Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T14:17:53.766Z Has data issue: false hasContentIssue false

Watsonella crosbyi from the lower Cambrian (Terreneuvian, Stage 2) Normanville Group in South Australia

Published online by Cambridge University Press:  21 October 2016

SARAH M. JACQUET*
Affiliation:
Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
THOMAS BROUGHAM
Affiliation:
Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
CHRISTIAN B. SKOVSTED
Affiliation:
Department of Palaeobiology, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden
JAMES B. JAGO
Affiliation:
School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
JOHN R. LAURIE
Affiliation:
Geoscience Australia GPO Box 378 ACT, 2601, Canberra
MARISSA J. BETTS
Affiliation:
Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
TIMOTHY P. TOPPER
Affiliation:
Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
GLENN A. BROCK
Affiliation:
Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
*
Author for correspondence: sarah.jacquet@mq.edu.au

Abstract

Correlation of lower Cambrian strata is often confounded by provincialism of key fauna. The widespread occurrence of the micromollusc Watsonella crosbyi Grabau, 1900 is therefore an important biostratigraphic signpost with potential for international correlation of lower Cambrian successions. Previous correlations of W. crosbyi from Australia (Normanville Group) suggested an Atdabanian- to Botoman-equivalent age. However, in the upper part of the Mount Terrible Formation, stratigraphic ranges of W. crosbyi and Aldanella sp. cf. golubevi overlap prior to the incoming of vertically burrowed ‘piperock’, which is indicative of an age no earlier than Cambrian Stage 2. The stratigraphic range of W. crosbyi in the Normanville Group, South Australia correlates with the ranges of the taxon in China, France, Mongolia and Siberia (though not Newfoundland). The new Australian data add further support for considering the first occurrence of W. crosbyi a good potential candidate for defining the base of Cambrian Stage 2. The stratigraphic range of W. crosbyi through the lower Cambrian Normanville Group has been determined based on collections from measured sections. Although rare, W. crosbyi is part of an assemblage of micromolluscs including Bemella sp., Parailsanella sp. cf. murenica and a sinistral form of Aldanella (A. sp. cf. A. golubevi). Other fauna present include Australohalkieria sp., Eremactis mawsoni, chancelloriids and Cupitheca sp.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abele, C. & McGowran, B. 1959. The geology of the Cambrian south of Adelaide (Sellick Hill to Yankalilla). Transactions of the Royal Society of South Australia 82, 301–20.Google Scholar
Alexander, E. M. & Gravestock, D. I. 1990. Sedimentary facies in the Sellick Hill Formation, Fleurieu Peninsula, South Australia. Geological Society of Australia. Special Publication 16, 269–89.Google Scholar
Babcock, L. E., Peng, S., Zhu, M., Xiao, S. & Ahlberg, P. 2014. Proposed reassessment of the Cambrian GSSP. Journal of African Earth Sciences 98, 310.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A. & Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9, 1364.Google Scholar
Bengtson, S. & Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Sciences 20, 525–36.Google Scholar
Betts, M. J., Brock, G. A., Jago, J. B., Paterson, J. R. & Andrew, A. 2015. Integrated shelly fossil biostratigraphy and carbon and oxygen chemostratigraphy: applying a multi-proxy toolkit to correlating the early Cambrian of South Australia. In AAPG-SEG International Conference & Exhibition Melbourne.Google Scholar
Betts, M. J., Paterson, J. R., Jago, J. B., Jacquet, S. M., Skovsted, C. B., Topper, T. P. & Brock, G. A. 2016. New lower Cambrian shelly fossil assemblage zones in the lower Hawker Group, Arrowie Basin, South Australia. Gondwana Research 36, 163–95.CrossRefGoogle Scholar
