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Bade, in (1), studied Boolean algebras of projections on Banach spaces and
showed that a er-complete Boolean algebra of projections on a Banach space
enjoys properties formally similar to those of a Boolean algebra of projections
on Hilbert space. (His exposition is reproduced in (7: XVII).) Edwards and
Ionescu Tulcea showed that the weakly closed algebra generated by a tr-complete
Boolean algebra of projections can be represented as a von Neumann algebra;
and that the representation isomorphism can be chosen to be norm, weakly, and
strongly bicontinuous on bounded sets (8): Bade's results were then seen to
follow from their Hilbert space counterparts. I show here that it is natural to
relax the condition of ^-completeness to weak relative compactness; indeed, a
Boolean algebra of projections has a <x-completion if and only if it is weakly
relatively compact (Theorem 1). Then, following the derivation of the theorem
of Edwards and Ionescu Tulcea from the Vidav characterisation of abstract
C*-algebras (see (9)), I give a result (Theorem 2) which, with its corollary,
includes (1: 2.7, 2.8, 2.9, 2.10, 3.2, 3.3, 4.5).

Let A' be a complex Banach space with dual A"; let L(X) be the Banach
algebra of (bounded linear) operators on X. Two weak topologies are used in
this paper; the weak topology o(X, X') on X, and the weak (operator) topology
on L{X). Note that a subset E of L(X) is weakly relatively compact if and only
if Ex is weakly relatively compact (in X) for each x \n X (7: VI.9.2). The
strong (operator) topology on L(X) will also be used.

A projection on X is an idempotent in L(X). If £ is a projection, so is its
complement /— E. If E and F are commuting projections, they have a least
upper bound EwF{= E+F-EF) and a greatest lower bound £ A F ( = EF). A
set of commuting projections is a Boolean algebra of projections if it contains 0
and /, and is closed under complementation and the operations v and A .

A Boolean algebra of projections B on X is complete (cr-complete) if for each
subset (subsequence) {Bx} of B there is a direct sum decomposition X = Y@Z,
where Y is the closed subspace spanned by {BXX}, Z is the closed subspace
f](I~Bx)X, and the projection B onto Y along Z belongs to B; then B = \/Bx.
If 2? is complete (a-complete) in this sense, then B is complete (cx-complete) as an
abstract Boolean algebra.

If B is <7-complete (even only as an abstract Boolean algebra), then B is
bounded (that is, there is a number M with || B || ^ M when Be B(l: Theorem
2.2)).

https://doi.org/10.1017/S001309150001556X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001556X


288 P. G. SPAIN

If B is complete (<7-complete) and (Bx) is an increasing net (sequence) in B,
then \fBx = lim B> in the strong topology (1: Lemma 2.3).

Similarly, if B is weakly relatively compact, then B is bounded and Bx is
weakly relatively compact for each x in X. If (Bx) is an increasing net in B,
then, by (2: Corollary 1), \JBX exists and \/Bx = lim Bx in the strong topology.

Let A be the Stone representation space of B. Write K for the set of open-
and-closed subsets of A, S for the set of Baire subsets of A. Let us write the
representation map K-*B in the form x\-*B(t). Because A is a totally discon-
nected compact Hausdorff space, S is the tr-algebra (alternatively, the monotone
class) generated by K; also, L, the linear (which is also the algebra) span of the
characteristic functions of sets in K, is norm-dense in C(A), the algebra of
continuous functions on A.

Theorem 1. Let B be a Boolean algebra of projections on a Banach space.
Then B is weakly relatively compact if and only if B has a a-completion.

Proof. Let B be weakly relatively compact. Consider a sequence (TB) in K.
( (n \ \

By a remark above, I B[ \J rk 11 increases, and converges strongly, to a pro-

jection in Bs, the strong closure of B. Countable iteration of this process will
give a projection B(x) for each T in S. It is easy to see that B: S->2?s extends B,
that B is a spectral measure and that B(S) is the ^-completion of B.

Conversely, assume that B has a a-completion B. Then, as in the preceding
paragraph,/?: K->B has an extension B: 5-> B, showing that B is the range of a
spectral measure. (This observation was of prime importance in (1).) Now the
range of a vector measure is weakly relatively compact (3 : Theorem 2.9), so Bx is
weakly relatively compact for each x in X. Thus B is weakly relatively compact;
whence B is.

Theorem 2. Let B be a Boolean algebra of projections on a Banach space X.
Suppose that B has a a-completion (or equivalently, that B is weakly relatively
compact). Then B has a completion contained in Bs (which is a complete Boolean
algebra of projections), and the weak and strong topologies agree on Bs. Let A be
the norm-closed algebra generated by B; let Aw be the weak closure of A. ThenB
is complete if and only if B = B", if and only if A = Aw.

Proof. A'has an equivalent norm for which the members of B are hermitian
(in that they have real numerical range (see (6)) (4: Lemmas 2.2, 2.3). We may
assume that X has this norm. By (5: Theorem 2.1), the map B: K-*B has an
isometric linear extension to a map L->A; this extension is an algebra homo-
morphism. Therefore B: K-*B extends to an isometric algebra isomorphism

B: C(A)-*A; and B(f)= I fdB (fe C(A)). So, in the terminology of (9),
JA

A is representable by a spectral measure. By (9: Theorem 2), Aw is a W*-
algebra; moreover, there are a Hilbert space H, a von Neumann algebra A~ on
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H, and a C ̂ isomorphism AW-*A which is weakly and strongly bicontinuous on
bounded sets. The theorem now follows from the corresponding Hilbert space
results.

Corollary. Let B be a bounded Boolean algebra of projections on a weakly
complete Banach space X. Then B satisfies the hypotheses of the theorem.

Proof. The map B: C(A)->A may be defined as in the proof of the theorem.
Then C(A)-*X: f>-yB(f)x is weakly compact (3: Theorem 3.2), whence Bx is
weakly relatively compact (for each x in X); so B is weakly relatively compact.
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