## SOME CONFIGURATIONS IN FINITE PROJECTIVE SPACES AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

## D. K. RAY-CHAUDHURI

- 1. Introduction. Using the methods developed in (2 and 3), in this paper we study some properties of the configuration of generators and points of a cone in an n-dimensional finite projective space. The configuration of secants and external points of a quadric in a finite plane of even characteristic is also studied. It is shown that these configurations lead to several series of partially balanced incomplete block (PBIB) designs. PBIB designs are defined in Bose and Shimamoto (1). A PBIB design with m associate classes is an arrangement of v treatments in b blocks such that:
- 1. Each of the v treatments is replicated r times in b blocks each of size k and no treatment occurs more than once in any block.
- 2. There exists a relationship of association between every pair of the v treatments satisfying the following conditions:
- 2a. Any two treatments are either first associates, second associates, . . . , or *m*th associates.
- 2b. Each treatment has  $n_1$  first associates,  $n_2$  second associates, ...,  $n_m$  mth associates.
- 2c. Given any two treatments which are *i*th associates, the number  $p_{jk}^i$  of treatments which are *j*th associates of the first and *k*th associates of the second is independent of the pair of treatments with which we start. Furthermore  $p_{jk}^i = p_{kj}^i$ , for  $i, j, k = 1, 2, \ldots, m$ .

In this paper we shall be interested in PBIB designs with three associate classes. The following simple lemma will be found useful for our purposes. Consider a relationship of association between v treatments such that any two treatments are first associates, second associates, or third associates. Let  $p_{jk}{}^i(\theta, \phi)$  denote the number of treatments which are jth associates of  $\theta$  and kth associates of  $\phi$ , where  $(\theta, \phi)$  is a pair of ith associate treatments, i, j, k = 1, 2, 3. Also each treatment has  $n_1$  first associates,  $n_2$  second associates, and  $n_3$  third associates.

LEMMA 1.1. If the numbers  $p_{11}{}^{i}(\theta, \phi)$ ,  $p_{12}{}^{i}(\theta, \phi)$ , and  $p_{22}{}^{i}(\theta, \phi)$  are independent of the particular pair of ith associates  $(\theta, \phi)$  and  $p_{12}{}^{i}(\theta, \phi) = p_{21}{}^{i}(\theta, \phi)$  for every pair of ith associates  $(\theta, \phi)$ , i = 1, 2, 3, then the association scheme is a PBIB association scheme with three associate classes.

Received August 16, 1963. This paper is based on the author's Ph.D. thesis.

*Proof.* We need to show that the numbers  $p_{13}{}^{i}(\theta, \phi)$ ,  $p_{31}{}^{i}(\theta, \phi)$ ,  $p_{32}{}^{i}(\theta, \phi)$ ,  $p_{33}{}^{i}(\theta, \phi)$ , and  $p_{33}{}^{i}(\theta, \phi)$  are independent of the particular pair of *i*th associates  $(\theta, \phi)$  and  $p_{13}{}^{i}(\theta, \phi) = p_{31}{}^{i}(\theta, \phi)$  and  $p_{23}{}^{i}(\theta, \phi) = p_{32}{}^{i}(\theta, \phi)$ , i = 1, 2, 3. Consider a pair of treatments  $(\theta, \phi)$  which are first associates. The  $n_1$  first associates of  $\theta$  are made up of  $\phi$ ,  $p_{11}{}^{1}(\theta, \phi)$ -treatments which are first associates of both  $\theta$  and  $\phi$ ,  $p_{12}{}^{1}(\theta, \phi)$ -treatments which are first associates of  $\theta$  and second associates of  $\phi$ , and  $p_{13}{}^{1}(\theta, \phi)$ -treatments which are first associates of  $\theta$  and third associates of  $\phi$ . So we have the identity

$$(1.1) 1 + p_{11}^{1}(\theta, \phi) + p_{12}^{1}(\theta, \phi) + p_{13}^{1}(\theta, \phi) = n_{1}.$$

Applying similar considerations we can get the following identities:

(1.2) 
$$\sum_{k=1}^{3} p_{jk}{}^{i}(\theta, \phi) = \begin{cases} n_{i} - 1 & \text{for } i = j, i, j = 1, 2, 3, \\ n_{j} & \text{for } i \neq j. \end{cases}$$

Using the identities (1.3) we can express  $p_{13}{}^{i}(\theta, \phi)$ ,  $p_{31}{}^{i}(\theta, \phi)$ ,  $p_{23}{}^{i}(\theta, \phi)$ ,  $p_{32}{}^{i}(\theta, \phi)$ , and  $p_{33}{}^{i}(\theta, \phi)$  in terms of  $p_{11}{}^{i}(\theta, \phi)$ ,  $p_{12}{}^{i}(\theta, \phi)$ , and  $p_{22}{}^{i}(\theta, \phi)$ . Hence the lemma follows.