Billings, F. G. S. 1871. On some new species of Palaeozoic fossils. Canadian Naturalist and Geologist 6, 213–33.Google Scholar
Brasier, M.D., Rozanov, A. Yu., Zhuravlev, A. Yu., Corfield, R. M. & Derry, L. A. 1994. A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP project 303. Geological Magazine 131, 767–83.Google Scholar
Brasier, M. D., Shields, G., Kuleshov, V. N. & Zhegallo, E. A. 1996. Integrated chemo-and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine 133, 445–85.Google Scholar
Brock, G. A., Engelbretsen, M. J., Jago, J. B., Kruse, P. D., Laurie, J. R., Shergold, J. H., Shi, G. R. & Sorauf, J. E. 2000. Palaeobiogeographic affinities of Australian Cambrian faunas. Memoirs of the Association of Australasian Palaeontologists 23, 161.Google Scholar
Callen, R. A. 1971. Sedimentary Phosphate Exploration. Part 2: The Cambrian and Proterozoic of Fleurieu Peninsula, the Mount Lofty Ranges, and Yorke Peninsula. Mineral Resources Review. South Australia 130, 8094.Google Scholar
Carter, J. G. 2001. Shell and ligament microstructure of selected Silurian and Recent palaeotaxodonts (Mollusca: Bivalvia). American Malacological Bulletin 16, 217–38.Google Scholar
Compston, W., Zhang, Z., Cooper, J., Ma, G. & Jenkins, R. 2008. Further SHRIMP geochronology on the early Cambrian of South China. American Journal of Science 308, 399420.Google Scholar
Crimes, P. T. 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine 124, 97119.Google Scholar
Daily, B. 1956. The Cambrian in South Australia. In El Sistema Cambrico, su Paleogeografia y el Problema de su Base. Report 20th International Geological Congress, Mexico 2 (ed. Rodgers, J.). Mexico City, pp. 91147.Google Scholar
Daily, B. 1963. The fossilferous Cambrian succession on Fleurieu Peninsula, South Australia. Records of the South Australian Museum 14, 579602.Google Scholar
Daily, B. 1969. Fossiliferous Cambrian sediments and low-grade metamorphics, Fleurieu Peninsula, South Australia. In Section 3 ‒ Geological Excursions Handbook (ed. Daily, B.), pp. 4954. Adelaide: ANZAAS, 41st Congress.Google Scholar
Daily, B. 1972. The base of the Cambrian and the first Cambrian faunas. In Stratigraphic Problems of the Later Precambrian and Early Cambrian. Volume 1 (eds Jones, J. B. & McGowran, B.), pp. 1341. Geological Society of Australia, University of Adelaide.Google Scholar
Daily, B. 1973. Discovery and significance of basal Cambrian Uratanna Formation, Mt. Scott Range, Flinders Ranges, South Australia. Search 4, 202–5.Google Scholar
Daily, B. 1976 a. New data on the base of the Cambrian in South Australia. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya 3, 4552.Google Scholar
Daily, B. 1976 b. The Cambrian of the Flinders Ranges. In 25th International Geological Congress. Excursion Guide 33A, Sydney, pp. 15–9.Google Scholar
Daily, B. 1990. Cambrian stratigraphy of Yorke Peninsula. In The Evolution of a Late Precambrian–Early Palaeozoic Rift Complex: The Adelaide Geosyncline (eds Jago, J. B. & Moore, P. S.), pp. 215–29. Geological Society of Australia, Special Publication no. 16.Google Scholar
Daily, B., Firman, J. B., Forbes, B. G. & Lindsay, J. M. 1976. Geology. In Natural history of the Adelaide Region (eds Twidale, C. R., Tyler, M. J. & Webb, B. P.), pp. 542. Adelaide: Royal Society of South Australia.Google Scholar
Daily, B. & Milnes, A. R. 1973. Stratigraphy, structure and metamorphism of the Kanmantoo Group (Cambrian) in its type section east of Tunkalilla Beach, South Australia. Transactions of the Royal Society of South Australia 97, 213–42.Google Scholar
Debrenne, F. & Gravestock, D. I. 1990. Archaeocyatha from the Sellick Hill Formation and Fork Tree Limestone on Fleurieu Peninsula, South Australia. In The Evolution of a Late Precambrian–Early Palaeozoic Rift Complex: The Adelaide Geosyncline (eds Jago, J. B. & Moore, P. S.), pp. 290309. Geological Society of Australia, Special Publication no. 16.Google Scholar
Derry, L. A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters 294, 152–62.Google Scholar
