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1. I n t r o d u c t i o n . Using the methods developed in (2 and 3) , in this paper 
we s tudy some properties of the configuration of generators and points of a 
cone in an w-dimensional finite projective space. The configuration of secants 
and external points of a quadric in a finite plane of even characterist ic is also 
studied. I t is shown t h a t these configurations lead to several series of part ial ly 
balanced incomplete block (PBIB) designs. P B I B designs are defined in Bose 
and Shimamoto (1). A P B I B design with m associate classes is an a r rangement 
of v t r ea tments in b blocks such t h a t : 

1. Each of the v t r ea tmen t s is replicated r t imes in b blocks each of size k 
and no t r ea tmen t occurs more than once in a n y block. 

2. There exists a relationship of association between every pair of the v 
t r ea tments satisfying the following condit ions: 

2a. Any two t rea tments are either first associates, second associates, . . . , 
or mth associates. 

2b. Each t r ea tmen t has n\ first associates, n2 second associates, . . . , nm 

mth associates. 
2c. Given any two t rea tments which are ith associates, the number p^ 

of t rea tments which are j t h associates of the first and &th associates of the 
second is independent of the pair of t r ea tments with which we s tar t . Fur ther 
more pjjc1 = picj\ for i,j,k = 1, 2, . . . , m. 

In this paper we shall be interested in P B I B designs with three associate 
classes. T h e following simple lemma will be found useful for our purposes. 
Consider a relationship of association between v t r ea tments such t h a t any two 
t r ea tmen t s are first associates, second associates, or third associates. Let 
pj^iO, 0) denote the number of t r ea tmen t s which are j t h associates of $ and 
&th associates of 0, where (0, 0) is a pair of ith associate t rea tments , 
ijj, k — 1, 2, 3. Also each t r ea tmen t has ri\ first associates, n2 second associates, 
and nz third associates. 

L E M M A 1.1. If the numbers pu1 {6, 0 ) , pu* (6, </>), and p^iQ, 0) are independent 

of the particular pair of ith associates (0, <t>) and pn^O, <t>) = p2iiifi, 0) for every 
pair of ith associates (6, 0) , i = 1,2, 3, then the association scheme is a P B I B 
association scheme with three associate classes. 
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Proof. We need to show that the numbers pi^iB, 0), pz^iB, </>), p^iB, </>), 
p2zi(0, 0), and pzzi{B, 4>) are independent of the particular pair of ith associates 
(6, </>) and pn\e, cj>) = pn*(6, </>) and pn'iB, 4>) = pn'iB, 0), i = 1, 2, 3. Con
sider a pair of treatments (0, 0) which are first associates. The n\ first associates 
of B are made up of $, puli0, 4>)-treatments which are first associates of both 
B and 4>,pi2l (0, <£)-treatments which are first associates of B and second associates 
of 4>, and pnxiB, ^-treatments which are first associates of B and third associates 
of <j>. So we have the identity 

(1.1) 1 + PIIKB, «) + PnKB, <t>) + Pn'(B, </>) = m. 

Applying similar considerations we can get the following identities: 

/ION ! h if. ^ _ )ni - 1 f o r i = 7 , i , j = 1,2,3, 

Using the identities (1.3) we can express pn^B, </>), pz^iB, </>), p2zi(By(j)), 
pz<il{B, 0), and £33*'(0, 0) in terms of £n*(0, 0), £i2*(0, </>), and ^22 '(^, 0). Hence 
the lemma follows. 

Let B denote the class consisting of the sets B\, B2, . . . , Bb where Bh 

j = 1, 2, . . . , b, is a set of points in PG(n, s), the finite projective space of n 
dimensions based on a Galois field with 5 elements. Let V denote another 
class consisting of sets V\, V2, • • . , Vv, where Viy i = 1, 2, . . . , v, is a set of 
points in PG(n, s). These two classes generate a design with the incidence 
matrix 

N = ((»„)) 
(v X b) (v X i) 

where w^ = 1 (0) as Vt H Bj 9e 0 (=0) . The design generated by the classes 
B and V will be denoted by D(B, V). 