Let **B** denote the class consisting of the sets  $B_1, B_2, \ldots, B_b$  where  $B_j$ ,  $j = 1, 2, \ldots, b$ , is a set of points in PG(n, s), the finite projective space of n dimensions based on a Galois field with s elements. Let **V** denote another class consisting of sets  $V_1, V_2, \ldots, V_v$ , where  $V_i, i = 1, 2, \ldots, v$ , is a set of points in PG(n, s). These two classes generate a design with the incidence matrix

$$N = ((n_{ij}))$$
$$(v \times b) (v \times b)$$

where  $n_{ij} = 1$  (0) as  $V_i \cap B_j \neq \emptyset$  (= $\emptyset$ ). The design generated by the classes **B** and **V** will be denoted by  $D(\mathbf{B}, \mathbf{V})$ .

**2.** Configuration of generators and points of a cone. Let  $Q_{n-1}$  be a non-degenerate quadric on an (n-1)-flat  $\Sigma_{n-1}$  in PG(n,s) and  $Q_n$  be the cone with  $Q_{n-1}$  as the base and a point O outside  $\Sigma_{n-1}$  as the vertex. As in (2) we shall use N(p, n-1-2t) to determine the number of p-flats contained in a non-degenerate quadric of the type of  $Q_{n-1}$  (hyperbolic or elliptic) in PG(n-1-2t,s). We shall investigate some properties of the cone in the following lemmas.

Lemma 2.1 Let P be any point of  $Q_n$  other than O. Then the number of generators which pass through P but do not pass through O is sN(0, n-3).

*Proof.* Let PR be a generator of  $Q_n$  not passing through O. Then the three points O, P, and R are points of  $Q_n$  and mutually conjugate. By (2, Lemma 2.3), the plane OPR is contained in  $Q_n$ . Let P'R' be the intersection of OPR and  $\Sigma_{n-1}$ . Then P'R' is a generator of  $Q_{n-1}$ , i.e. a line contained in  $Q_{n-1}$ . Hence any such generator PR is contained in a plane OP'R', where P' is the intersection

of OP and  $\Sigma_{n-1}$  and P'R' is a generator of  $Q_{n-1}$ . The number of such planes OP'R' is equal to the number of generators of  $Q_{n-1}$  passing through P' and hence by (2, Theorem 3.3) is N(0, n-3). Every plane OP'R' contains s generators passing through P but not passing through P. Hence the lemma follows.

LEMMA 2.2. Let  $P_1$  and  $P_2$  be two points of  $Q_n$  other than O such that  $P_1 P_2$  is a generator not passing through O. Then the number of points P such that both  $PP_1$  and  $PP_2$  are generators not passing through O is  $s^2 - s + s^3 N(0, n - 5)$ .

Proof. By (2, Lemma 2.3), the plane  $OP_1 P_2$  is contained in  $Q_n$ . Hence the points of the plane other than those lying on the lines  $OP_1$  and  $OP_2$  possess the required property. So the plane  $OP_1 P_2$  contributes  $(s^2 + s + 1) - (2s + 1)$  points P. Let P be a point not lying on the plane  $OP_1 P_2$  which has the required property. By (2, Lemma 2.3), the 3-flat  $OPP_1 P_2$  is contained in  $Q_n$ . Let the plane  $P'_1 P'_1 P'_2$  be the intersection of the 3-flat  $OPP_1 P_2$  and  $\sum_{n-1}$  where  $P'_1$  and  $P'_2$  are respectively the intersections of  $OP_1$  and  $OP_2$  with  $\sum_{n-1}$ . We have shown that every such point P lies in a 3-flat  $OP'_1 P'_2 P'$  where  $P'_1 P'_2 P'$  is a plane contained in  $Q_{n-1}$  passing through  $P'_1 P'_2$ . By (2, Theorem 3.3), the number of planes contained in  $Q_{n-1}$  passing through  $P'_1 P'_2$  is N(0, n-5). Hence the number of 3-spaces of the type  $OP'_1 P'_2 P'$  is also N(0, n-5). Every such 3-space contributes  $s^3$  points P with the property that both  $PP_1$  and  $PP_2$  are generators of  $Q_n$  not passing through P and that P does not lie on the plane  $OP_1 P_2$ . This completes the proof.

