
interval

(2(y − 1)2(2y − 1)d−1, 2y2(2y + 1)d−1],

where y := H/g ≥ 2. Thus, the difference between them does not exceed the length of
the interval, namely,

2y2(2y + 1)d−1 − 2(y − 1)2(2y − 1)d−1 <
(2y + 1)d+1 − (2y − 2)d+1

2
.

By the mean value theorem, the latter difference equals 1.5(d + 1)yd
0 for some y0 in the

interval [2y − 2, 2y + 1]. Consequently,

|2bH/gc2(2bH/gc + 1)d−1 − 2d(H/g)d+1| < 1.5(d + 1)(2H/g + 1)d.

Combining this with (2.2) and (2.3), we derive

|S 1 − S 0| ≤ 1.5(d + 1)
bH/dc∑
g=1

(2H/g + 1)d.

The first term in the above sum is (2H + 1)d. The quotient of the gth term and the first
term is

(2H/g + 1)d

(2H + 1)d =
(2H + g)d

(2H + 1)d ·
1
gd ≤

(2H + H/d)d

(2H + 1)d ·
1
gd

<
(
1 +

1
2d

)d
·

1
gd <

1.65
gd .
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It follows that

|S 1 − S 0| < 1.5(d + 1)
1.65
ζ(d)

(2H + 1)d <
2.5(d + 1)
ζ(d)

(2H + 1)d.

Therefore, applying the inequality(
1 +

1
2H

)d
≤

(
1 +

1
12d

)d
< 1.09, (2.4)

we conclude that

|S 1 − S 0| <
(3d + 3)(2H)d

ζ(d)
< 3.5d2dHd. (2.5)

Next, since the Dirichlet series that generates the Möbius function is the inverse of
the Riemann zeta function, from (2.3) we find that

S 0

2dHd+1 =

bH/dc∑
g=1

µ(g)
gd+1 =

1
ζ(d + 1)

−

∞∑
g=bH/dc+1

µ(g)
gd+1 .

This leads to ∣∣∣∣∣S 0 −
2dHd+1

ζ(d + 1)

∣∣∣∣∣ ≤ 2dHd+1
∞∑

g=bH/dc+1

1
gd+1 <

2dHd+1

dbH/dcd

<
2dHd+1

d(H/d − 1)d ≤
2dHd+1

d(5H/6d)d = 2.4ddd−1H

≤ 2.4d(H/6)d−1H < 0.1Hd.

Combining this with (2.1)–(2.3) and (2.5), we deduce that∣∣∣∣∣N1(H) −
2dHd+1

ζ(d + 1)

∣∣∣∣∣ =

∣∣∣∣∣S 2 + S 1 − S 0 + S 0 −
2dHd+1

ζ(d + 1)

∣∣∣∣∣
≤ |S 2| + |S 1 − S 0| +

∣∣∣∣∣S 0 −
2dHd+1

ζ(d + 1)

∣∣∣∣∣
< 0.5Hd + 3.5d2dHd + 0.1Hd < d2d+2Hd.

This yields the required lower bound on N1(H) and proves the lemma. �

From Lemmas 2.1 and 2.2 we will derive the following lemma.

Lemma 2.3. For any d ≥ 6 and any H ≥ 37d(log d)2 there are at least

d2d−1Hd+1 (2.6)

algebraic numbers of degree d and height at most H.

Proof. Lemmas 2.1 and 2.2 imply that, for d ≥ 6 and H ≥ 6d,

I(d,H) >
2dHd+1

ζ(d + 1)
− d2d+2Hd − dH(2H + 1)d−1(log(2H))2,

where I(d,H) is the number of irreducible polynomials in Z[x] lying in the set P(d,H).
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By (2.4), we have (2H + 1)d < 1.09 · 2dHd. It follows that

dH(2H + 1)d−1 <
d
2

(2H + 1)d < d2dHd,

and hence

d2d+2Hd + dH(2H + 1)d−1(log(2H))2 < d2dHd(4 + (log(2H))2).

Therefore,

I(d,H) > 2dHd(Hζ(d + 1)−1 − 4d − d(log(2H))2)
> 2dHd(0.98H − 4d − d(log(2H))2).

Note that the function

u(x) :=
0.24x

4 + (log x)2 − d

is increasing in x > 0. Furthermore, one can easily verify that, for each d ≥ 6,

u(74d(log d)2) = d
( 17.76(log d)2

4 + (log(74d(log d)2))2 − 1
)
> 0.