2. Configuration of generators and points of a cone. Let Çn_i be a 
non-degenerate quadric on an (n — l)-flat 2w_i in PG(w, 5) and Ç« be 
the cone with Çn-i as the base and a point 0 outside ^n-i as the vertex. As in 
(2) we shall use N(p, n — 1 — 2t) to determine the number of ^-flats contained 
in a non-degenerate quadric of the type of Qn-\ (hyperbolic or elliptic) in 
PG in — 1 — 2t, s). We shall investigate some properties of the cone in the 
following lemmas. 

LEMMA 2.1 Let P be any point of Qn other than 0. Then the number of generators 
which pass through P but do not pass through 0 is sNiO, n — 3). 

Proof. Let PR be a generator of Qn not passing through 0. Then the three 
points 0, P , and R are points of Qn and mutually conjugate. By (2, Lemma 2.3), 
the plane OPR is contained in Qn. Let P'R! be the intersection of OPR and 
S»_i. Then P'R' is a generator of Qn-i, i.e. a line contained in Qn-\. Hence any 
such generator PR is contained in a plane OP'R'', where P ' is the intersection 
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of OP and 2w_i and P'P! is a generator of Qn-\. The number of such planes 
OP'R' is equal to the number of generators of Qn_i passing through Pf and 
hence by (2, Theorem 3.3) is N(Q,n — 3). Every plane OPrRr contains s 
generators passing through P but not passing through 0. Hence the lemma 
follows. 

LEMMA 2.2. Let Pi and P2 be two points of Qn other than 0 such that Pi P2 is 
a generator not passing through 0. Then the number of points P such that both 
PPi and PP2 are generators not passing through 0 is s2 — s + sz JV(0, n — 5). 

Proof. By (2, Lemma 2.3), the plane OPiP2 is contained in Qn. Hence the 
points of the plane other than those lying on the lines 0P\ and 0P2 possess 
the required property. So the plane 0P\ P2 contributes (s2 + 5 + 1) — (2s + 1) 
points P. Let P be a point not lying on the plane 0P\ P2 which has the required 
property. By (2, Lemma 2.3), the 3-flat OPPiP2 is contained in Qn. Let the 
plane P\P' P'2 be the intersection of the 3-flat OPPxP2 and 2w_i where 
P\ and P'2 are respectively the intersections of 0P\ and 0P2 with 2w._i. We 
have shown that every such point P lies in a 3-flat 0P\ P'2 P' where P\ P'2 P' 
is a plane contained in (^-1 passing through P\ P'2. By (2, Theorem 3.3), the 
number of planes contained in Qn_x passing through P\P'2 is iV(0, n — 5). 
Hence the number of 3-spaces of the type OP\P'2P' is also N(0,n — 5). 
Every such 3-space contributes s3 points P with the property that both PP\ 
and PP2 are generators of Qn not passing through 0 and that P does not lie 
on the plane 0P\ P2. This completes the proof. 

LEMMA 2.3. Let Pi and P2 be two points of Qn such that PiP2 is a generator 
passing through 0. Then the number of points P such that both PPi and PP2 are 
generators not passing through 0 is s2N(0, n — 3). 

Proof. Let P\ be the intersection of the line OPi P2 and 2n_i. Let P be a 
point such that both PP\ and PP2 are generators not passing through 0. 
By (2, Lemma 2.3), the plane PPiP2 is contained in Qn. Let P\P' be the 
intersection of the plane PPiP2 and 2re_i. P\Pf is contained in Qn-i. Hence 
we have shown that every such point P lies in a plane 0P\ P' where P\ P' is 
a generator of Qn-i passing through P\. The number of planes 0P\ Pf is 
equal to the number of generators P\ P! of Qn_i passing through P\ and hence 
is equal to N(0, n — 3) by (2, Theorem 3.3). Every plane 0P\ P' contributes 
s2 points P such that both PPi and PP2 are generators not passing through 0. 
Hence the lemma follows. 