Desjardins, P. R., Gabriela Mángano, M., Buatois, L. A. & Pratt, B. R. 2010. Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia 43, 507–28.Google Scholar
Devaere, L., Clausen, S., Steiner, M., Álvaro, J. J. & Vachard, D. 2013. Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France. Palaeontologia Electronica 16, 191.Google Scholar
Dzik, J. 1994. Evolution of ‘small shelly fossils’ assemblages of the early Paleozoic. Acta Palaeontologica Polonica 39, 247313.Google Scholar
Esakova, N. V. & Zhegallo, E. A. 1996. Biostratigraphy and fauna of Lower Cambrian of Mongolia. Sovmestnaya Rossiisko-Mongol'skaya Paleontologicheskaya Ekspeditsiya Trudy 46, 1214.Google Scholar
Geyer, G. 1994. Middle Cambrian molluscs from Idaho and early conchiferan evolution. New York State Museum Bulletin 481, 6986.Google Scholar
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia 2, 369–93.Google Scholar
Golubev, S. N. 1976. Ontogenetic changes and evolutionary trends in the early Cambrian spiral gastropods Pelagiellacea. Paleontological Journal 10, 143–9.Google Scholar
Grabau, A. W. 1900. Palaeontology of the Cambrian terranes of the Boston Basin. Occasional Papers of the Boston Society Natural History 4, 601–94.Google Scholar
Gravestock, D. I. 1984. Archaeocyatha from lower parts of the Lower Cambrian carbonate sequence in South Australia. Memoirs of the Association of Australasian Palaeontologists 3, 1139.Google Scholar
Gravestock, D. I. 1995. Chapter 7. Early and Middle Palaeozoic. In The Geology of South Australia. Volume 2: The Phanerozoic (eds Drexel, J. F. & Preiss, W. V.), pp. 35. Mines and Energy South Australia Bulletin 54.Google Scholar
Gravestock, D. I., Alexander, E. M., Demidenko, Y. E., Esakova, N. V., Holmer, L. E., Jago, J. B., Lin, T-R., Melnikova, L. M., Parkhaev, P. Y., Rozanov, A. Y., Ushatinskaya, G. T., Zang, W-L., Zhegallo, E. A. & Zhuravlev, A. Y. 2001. The Cambrian Biostratigraphy of the Stansbury Basin. South Australia. Russian Academy of Sciences, Transactions of the Palaeontological Institute, 344 pp.Google Scholar
Gravestock, D. I. & Cowley, W. M. 1995. Arrowie Basin . In The Geology of South Australia. Volume 2: The Phanerozoic. (eds Drexel, J. F. & Preiss, W. V.), pp. 2031. Mines and Energy South Australia Bulletin 54.Google Scholar
Gravestock, D. I. & Gatehouse, C. G. 1995. Stansbury Basin. In The Geology of South Australia. Volume 2: The Phanerozoic (eds Drexel, J. F. & Preiss, W. V.), pp. 519. Mines and Energy South Australia Bulletin 54.Google Scholar
Gravestock, D. I. & Shergold, J. H. 2001. Australian early and middle Cambrian sequence biostratigraphy with implications for species diversity and correlation. In Ecology of the Cambrian Radiation (eds Zhuravlev, A. Y. & Riding, R.), pp. 107–36. New York: Columbia University Press.Google Scholar
Gubanov, A. P. 2002. Early Cambrian palaeogeography and the probable Iberia-Siberia connection. Tectonophysics 352, 153–68.CrossRefGoogle Scholar
Haines, P. W., Turner, S. P., Foden, J. D. & Jago, J. B. 2009. Isotopic and geochemical characterisation of the Cambrian Kanmantoo Group, South Australia: implications for stratigraphy and provenance. Australian Journal of Earth Sciences 56, 1095–110.Google Scholar
He, T. & Yang, X. 1982. Lower Cambrian Meishucun stage of western Yangtze stratigraphic region and its small shelly fossils. Bulletin of the Chengdu Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 3, 6995.Google Scholar
Howchin, W. 1897. On the occurrence of Lower Cambrian fossils in the Mount Lofty Ranges. Transactions of the Royal Society of South Australia 21, 7486.Google Scholar
Jacquet, S. M., Betts, M. J. & Brock, G. A. 2016. Phosphate, facies and fossilisation of early Cambrian molluscs. In Palaeo Down Under 2 (eds Laurie, J. R., Kruse, P. D., García-Bellido, D. C. & Holmes, J. D.), p. 36. Adelaide, July 2016. Geological Society of Australia Abstracts 117.Google Scholar