Lemma 2.3. Let  $P_1$  and  $P_2$  be two points of  $Q_n$  such that  $P_1 P_2$  is a generator passing through O. Then the number of points P such that both  $PP_1$  and  $PP_2$  are generators not passing through O is  $s^2N(0, n-3)$ .

**Proof.** Let  $P'_1$  be the intersection of the line  $OP_1P_2$  and  $\Sigma_{n-1}$ . Let P be a point such that both  $PP_1$  and  $PP_2$  are generators not passing through O. By (2, Lemma 2.3), the plane  $PP_1P_2$  is contained in  $Q_n$ . Let  $P'_1P'$  be the intersection of the plane  $PP_1P_2$  and  $\Sigma_{n-1}$ .  $P'_1P'$  is contained in  $Q_{n-1}$ . Hence we have shown that every such point P lies in a plane  $OP'_1P'$  where  $P'_1P'$  is a generator of  $Q_{n-1}$  passing through  $P'_1$ . The number of planes  $OP'_1P'$  is equal to the number of generators  $P'_1P'$  of  $Q_{n-1}$  passing through  $P'_1$  and hence is equal to N(0, n-3) by (2, Theorem 3.3). Every plane  $OP'_1P'$  contributes  $s^2$  points P such that both  $PP_1$  and  $PP_2$  are generators not passing through O. Hence the lemma follows.

LEMMA 2.4. Let  $P_1$  and  $P_2$  be two points of  $Q_n$  such that  $P_1$   $P_2$  is not a generator. Then the number of points P such that both  $PP_1$  and  $PP_2$  are generators not passing through O is sN(0, n-3).

*Proof.* Let  $P'_1$  and  $P'_2$  be respectively the intersection of  $OP_1$  and  $OP_2$  with  $\Sigma_{n-1}$ . Let P be a point such that both  $PP_1$  and  $PP_2$  are generators not passing through O. Let  $P' = OP \cap \Sigma_{n-1}$ . It can be shown that  $P'P'_1$  and  $P'P'_2$  are a

pair of intersecting generators of  $Q_{n-1}$  and also  $P'_1P'_2$  is not a generator of  $Q_{n-1}$ . Hence every point P lies on a line OP' where P' has the property that  $P'P'_1$  and  $P'P'_2$  are generators of  $Q_{n-1}$ . By (3, Section 3, Lemma 4), the number of such points is N(0, n-3). Every line OP' contributes s points. This completes the proof.

Lemma 2.5. Let  $P_1$  and  $P_2$  be two points of  $Q_{n-1}$  such that  $P_1$   $P_2$  is a generator not passing through O. Then the number of points P other than  $P_1$  and  $P_2$  such that  $PP_1$  is a generator not passing through O and  $PP_2$  is a generator passing through O is s-1.

*Proof.* Since  $P_1 P_2$  is a generator not passing through O, the plane  $OP_1 P_2$  is contained in  $Q_n$ . Let P be a point with the required property.  $PP_2$  is a generator passing through O. Hence P must be a point of  $OP_2$ . Since the plane  $OP_1 P_2$  is contained in  $Q_n$ , every point P of  $OP_2$  is such that  $PP_1$  is a generator of  $Q_n$ . Hence the required points P are the points of the line  $OP_2$  other than O and  $P_2$ .

The following simple lemma is stated without proof.

Lemma 2.6. Let  $P_1$  and  $P_2$  be two points of  $Q_n$  such that  $P_1 P_2$  is a generator passing through O. Then the number of points P such that  $PP_1$  is a generator not passing through O and  $PP_2$  is a generator passing through O is 0.

LEMMA 2.7. Let  $P_1$  and  $P_2$  be two points of  $Q_n$  such that  $P_1 P_2$  is not a generator of  $Q_n$ . Then the number of points P such that  $PP_1$  is a generator not passing through O and  $PP_2$  is a generator passing through O is O.

*Proof.* Any point P with the stated property must lie on the line  $OP_2$ . Suppose there is a point P on the line  $OP_2$  such that  $PP_1$  is a generator. Then the plane  $OPP_1$  is contained in  $Q_n$  by (2, Lemma 2.3).  $P_1P_2$  is a line of  $OPP_1$  and hence is contained in  $Q_n$ . But this contradicts the hypothesis of the lemma.

The following three simple lemmas are stated without proof for the sake of reference.

LEMMA 2.8. Let  $P_1$  and  $P_2$  be two points of  $Q_n$  such that  $P_1 P_2$  is a generator not passing through O. Then the number of points P other than O such that both  $PP_1$  and  $PP_2$  are generators passing through O is 0.