LEMMA 2.4. Let Pi and P2 be two points of Qn such that Pi P2 is not a generator. 
Then the number of points P such that both PPi and PP2 are generators not 
passing through 0 is sN(0, n — 3). 

Proof. Let P\ and Pr
2 be respectively the intersection of 0PX and 0P2 with 

2w_i. Let P be a point such that both PPi and PP2 are generators not passing 
through 0. Let P' = OP C\ Sn_i. It can be shown that P'P\ and P'P'2 are a 
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pair of intersecting generators of Qw_i and also P\P'2 is not a generator of 
Qn-i- Hence every point P lies on a line OP' where Pf has the proper ty t ha t 
P'P'i and P'P'2 are generators of Qn-i. By (3, Section 3, Lemma 4) , the 
number of such points is N(0, n — 3). Every line OP' contributes 5 points. 
This completes the proof. 

LEMMA 2.5. Let Pi and P2 be two points of Qn-i such that Pi P 2 is a generator 
not passing through 0. Then the number of points P other than P\ and P2 such 
that PPi is a generator not passing through 0 and PP2 is a generator passing 
through 0 is s — 1. 

Proof. Since P i P 2 is a generator not passing through 0, the plane 0P\ P 2 is 
contained in Qn. Let P be a point with the required property. PP2 is a generator 
passing through 0. Hence P must be a point of 0P2. Since the plane 0P± P2 

is contained in Qni every point P of 0P2 is such t h a t P P i is a generator of Qn. 
Hence the required points P are the points of the line 0P2 other than 0 and P 2 . 

The following simple lemma is s tated without proof. 

L E M M A 2.6. Let P i and P2 be two points of Qn such that P i P 2 is a generator 
passing through 0. Then the number of points P such that PPi is a generator not 
passing through 0 and PP2 is a generator passing through 0 is 0. 

L E M M A 2.7. Let P i and P2 be two points of Qn such that P i P 2 is not a generator 
of Qn. Then the number of points P such that P P i is a generator not passing 
through 0 and PP2 is a generator passing through 0 is 0. 

Proof. Any point P with the stated property must lie on the line OP2. 
Suppose there is a point P on the line OP2 such tha t PP\ is a generator. Then 
the plane OPPi is contained in Qn by (2, Lemma 2.3). P i P 2 is a line of OPPi 
and hence is contained in Qn. But this contradicts the hypothesis of the lemma. 

The following three simple lemmas are s tated without proof for the sake of 
reference. 

LEMMA 2.8. Let P i and P 2 be two points of Qn such that P\P2 is a generator 
not passing through 0. Then the number of points P other than 0 such that both 
PP\ and PP2 are generators passing through 0 is 0. 

L E M M A 2.9. Let P\ and P 2 be two points of Qn such that P\P2 is a generator 
passing through 0. Then the number of points P other than 0, P i , and P2 such that 
both PP\ and PP2 are generators passing through 0 is s — 2. 

LEMMA 2.10. Let P i and P 2 be two points of Qn such that P i P 2 is not a generator. 
Then the number of points P other than 0, Pi, and P2 such that both PPi and PP2 

are generators passing through 0 is 0. 

T H E O R E M 1. Let B be the class of generators of Qn not passing through 0 and V 
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be the class of points of Qn other than 0. The design Z)(B, V) is a PB IB design 
with 3 associate classes and the following parameters: 

v = sN(0, n - 1), b = s2N(l, n-1), k = s + 1, r = sN(0, n - 3), 

Xi = 1, X2 = X3 = 0, ni = s2N(0, n — 3), n2 = s — 1, 

m 
1 _ c2 = 52 - 5 + s3iV(0, n - 5), Pn1 = (s- 1), ^ = 0, 

Pn2 = s2N(0, n - 3), p12
2 = 0, p22

2 = 5 - 2 , £ n
3 = 5iV(0, n - 3), 

^ i 2 3 = £ 2 2
3 = 0. 