Jago, J., Daily, B., Von Der Borch, C., Cernovskis, A. & Saunders, N. 1984. First reported trilobites from the Lower Cambrian Normanville Group, Fleurieu Peninsula, South Australia. Transactions of the Royal Society of South Australia 108, 207–11.Google Scholar
Jago, J. B., Dyson, I. A. & Gatehouse, C. G. 1994. The nature of the sequence boundary between the Normanville and Kanmantoo Groups on Fleurieu Peninsula, South Australia. Australian Journal of Earth Sciences 41, 445–53.Google Scholar
Jago, J. B., Gatehouse, C. G., Alexander, E. M. & Cooper, B. J. 2006. Cambrian of Fleurieu Peninsula. In XI International Conference of the Cambrian Stage Subdivision Working Group (eds Jago, J. B. & Zang, W-L.), pp. 1320. Geological Society of Australia, South Australia Division, Adelaide.Google Scholar
Jago, J. B., Gum, J. C., Burtt, A. C. & Haines, P. W. 2003. Stratigraphy of the Kanmantoo Group: a critical element of the Adelaide Fold Belt and the Palaeo-Pacific plate margin, Eastern Gondwana. Australian Journal of Earth Sciences 50, 343–63.CrossRefGoogle Scholar
Jenkins, R., Cooper, J. & Compston, W. 2002. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. Journal of the Geological Society 159, 645–58.Google Scholar
Jenkins, R. J. F. & Hasenohr, P. 1989. Trilobites and their trails in a black shale: early Cambrian of the Fleurieu Peninsula, South Australia. Transactions of the Royal Society of South Australia 113, 195203.Google Scholar
Jensen, S., Gehling, J. G. & Droser, M. L. 1998. Ediacara-type fossils in Cambrian sediments. Nature 393, 567–9.Google Scholar
Kerber, M. 1988. Mikrofossilien aus Unterkambrischen Gesteinen der Montagne Noire, Frankreich. Palaeontographica Abteilung A 202, 127203.Google Scholar
Kaufman, A. J. & Knoll, A. H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73, 2749.Google Scholar
Knoll, A. H., Grotzinger, J. P., Kaufman, A. J. & Kolosov, P. 1995. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73, 251–70.CrossRefGoogle ScholarPubMed
Kouchinsky, A. V. 1999. Shell microstructures of the Early Cambrian Anabarella and Watsonella as new evidence on the origin of the Rostroconchia. Lethaia 32, 173–80.Google Scholar
Kouchinsky, A., Bengtson, S., Missarzhevsky, V. V., Pelechaty, S., Torssander, P. & Valkov, A. K. 2001. Carbon isotope stratigraphy and the problem of a pre-Tommotian Stage in Siberia. Geological Magazine 138, 387–96.Google Scholar
Kouchinsky, A., Bengtson, S., Runnegar, B., Skovsted, C., Steiner, M. & Vendrasco, M. 2012. Chronology of early Cambrian biomineralization. Geological Magazine 149, 221–51.Google Scholar
Landing, E. 1988. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology 62, 661–95.Google Scholar
Landing, E. 1989. Paleoecology and distribution of the Early Cambrian rostroconch Watsonella crosbyi Grabau. Journal of Paleontology 63, 566–73.Google Scholar
Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. A. 2013. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123, 133–72.Google Scholar
Landing, E. & Kouchinsky, A. 2016. Correlation of the Cambrian Evolutionary Radiation: geochronology, evolutionary stasis of earliest Cambrian (Terreneuvian) small shelly fossil (SSF) taxa, and chronostratigraphic significance. Geological Magazine 153, 750–6.Google Scholar
Landing, E., Myrow, P., Benus, A. P. & Narbonne, G. M. 1989. The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology 63, 739–69.Google Scholar
Li, D., Ling, H.-F., Jiang, S.-Y., Pan, J.-Y., Chen, Y.-Q., Cai, Y.-F. & Feng, H.-Z. 2009. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: implications for global correlation. Geological Magazine 146, 465–84.Google Scholar
Li, G., Zhao, X., Gubanov, A. P., Zhu, M. & Na, L. 2011. Early Cambrian mollusc Watsonella crosbyi: a potential GSSP index fossil for the base of the Cambrian Stage 2. Acta Geologica Sinica - English Edition 85, 309–19.Google Scholar
Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae: Secundum Classes. Ordines. Genera. Species. Cum Characteribus. Differentiis. Synonymis. Locis. Editio decima. reformata, 10th edition. Stockholm: Laurentius Salvius, 824 pp.Google Scholar