LEMMA 2.9. Let  $P_1$  and  $P_2$  be two points of  $Q_n$  such that  $P_1 P_2$  is a generator passing through O. Then the number of points P other than O,  $P_1$ , and  $P_2$  such that both  $PP_1$  and  $PP_2$  are generators passing through O is s-2.

LEMMA 2.10. Let  $P_1$  and  $P_2$  be two points of  $Q_n$  such that  $P_1$   $P_2$  is not a generator. Then the number of points P other than O,  $P_1$ , and  $P_2$  such that both  $PP_1$  and  $PP_2$  are generators passing through O is O.

Theorem 1. Let **B** be the class of generators of  $Q_n$  not passing through O and **V** 

be the class of points of  $Q_n$  other than O. The design  $D(\mathbf{B}, \mathbf{V})$  is a PBIB design with 3 associate classes and the following parameters:

$$v = sN(0, n - 1), \qquad b = s^{2}N(1, n - 1), \qquad k = s + 1, \qquad r = sN(0, n - 3),$$

$$\lambda_{1} = 1, \qquad \lambda_{2} = \lambda_{3} = 0, \qquad n_{1} = s^{2}N(0, n - 3), \qquad n_{2} = s - 1,$$

$$p_{11}^{1} = s^{2} - s + s^{3}N(0, n - 5), \qquad p_{12}^{1} = (s - 1), \qquad p_{22}^{1} = 0,$$

$$p_{11}^{2} = s^{2}N(0, n - 3), \qquad p_{12}^{2} = 0, \qquad p_{22}^{2} = s - 2, \qquad p_{11}^{3} = sN(0, n - 3),$$

$$p_{12}^{3} = p_{22}^{3} = 0.$$

The other parameters of the design can be obtained from the equalities (1.2) between the parameters of a PBIB design.

*Proof.* The points of  $Q_n$  other than O and the generators of  $Q_n$  not passing through O are respectively regarded as treatments and blocks. Two points  $P_1$  and  $P_2$  are first associates if  $P_1 P_2$  is a generator not passing through O, second associates if  $P_1 P_2$  is a generator passing through O, and third associates if  $P_1 P_2$  is not a generator of  $Q_n$ . Using (2, Theorem 3.3) and Lemma 2.1, the following results are obtained easily:

 $v = sN(0, n - 1) = \text{number of points of } Q_n \text{ other than } O$ ,

 $b = s^2 N(1, n - 1)$  = number of generators of  $Q_n$  not passing through  $O_n$ 

k = s + 1 = number of points on a generator,

r = sN(0, n - 3) = number of generators passing through a point  $P \neq 0$  which do not pass through O.

The expressions for  $n_1$  and  $n_2$  are obvious. The other parameters of the design follow from Lemmas 2.2 to 2.10 and the theorem follows from Lemma 1.1.

Taking n = 2t + 1,  $t \ge 2$ ,  $Q_{n-1}$  a non-degenerate quadric, and using (2, Theorem 3.2), we get the following series of PBIB designs with three associate classes:

$$v = \frac{s(s^{2t} - 1)}{s - 1}, \qquad b = \frac{s^2(s^{2t - 2} - 1)(s^{2t} - 1)}{(s^2 - 1)(s - 1)},$$

$$k = s + 1, \qquad r = \frac{s(s^{2t - 2} - 1)}{s - 1}, \qquad \lambda_1 = 1, \qquad \lambda_2 = \lambda_3 = 0,$$

$$n_1 = s^2 \frac{s^{2t - 2} - 1}{s - 1},$$

$$n_2 = s - 1, \qquad p_{11}^{-1} = s^2 - s + \frac{s^3(s^{2t - 4} - 1)}{s - 1}, \qquad p_{12}^{-1} = (s - 1), \qquad p_{22}^{-1} = 0,$$

$$p_{11}^{-2} = s^2 \frac{s^{2t - 2} - 1}{s - 1}, \qquad p_{12}^{-2} = 0, \qquad p_{22}^{-2} = s - 2, \qquad p_{11}^{-3} = s \frac{s^{2t - 2} - 1}{s - 1},$$

$$p_{12}^{-3} = p_{22}^{-3} = 0.$$

Taking  $n = 2t, t \ge 3$ ,  $Q_{n-1}$  a non-degenerate elliptic quadric in PG (2t - 1, s), and using the results of (2, Theorem 3.2), we get the following series of PBIB designs with three associate classes:

$$v = s \frac{s^{2t-1} + s^{t-1} - s^{t} - 1}{s - 1},$$

$$b = s^{2} \frac{(s^{2t-1} + s^{t-1} - s^{t} - 1)(s^{2t-3} + s^{t-2} - s^{t-1} - 1)}{(s - 1)(s^{2} - 1)},$$