TTze 0/fer parameters of the design can be obtained from the equalities (1.2) between 
the parameters of a PB IB design. 

Proof. The points of Qn other than 0 and the generators of Qn not passing 
through 0 are respectively regarded as treatments and blocks. Two points Pi 
and P2 are first associates if Pi P2 is a generator not passing through 0, second 
associates if Pi P2 is a generator passing through O, and third associates if 
PiP2 is not a generator of Qn. Using (2, Theorem 3.3) and Lemma 2.1, the 
following results are obtained easily: 

v = sN(0, n — 1) = number of points of Qn other than 0, 
& = s2N(l, n — 1) = number of generators of Qn not passing through 0, 
k = s + 1 = number of points on a generator, 
r = 5iV(0, n — 3) = number of generators passing through a point P (F^O) 

which do not pass through 0. 

The expressions for wi and n2 are obvious. The other parameters of the design 
follow from Lemmas 2.2 to 2.10 and the theorem follows from Lemma 1.1. 

Taking n = 2/ + 1, t > 2, Qn-\ a non-degenerate quadric, and using (2, 
Theorem 3.2), we get the following series of PBIB designs with three associate 
classes : 

_ 5(52 ' - 1) _ / ( / ' - 2 - l ) ( 5 2 ' - l ) 
V~ S - l ' b ~ ( S 2 - 1 ) ( 5 - 1 ) ' 

k = s+l, r = ^ — i , X i = l , X 2 = X 3 = 0, 
5 — 1 

ni = 5 
, 2 5 2 ' - 2 - l 

- 1 

3 / 2Z-4 -, \ 
W2 = 5 — 1, £ n = 5 — 5 + — - , pu = (S — 1 ) , £22 = 0, 

2ï -2 -, 2t-2 -, 
. 2 2 5 — 1 j . 2 n . 2 o ^ 3 5 — 1 

Pll = 5 — j , p12 = 0 , p22 = S — 2 , £ n = 5 ^—j , 

Pl2 = p22 = 0. 
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Takings = 2t, t > 3, Çw-i a non-degenerate elliptic quadric in PG (2t — l,s), 
and using the results of (2, Theorem 3.2), we get the following series of PBIB 
designs with three associate classes: 

v = s -
2 t-1 , t—1 t -, 

5 + 5 — S — 1 
5 - 1 

( ^ - 1 + , * - ! _ _ , * _ 1 ) ( 5 2 « - 3 + st~2 __ s t - l __ 1 } 

^ ^ ( , - l ) ( / - l ) 
2*-3 , t-2 _ *-l _ -j 

k = s + 1, r = s , Xi = 1, X2 = X3 = 0, 
5 — 1 

2*-3 « t-2 t-1 -i 

» i = 5 , n2 = 5 — 1, 
5 — 1 

2*-5 , ï-3 1-2 -, 
. 1 2 », 3 S -f- S — 5 — 1 i i. 1 A 

£ l l = ^ — 5 + 5 — 7 , pn = 5 — 1, £22 = 0, 

2i-3 , J-2 ?-l -, 
, 2 2 5 -h 5 — 5 — 1 * 2 n , 2 0 

P l l = ^ -, , Pl2 = 0 , p22 = S — 2 , 
5 — 1 

2Z-3 , t-2 t-1 -, 
.A

 3 5 j - 5 — 5 — 1 3 3 
£ l l = 5 — 7 , p12 = £22 = 0 . 