Hence, u(x) > 0 for x ≥ 74d(log d)2. Now, assuming that

H ≥ 37d(log d)2

and d ≥ 6, from u(2H) > 0 we deduce that

0.98H − 4d − d(log(2H))2 > 0.5H.

Therefore,
I(d,H) > 2dHd · 0.5H = 2d−1Hd+1.

This implies (2.6), since each of these polynomials (with positive leading coefficients)
gives d algebraic numbers of degree d and height at most H. �

3. Proofs of the theorems

Proof of Theorem 1.1. We will apply Lemma 2.3 with

H := beξd(d + 1)−1/2c

and d so large that H ≥ 37d(log d)2. (Recall that ξ ≥ 2d−1 log d, so the inequality
H ≥ 37d(log d)2 holds for d ≥ 1.784 · 108.) Then, by (1.1) and (2.6), each of those
≥ d2d−1Hd+1 algebraic numbers α has degree d and Weil height

h(α) =
log M(α)

d
≤

log(H(α)
√

d + 1)
d

≤
log eξd

d
=
ξd
d

= ξ.
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Hence, for all d ≥ 1.784 · 108 and ξ ≥ 2d−1 log d,

N(d, ξ) ≥ d2d−1beξd(d + 1)−1/2cd+1 > d2d−1
(eξd −

√
d + 1

√
d + 1

)d+1

>
d2d−1(eξd/2)d+1

√
d + 1(d + 1)d/2

=
d/4

√
d + 1(1 + 1/d)d/2

·
eξd(d+1)

dd/2 >
eξd

2

dd/2 .

This implies the required lower bound on log N(d, ξ).
For the upper bound, we first observe that, by (1.1), each α ∈ Q of degree d whose

Mahler measure is bounded by T , satisfies
H(α) ≤ 2d M(α) ≤ 2dT.

Thus,
M(d,T ) ≤ (2d+1T + 1)d+1 < (2d+2T )d+1 = 2(d+1)(d+2)T d+1. (3.1)

Next, observe that each α of degree at most d and Weil height at most ξ satisfies
M(α) ≤ eξ degα ≤ eξd. Now, using (1.3) with T = eξd for j in the range d0 ≤ j ≤ d, where
d0 is so large that (1.3) is true for d ≥ d0, and (3.1) for j < d0, we deduce that

N(d, ξ) ≤
d∑

j=0

M( j, eξd) =

d0−1∑
j=0

M( j, eξd) +

d∑
j=d0

M( j, eξd)

≤

d0−1∑
j=0

2( j+1)( j+2)eξd( j+1) +

d∑
j=d0

jeξd j(1+16 log log j/log j)

< d02(d0+1)(d0+2)eξdd0 + d2eξd
2(1+16 log log d/log d)

< eξd
2(1+17 log log d/log d)

for d large enough. This proves the required upper bound.

Proof of Theorem 1.2. By (1.3), we find that
M(d,T ) < T d(1+17 log log d/log d)

for T ≥ 1.32 and d large enough. This implies the claimed upper bound.
To prove the lower bound, apply Lemma 2.3 with

H := bT (d + 1)−1/2c,

where T ≥ 38d3/2(log d)2 and d ≥ 6. Then, by (1.1) and (2.6), each of those
≥ d2d−1Hd+1 algebraic numbers has degree d and Mahler measure at most T .
Consequently, using the bounds T −

√
d + 1 > T/2 and d ≥ 6, we deduce that

M(d,T ) ≥ d2d−1bT (d + 1)−1/2cd+1 > d2d−1
(T −

√
d + 1

√
d + 1

)d+1

> d2d−1(d + 1)−(d+1)/2
(T

2

)d+1
=

dT d+1

4
√

d + 1(d + 1)d/2

>
2dT d

√
d + 1

4
√

d + 1dd/2(1 + 1/d)d/2
=

d/2
(1 + 1/d)d/2 ·

T d

dd/2 >
T d

dd/2 ,

which gives the claimed lower bound.
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ARTŪRAS DUBICKAS, Institute of Mathematics,
Faculty of Mathematics and Informatics, Vilnius University,
Naugarduko 24, LT-03225 Vilnius, Lithuania
e-mail: arturas.dubickas@mif.vu.lt

https://doi.org/10.1017/S0004972718000497 Published online by Cambridge University Press

https://mathoverflow.net/questions/177206/
http://orcid.org/0000-0002-3625-9466
mailto:arturas.dubickas@mif.vu.lt
https://doi.org/10.1017/S0004972718000497

	Introduction
	Auxiliary results
	Proofs of the theorems
	References