$$k = s + 1, \quad r = s \frac{s^{2t-3} + s^{t-2} - s^{t-1} - 1}{s - 1}, \quad \lambda_{1} = 1, \quad \lambda_{2} = \lambda_{3} = 0,$$

$$n_{1} = s^{2} \frac{s^{2t-3} + s^{t-2} - s^{t-1} - 1}{s - 1}, \quad n_{2} = s - 1,$$

$$p_{11}^{1} = s^{2} - s + s^{3} \frac{s^{2t-5} + s^{t-3} - s^{t-2} - 1}{s - 1}, \quad p_{12}^{1} = s - 1, \quad p_{22}^{1} = 0,$$

$$p_{11}^{2} = s^{2} \frac{s^{2t-3} + s^{t-2} - s^{t-1} - 1}{s - 1}, \quad p_{12}^{2} = 0, \quad p_{22}^{2} = s - 2,$$

$$p_{11}^{3} = s \frac{s^{2t-3} + s^{t-2} - s^{t-1} - 1}{s - 1}, \quad p_{12}^{3} = p_{22}^{3} = 0.$$

Taking n = 2t,  $t \ge 2$ ,  $Q_{n-1}$  a non-degenerate hyperbolic quadric in PG(n-1, s), and using results of (2, Theorem 3.3), we get the following series of PBIB designs:

$$v = s \frac{s^{2t-1} - s^{t-1} + s^{t} - 1}{s - 1},$$

$$b = s^{2} \frac{(s^{2t-1} - s^{t-1} + s^{t} - 1)(s^{2t-3} - s^{t-2} + s^{t-1} - 1)}{(s - 1)(s^{2} - 1)},$$

$$k = s + 1, \quad r = s \frac{s^{2t-3} - s^{t-2} + s^{t-1} - 1}{s - 1}, \quad \lambda_{1} = 1, \quad \lambda_{2} = \lambda_{3} = 0,$$

$$n_{1} = s^{2} \frac{s^{2t-3} - s^{t-2} + s^{t-1} - 1}{s - 1}, \quad n_{2} = s - 1,$$

$$p_{11}^{1} = s^{2} - s + s^{3} \frac{s^{2t-5} - s^{t-3} + s^{t-2} - 1}{s - 1}, \quad p_{12}^{1} = s - 1,$$

$$p_{22}^{1} = 0, \quad p_{11}^{2} = s^{2} \frac{s^{2t-3} - s^{t-2} + s^{t-1} - 1}{s - 1}, \quad p_{12}^{2} = 0, \quad p_{22}^{2} = s - 2,$$

$$p_{11}^{3} = \frac{s(s^{2t-3} - s^{t-2} + s^{t-1} - 1)}{s - 1}, \quad p_{12}^{3} = p_{22}^{3} = 0.$$

The three series given contain many designs useful for statistical experiments.