Taking n = 2t, t > 2, Çn-i a non-degenerate hyperbolic quadric in 
PG(w — 1,5), and using results of (2, Theorem 3.3), we get the following 
series of PBIB designs: 

v = 5 

2t-l t—1 1 t -, 

5 — 5 + 5 — 1 
5 - 1 

2 (5 2 *- 1 - 5*-1 + 5* - 1 ) ( 5 2 ^ 3 ~ 5*~2 + S1-' - 1) 
5 ( 5 - l ) ( 5 2 - l ) 

o 2 ' - 3 _ ç*~ 2 J _ o H l _ 1 

£ = 5 + 1, r = 5 , Xi = 1, X2 = X3 = 0, 
5 — 1 

2z-3 t-2 1 t-1 -, 

2 5 — 5 + 5 — 1 1 

7l\ = 5 : , fl2 = 5 — 1, 
5 — 1 

2*-5 «-3 , t-2 1 
^ ! 2 I 3 5 — 5 + 5 — 1 1 
£ l l = 5 — 5 + 5 — 7 , p u = 5 — 1, 

2J-3 «-2 1 t-1 t 
. 1 A . 2 2 S - 5 + 5 - 1 2 ft . 2 0 

^22 = 0 , ^11 = 5 — 7 , pl2 = 0 , p22 = S — 2 , 

c / 2*-3 t-2 , *-l -.x 
3 5(5 — 5 + 5 — i j 3 3 n 

^ H = —— , pn = p22 = 0. 

The three series given contain many designs useful for statistical experiments. 
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3. Configuration of secants and external points of a quadric in a 
plane of even characteristic. Let Q2 be a non-degenerate quadric in PG(2, s), 
s = 2m. Any line of PG(2, s) which intersects the quadric in two points is 
called a secant. We shall prove some properties of the configuration of secants 
and external points in the following lemmas. 

LEMMA 3.1. Let P be an external point of Q2 other than the nucleus of polarity 
of Q2 in PG(2, s), s = 2m (m > 1). The number of secants passing through P 
is s/2. 

Proof. Let r(P) denote the polar of P with respect to Q2. r(P) is a line; it 
can intersect Q2 in k points, k = 0, 1, 2. Hence r(P) contains another external 
point Pi . The points P and Pi are external points of Q2 and mutually conjugate 
with respect to Q2. By (2, Lemma 4.1), the line PP\ intersects Q2 in a single 
point. Let Ri be any point of Q2 not lying on r(P) . By (2, Lemma 4.1), the 
line PR\ contains another point of Q2. Hence PR± is a secant of Q2. Hence for 
every point R of the quadric not lying on T(P), PR is a secant. The number 
of points of Q2 not lying on r{P) is s and every secant contains 2 points. Hence 
the lemma follows. 

LEMMA 3.2. Let S denote the nucleus of polarity of Q2. Let P be any point of 
PG(2, s) not lying on Q2. Then T(P) contains S. 

Proof. In the proof of Lemma 3.1 it is shown that T(P) contains one point 
R of Q2. P and R are mutually conjugate. So T(R), the tangent line at R, is the 
same as r(P) and therefore T{P) contains S. 

LEMMA 3.3. Let P\ be an external point other than the nucleus of polarity S. 
The number of external points P other than Pi such that PPi is a secant is 
s(s - 2)/2. 

Proof. The required points are those which lie on a secant passing through Pi 
but do not lie on Q2. By Lemma 3.1 the number of secants passing through Pi 
is s/2 and every secant contains two points of Q2. Hence the lemma follows. 

LEMMA 3.4. Let Pi be an external point of Q2 other than S. The number of 
external points P other than Pi and S such that PPi intersects the quadric in a 
single point is s — 2. 

Proof. The required points are those external points other than 5 and P 
which lie on r(Pi) . r(Pi) contains P , S, and one point R of Q2. The total 
number of points of r(Pi) is s + 1. Hence the lemma follows. 

LEMMA 3.5. Let Pi and P 2 be two external points of Q2 other than S such that 
Pi P2 is a secant. The number of external points P other than S, Pi, and P2 such 
that both PPi and PP2 are secants is (^s — 2)2 + 5 — 3. 

Proof. By (2, Lemma 4.1), P i and P 2 are not mutually conjugate. Let P i and 
R2 be respectively the points at which r(Pi) and r(P2) intersect the quadric. 
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Pi R2 must be a secant. Suppose P± R2 is a tangent line intersecting Q2 in a 
single point R2. Then P i and R2 are mutually conjugate and R2 lies in r(Pi) , 
the polar of Pi . So r(Pi) = r(Pi) intersects Q2 at two points, which is a 
contradiction. It follows that P i R2 is a secant. Similarly P 2 P i is a secant. 

Let t = 5/2. Let the t secants passing through P i and P 2 respectively be 
P i Mu, P i P 2 Ml2) . . . , P i Mu and P 2 Af21, P i P 2 Af22, . . . , P2 Af2„ where 
ikfn = P2, M21 = Pi , M12 = M22. All the points P with the required property 
must lie on the secants P i M1U P i P2 M12, . . . , P i Mu. Consider the common 
secant P i P 2 Mi2 which contains two points of Q2 and the points P i and P2 . 
Hence the common secant contains s — 3 points P satisfying the required 
conditions. Next we consider P i Mu- The external points lying on Px Mu 
which are points of intersection of P i Mu and a secant passing through P 2 will 
have the required property. Let the two points of P i Mu which lie on Q2 be 
Mu and M'u. Mu = P2. The line P 2 P 2 is a tangent and P 2 M'u is a secant. 
P i P 2 M22 intersects P i Mu at Pi . Hence t — 2 of the secants passing through 
P intersect P i Mu at external points other than Pi , P2 , and S. So the secant 
P i Mu contributes t — 2 points P with the required property. Next we con
sider the secant P i M13 which contains two points Mu and M'u of Ç2. Both 
the lines P 2 Afi3 and P 2 -M'i3 are secants. Also P i P 2 ilf22 intersects P i Mu at 
Pi . So t — 3 of the secants passing through P 2 intersect P i Mu at external 
points other than Pi , P2 , and 5, and P i ikfi3 contributes t — 3 points P posses
sing the required property. Counting together all these points, we get the total 
umber of points P as given in the lemma. 

LEMMA 3.6. Let P i and P2 be two external points other than S such that P x P 2 

is a tangent line intersecting Q2 in a single point. Then the number of external 
points P , other than Pi , P2 , and S such that both PPX and PP2 are secants is 
is (is - 2). 

Proof. Let Po be the point at which P i P 2 intersects Q2. If R is any other 
point of Q2, P\R and P2R are secants by (2, Lemma 4.1). Let the / = s/2 
secants passing through P i and P 2 respectively be P i Mu, P i M12, . . . , Px Mu 

and P 2 ÀT21, P 2 M2i, . . . , P 2 M2t. Any point P with the required property 
must lie on one of the secants P i Mu, P\ Mi2, . . . , P i Mlt. Let us consider 
P i Mu. Let Mn and M'u be the points of P x Mu which lie on Q2. Both the 
lines P 2 Mu and P 2 M'u are secants. So t — 2 of the secants passing through 
P 2 intersect P i Mu at external points other than Pi , P2 , and S. Hence the 
secant P i Mu contributes t — 2 points P with the required property. The same 
is true for all the secants passing through Pi . Hence the lemma follows. 

LEMMA 3.7. Let P i and P 2 be two external points of Q2 other than S such that 
P i P 2 is an external line which does not intersect Q2. Then the number of external 
points P other than Ply P2 , and S such that both P P i and PP2 are secants is 
& - l)2 . 

Proof. Let P i and P 2 respectively be the points at which r(Pi) and r(P2), 
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polars of Pi and P 2 respectively, intersect Q2. P\ R2 and P 2 Pi are secants. Let 
the secants passing through Pi and P 2 be respectively Pi Mn, Pi Mu, 
. . . , P i Mlt and P 2 Af21, P 2 M22, . • . , P 2 M2t where £ = ^ , Mu = P2 , and 
M21 = Pi- By an argument similar to that used in Lemmas 3.4 and 3.5, it 
can be shown that P i Mu contributes t — 1 points P possessing the required 
property and the remaining secants passing through P i contribute / — 2 
points each. Hence the lemma follows. 