- 3. Configuration of secants and external points of a quadric in a plane of even characteristic. Let  $Q_2$  be a non-degenerate quadric in PG(2, s),  $s = 2^m$ . Any line of PG(2, s) which intersects the quadric in two points is called a secant. We shall prove some properties of the configuration of secants and external points in the following lemmas.
- LEMMA 3.1. Let P be an external point of  $Q_2$  other than the nucleus of polarity of  $Q_2$  in PG(2, s),  $s = 2^m$  (m > 1). The number of secants passing through P is s/2.
- Proof. Let  $\tau(P)$  denote the polar of P with respect to  $Q_2$ .  $\tau(P)$  is a line; it can intersect  $Q_2$  in k points, k = 0, 1, 2. Hence  $\tau(P)$  contains another external point  $P_1$ . The points P and  $P_1$  are external points of  $Q_2$  and mutually conjugate with respect to  $Q_2$ . By (2, Lemma 4.1), the line  $PP_1$  intersects  $Q_2$  in a single point. Let  $R_1$  be any point of  $Q_2$  not lying on  $\tau(P)$ . By (2, Lemma 4.1), the line  $PR_1$  contains another point of  $Q_2$ . Hence  $PR_1$  is a secant of  $Q_2$ . Hence for every point R of the quadric not lying on  $\tau(P)$ , PR is a secant. The number of points of  $Q_2$  not lying on  $\tau(P)$  is s and every secant contains 2 points. Hence the lemma follows.
- Lemma 3.2. Let S denote the nucleus of polarity of  $Q_2$ . Let P be any point of PG(2, s) not lying on  $Q_2$ . Then  $\tau(P)$  contains S.
- *Proof.* In the proof of Lemma 3.1 it is shown that  $\tau(P)$  contains one point R of  $Q_2$ . P and R are mutually conjugate. So  $\tau(R)$ , the tangent line at R, is the same as  $\tau(P)$  and therefore  $\tau(P)$  contains S.
- LEMMA 3.3. Let  $P_1$  be an external point other than the nucleus of polarity S. The number of external points P other than  $P_1$  such that  $PP_1$  is a secant is s(s-2)/2.
- *Proof.* The required points are those which lie on a secant passing through  $P_1$  but do not lie on  $Q_2$ . By Lemma 3.1 the number of secants passing through  $P_1$  is s/2 and every secant contains two points of  $Q_2$ . Hence the lemma follows.
- Lemma 3.4. Let  $P_1$  be an external point of  $Q_2$  other than S. The number of external points P other than  $P_1$  and S such that  $PP_1$  intersects the quadric in a single point is s-2.
- *Proof.* The required points are those external points other than S and P which lie on  $\tau(P_1)$ .  $\tau(P_1)$  contains P, S, and one point R of  $Q_2$ . The total number of points of  $\tau(P_1)$  is s+1. Hence the lemma follows.
- Lemma 3.5. Let  $P_1$  and  $P_2$  be two external points of  $Q_2$  other than S such that  $P_1 P_2$  is a secant. The number of external points P other than S,  $P_1$ , and  $P_2$  such that both  $PP_1$  and  $PP_2$  are secants is  $(\frac{1}{2}s 2)^2 + s 3$ .
- *Proof.* By (2, Lemma 4.1),  $P_1$  and  $P_2$  are not mutually conjugate. Let  $R_1$  and  $R_2$  be respectively the points at which  $\tau(P_1)$  and  $\tau(P_2)$  intersect the quadric.

 $P_1$   $R_2$  must be a secant. Suppose  $P_1$   $R_2$  is a tangent line intersecting  $Q_2$  in a single point  $R_2$ . Then  $P_1$  and  $R_2$  are mutually conjugate and  $R_2$  lies in  $\tau(P_1)$ , the polar of  $P_1$ . So  $\tau(P_1) = \tau(R_1)$  intersects  $Q_2$  at two points, which is a contradiction. It follows that  $P_1$   $R_2$  is a secant. Similarly  $P_2$   $R_1$  is a secant.

Let t = s/2. Let the t secants passing through  $P_1$  and  $P_2$  respectively be  $P_1 M_{11}$ ,  $P_1 P_2 M_{12}$ , ...,  $P_1 M_{1t}$  and  $P_2 M_{21}$ ,  $P_1 P_2 M_{22}$ , ...,  $P_2 M_{2t}$ , where  $M_{11} = R_2$ ,  $M_{21} = R_1$ ,  $M_{12} = M_{22}$ . All the points P with the required property must lie on the secants  $P_1 M_{11}$ ,  $P_1 P_2 M_{12}$ , ...,  $P_1 M_{1t}$ . Consider the common secant  $P_1 P_2 M_{12}$  which contains two points of  $Q_2$  and the points  $P_1$  and  $P_2$ . Hence the common secant contains s-3 points P satisfying the required conditions. Next we consider  $P_1 M_{11}$ . The external points lying on  $P_1 M_{11}$ which are points of intersection of  $P_1 M_{11}$  and a secant passing through  $P_2$  will have the required property. Let the two points of  $P_1 M_{11}$  which lie on  $Q_2$  be  $M_{11}$  and  $M'_{11}$ .  $M_{11} = R_2$ . The line  $P_2 R_2$  is a tangent and  $P_2 M'_{11}$  is a secant.  $P_1 P_2 M_{22}$  intersects  $P_1 M_{11}$  at  $P_1$ . Hence t-2 of the secants passing through P intersect  $P_1 M_{11}$  at external points other than  $P_1$ ,  $P_2$ , and S. So the secant  $P_1 M_{11}$  contributes t-2 points P with the required property. Next we consider the secant  $P_1 M_{13}$  which contains two points  $M_{13}$  and  $M'_{13}$  of  $Q_2$ . Both the lines  $P_2 M_{13}$  and  $P_2 M'_{13}$  are secants. Also  $P_1 P_2 M_{22}$  intersects  $P_1 M_{13}$  at  $P_1$ . So t-3 of the secants passing through  $P_2$  intersect  $P_1 M_{13}$  at external points other than  $P_1$ ,  $P_2$ , and S, and  $P_1$   $M_{13}$  contributes t-3 points P possessing the required property. Counting together all these points, we get the total n umber of points P as given in the lemma.