LEMMA 3.8. Let Pi and P2 be two external points of Q2 other than S such that 
Pi P2 is a secant. Then the number of external points P other than Pu P2 , and S 
such that P P i is a tangent line of Q2 and PP2 is a secant is ^s — 2. 

Proof. Let P i P i be the polar of P i with respect to Q2, where P i is a point 
of Q2. The required points P must lie on the line P i Pi . Since P i and P 2 are 
mutually non-conjugate, P 2 P i must be a secant. Hence of the ^s secants 
passing through P2 , \s — 2 secants intersect P i P i at an external point other 
than Pi , P2 , and S. Hence the lemma follows. 

The following lemma is obvious. 

LEMMA 3.9. Let Pi and P2 be two external points other than S such that Pi P2 

is a tangent line. Then the number of external points P other than P i , P2 , and S 
such that P P i is a tangent line and PP2 is a secant is 0. 

LEMMA 3.10. Let Pi and P2 be two external points of Q2 other than S such that 
Pi P2 is an external line. Then the number of external points P other than 5, Pi , 
and P2 such that PP\ is a tangent line and PP2 is a secant is \s — \. 

Proof. Let P i P i be the polar of P i with respect to Q2 where P i is a point of 
Q2. P 2 P i must be a secant of Q2. Hence of the %s secants of P2 , §s — 1 secants, 
namely the secants other than P 2 Pi , intersect P i Pi in an external point. 
Hence the lemma follows. 

LEMMA 3.11. Let Pi and P 2 be two external points other than S such that Pi P2 

is a secant. The number of external points P other than Pi, P2 , and S such that 
both PPi and PP2 are tangents is 0. 

Proof. Let P i P i and P 2 R2 be the polars of P i and P 2 respectively, where 
P i and R2 are points of Q2. Every point P satisfying the required condition 
lies on both P i P i and P 2 R2. The only point which lies on both P i P i and 
P 2 P 2 is vS. Hence the lemma follows. 

LEMMA 3.12. Let Pi and P2 be two external points of Q2 other than S such that 
P i P 2 is a tangent line. Then the number of external points P other than Pi, P 2 , 
and S such that both PPi and PP2 are tangent lines is s — 3. 

The proof is obvious. 

LEMMA 3.13. Let Pi and P2 be two external points of Q2 such that Pi P 2 is an 
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external line. Then the number of external points P other than Pi , P2 , and S such 
that both P P i and PP2 are tangent lines is 0. 

The proof is similar to that of Lemma 3.11. 

THEOREM 2. Let B be the class of lines of PG(2, s), s = 2m, which are secants of 
Q2, and V be the class of external points of Q2 other than S, the nucleus of polarity 
°f (?2- Then P>(B, V) is a PB IB design with three associate classes with the 
following parameters: 

v = s2 — 1, r = %s, b = (s + l).%s, k = s — 1, Xi = 1, 

X2 = A3 = 0, «i = %s(s — 2), n2 = s — 2, 

Pu1 = (s - 3) + (|s - 2)2, />12i = is - 2, ^22! = 0, 

Pn2 = %s& ~ 2), pn2 = 0, ^22
2 = 5 - 3 , 

£n3 = (è5 - l)2 , p12* = is - 1, £22
3 = 0. 

Other parameters of the design can be obtained from the equalities (1.3). 

Proof. The external points other than 5 are considered to be treatments. 
The secants with points of Q2 excluded are the blocks. Two external points 
P i and P 2 are first associates if the line P i P 2 is a secant, second associates if 
the line P i P 2 is a tangent line at a point of Q2, and third associates if P i P2 

is an external line not intersecting Q2. We can easily see that: 
1. The number v of points of PG(2, s) other than S which do not lie on Q2 is 

equal to s2 — 1. 
2. The number r of secants passing through a given external point other than 

S is equal to | s , by Lemma 3.1. 
3. The number k of external points lying on a secant is equal to 5 — 1. 
Lemmas 1.1, 3.1 to 3.13 imply Theorem 2. The series of PBIB designs given 

in Theorem2 contain several designs which are useful for statistical experiments. 
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