LEMMA 3.6. Let  $P_1$  and  $P_2$  be two external points other than S such that  $P_1 P_2$  is a tangent line intersecting  $Q_2$  in a single point. Then the number of external points P, other than  $P_1$ ,  $P_2$ , and S such that both  $PP_1$  and  $PP_2$  are secants is  $\frac{1}{2}s(\frac{1}{2}s-2)$ .

*Proof.* Let  $R_0$  be the point at which  $P_1P_2$  intersects  $Q_2$ . If R is any other point of  $Q_2$ ,  $P_1R$  and  $P_2R$  are secants by (2, Lemma 4.1). Let the t=s/2 secants passing through  $P_1$  and  $P_2$  respectively be  $P_1M_{11}$ ,  $P_1M_{12}$ , ...,  $P_1M_{1t}$  and  $P_2M_{21}$ ,  $P_2M_{21}$ , ...,  $P_2M_{2t}$ . Any point P with the required property must lie on one of the secants  $P_1M_{11}$ ,  $P_1M_{12}$ , ...,  $P_1M_{1t}$ . Let us consider  $P_1M_{11}$ . Let  $M_{11}$  and  $M'_{11}$  be the points of  $P_1M_{11}$  which lie on  $Q_2$ . Both the lines  $P_2M_{11}$  and  $P_2M'_{11}$  are secants. So t-2 of the secants passing through  $P_2$  intersect  $P_1M_{11}$  at external points other than  $P_1$ ,  $P_2$ , and S. Hence the secant  $P_1M_{11}$  contributes t-2 points P with the required property. The same is true for all the secants passing through  $P_1$ . Hence the lemma follows.

LEMMA 3.7. Let  $P_1$  and  $P_2$  be two external points of  $Q_2$  other than S such that  $P_1$   $P_2$  is an external line which does not intersect  $Q_2$ . Then the number of external points P other than  $P_1$ ,  $P_2$ , and S such that both  $PP_1$  and  $PP_2$  are secants is  $(\frac{1}{2}s-1)^2$ .

*Proof.* Let  $R_1$  and  $R_2$  respectively be the points at which  $\tau(P_1)$  and  $\tau(P_2)$ ,

polars of  $P_1$  and  $P_2$  respectively, intersect  $Q_2$ .  $P_1 R_2$  and  $P_2 R_1$  are secants. Let the secants passing through  $P_1$  and  $P_2$  be respectively  $P_1 M_{11}$ ,  $P_1 M_{12}$ , ...,  $P_1 M_{1t}$  and  $P_2 M_{21}$ ,  $P_2 M_{22}$ , ...,  $P_2 M_{2t}$  where  $t = \frac{1}{2}s$ ,  $M_{11} = R_2$ , and  $M_{21} = R_1$ . By an argument similar to that used in Lemmas 3.4 and 3.5, it can be shown that  $P_1 M_{11}$  contributes t - 1 points P possessing the required property and the remaining secants passing through  $P_1$  contribute t - 2 points each. Hence the lemma follows.

LEMMA 3.8. Let  $P_1$  and  $P_2$  be two external points of  $Q_2$  other than S such that  $P_1 P_2$  is a secant. Then the number of external points P other than  $P_1$ ,  $P_2$ , and S such that  $PP_1$  is a tangent line of  $Q_2$  and  $PP_2$  is a secant is  $\frac{1}{2}s - 2$ .

*Proof.* Let  $P_1 R_1$  be the polar of  $P_1$  with respect to  $Q_2$ , where  $R_1$  is a point of  $Q_2$ . The required points P must lie on the line  $P_1 R_1$ . Since  $P_1$  and  $P_2$  are mutually non-conjugate,  $P_2 R_1$  must be a secant. Hence of the  $\frac{1}{2}s$  secants passing through  $P_2$ ,  $\frac{1}{2}s - 2$  secants intersect  $P_1 R_1$  at an external point other than  $P_1$ ,  $P_2$ , and S. Hence the lemma follows.

The following lemma is obvious.

LEMMA 3.9. Let  $P_1$  and  $P_2$  be two external points other than S such that  $P_1 P_2$  is a tangent line. Then the number of external points P other than  $P_1$ ,  $P_2$ , and S such that  $PP_1$  is a tangent line and  $PP_2$  is a secant is 0.

LEMMA 3.10. Let  $P_1$  and  $P_2$  be two external points of  $Q_2$  other than S such that  $P_1$   $P_2$  is an external line. Then the number of external points P other than S,  $P_1$ , and  $P_2$  such that  $PP_1$  is a tangent line and  $PP_2$  is a secant is  $\frac{1}{2}s - 1$ .

*Proof.* Let  $P_1 R_1$  be the polar of  $P_1$  with respect to  $Q_2$  where  $R_1$  is a point of  $Q_2$ .  $P_2 R_1$  must be a secant of  $Q_2$ . Hence of the  $\frac{1}{2}s$  secants of  $P_2$ ,  $\frac{1}{2}s - 1$  secants, namely the secants other than  $P_2 R_1$ , intersect  $P_1 R_1$  in an external point. Hence the lemma follows.

LEMMA 3.11. Let  $P_1$  and  $P_2$  be two external points other than S such that  $P_1 P_2$  is a secant. The number of external points P other than  $P_1$ ,  $P_2$ , and S such that both  $PP_1$  and  $PP_2$  are tangents is 0.

*Proof.* Let  $P_1 R_1$  and  $P_2 R_2$  be the polars of  $P_1$  and  $P_2$  respectively, where  $R_1$  and  $R_2$  are points of  $Q_2$ . Every point P satisfying the required condition lies on both  $P_1 R_1$  and  $P_2 R_2$ . The only point which lies on both  $P_1 R_1$  and  $P_2 R_2$  is S. Hence the lemma follows.

LEMMA 3.12. Let  $P_1$  and  $P_2$  be two external points of  $Q_2$  other than S such that  $P_1 P_2$  is a tangent line. Then the number of external points P other than  $P_1$ ,  $P_2$ , and S such that both  $PP_1$  and  $PP_2$  are tangent lines is s-3.

The proof is obvious.

LEMMA 3.13. Let  $P_1$  and  $P_2$  be two external points of  $Q_2$  such that  $P_1 P_2$  is an

external line. Then the number of external points P other than  $P_1$ ,  $P_2$ , and S such that both  $PP_1$  and  $PP_2$  are tangent lines is 0.

The proof is similar to that of Lemma 3.11.

Theorem 2. Let **B** be the class of lines of PG(2, s),  $s = 2^m$ , which are secants of  $Q_2$ , and **V** be the class of external points of  $Q_2$  other than S, the nucleus of polarity of  $Q_2$ . Then  $D(\mathbf{B}, \mathbf{V})$  is a PBIB design with three associate classes with the following parameters:

$$v = s^{2} - 1, r = \frac{1}{2}s, b = (s+1) \cdot \frac{1}{2}s, k = s - 1, \lambda_{1} = 1,$$

$$\lambda_{2} = \lambda_{3} = 0, n_{1} = \frac{1}{2}s(s-2), n_{2} = s - 2,$$

$$p_{11}^{1} = (s-3) + (\frac{1}{2}s-2)^{2}, p_{12}^{1} = \frac{1}{2}s - 2, p_{22}^{1} = 0,$$

$$p_{11}^{2} = \frac{1}{2}s(\frac{1}{2}s-2), p_{12}^{2} = 0, p_{22}^{2} = s - 3,$$

$$p_{11}^{3} = (\frac{1}{2}s-1)^{2}, p_{12}^{3} = \frac{1}{2}s - 1, p_{22}^{3} = 0.$$

Other parameters of the design can be obtained from the equalities (1.3).

*Proof.* The external points other than S are considered to be treatments. The secants with points of  $Q_2$  excluded are the blocks. Two external points  $P_1$  and  $P_2$  are first associates if the line  $P_1 P_2$  is a secant, second associates if the line  $P_1 P_2$  is a tangent line at a point of  $Q_2$ , and third associates if  $P_1 P_2$  is an external line not intersecting  $Q_2$ . We can easily see that:

- 1. The number v of points of PG(2, s) other than S which do not lie on  $Q_2$  is equal to  $s^2 1$ .
- 2. The number r of secants passing through a given external point other than S is equal to  $\frac{1}{2}s$ , by Lemma 3.1.
- 3. The number k of external points lying on a secant is equal to s-1. Lemmas 1.1, 3.1 to 3.13 imply Theorem 2. The series of PBIB designs given in Theorem 2 contain several designs which are useful for statistical experiments.

## REFERENCES

- 1. R. C. Bose and T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Amer. Statist. Ass., 47 (1952), 151-184.
- D. K. Ray-Chaudhuri, Some results on quadrics in finite projective geometry based on galois fields, Can. J. Math., 14 (1962), 129-138.
- 3. ——— Application of the geometry of quadrics for constructing PBIB designs, Ann. Math. Statistics, 33 (1962), 1175-1186.

I.B.M., Yorktown Heights, N.Y.