Linsley, R. M. & Kier, W. M. 1984. The Paragastropoda: A proposal for a new class of Paleozoic Mollusca. Malacologia 25, 241–54.Google Scholar
Madigan, C. T. 1925. The Geology of the Fleurieu Peninsula Part I ‒ The coast from Sellick's Hill to Victor Harbour. Transactions of the Royal Society of South Australia 49, 198212.Google Scholar
Madigan, C. T. 1927. The geology of the Willunga Scarp. Transactions of the Royal Society of South Australia 51, 398409.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010 a. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.Google Scholar
Maloof, A. C., Ramezani, J., Bowring, S. A., Fike, D. A., Porter, S. M. & Mazouad, M. 2010 b. Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian-Tommotian boundary δ13C shift, Morocco. Geology 38, 623–6.Google Scholar
Maloof, A. C., Schrag, D. P., Crowley, J. L. & Bowring, S. A. 2005. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco. Canadian Journal of Earth Sciences 42, 2195–216.Google Scholar
Mángano, M. G. & Buatois, L. A. 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proceedings of the Royal Society of London B: Biological Sciences 281, 19.Google Scholar
Miall, A. D. 2014. Updating uniformitarianism: stratigraphy as just a set of ‘frozen accidents’. In Strata and Time: Probing the Gaps in Our Understanding. (eds Smith, D. G., Bailey, R. J., Burgess, P. M. & Fraser, A. J.), pp. 1136. Geological Society, London, Special Publication no. 404.Google Scholar
Missarzhevsky, V. V. 1974. New data on the oldest fossils of the early Cambrian of the Siberian platform. In Biostratigraphy and Paleontology of the Lower Cambrian of Europe and Northern Asia (eds Zhuravleva, I. T. & Rozanov, A. Yu.), pp. 179–89. Moscow: Nauka.Google Scholar
Missarzhevsky, V. V. 1980. Early Cambrian Mongolian Hyolitha and Gastropoda. Paleontological Journal 1, 1825.Google Scholar
Mount, J. F. 1989. Re-evaluation of unconformities separating the “Ediacaran” and Cambrian systems, South Australia. Palaios 4, 366–73.Google Scholar
Mount, J. F. & McDonald, C. 1992. Influence of changes in climate, sea level, and depositional systems on the fossil record of the Neoproterozoic–Early Cambrian metazoan radiation, Australia. Geology 20, 1031–4.2.3.CO;2>CrossRefGoogle Scholar
Nagovitsin, K. E., Rogov, V. I., Marusin, V. V., Karlova, G. A., Kolesnikov, A. V., Bykova, N. V. & Grazhdankin, D. V. 2015. Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena-Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform. Precambrian Research 270, 226–45.Google Scholar
Palacios, T., Jensen, S., Barr, S. M., White, C. E. & Miller, R. F. 2011. New biostratigraphical constraints on the lower Cambrian Ratcliffe Brook Formation, southern New Brunswick, Canada, from organic-walled microfossils. Stratigraphy 8, 4560.Google Scholar
Parkhaev, P. Y. 2007. Shell chirality in Cambrian gastropods and sinistral members of the genus Aldanella Vostokova, 1962. Paleontological Journal 41, 233–40.CrossRefGoogle Scholar
Parkhaev, P. Y. 2014. On the stratigraphy of Aldanella attleborensis-potential index species for defining the base of Cambrian Stage 2. IGCP Project 591 Field Workshop, 102–5. Kunming: Nanjing University Press.Google Scholar
Parkhaev, P. Y. & Karlova, G. A. 2011. Taxonomic revision and evolution of Cambrian mollusks of the genus Aldanella Vostokova, 1962 (Gastropoda: Archaeobranchia). Paleontological Journal 45, 1145–205.Google Scholar
Parkhaev, P., Karlova, G. & Rozanov, A. 2012. Stratigraphic distribution of two potential species for the GSSP of Cambrian Stage 2-Aldanella attleborensis and Watsonella crosbyi . Journal of Guizhou University 29, 179–80.Google Scholar
Paterson, J. R. & Brock, G. A. 2007. Early Cambrian trilobites from Angorichina, Flinders Ranges, South Australia, with a new assemblage from the Pararaia bunyerooensis Zone. Journal of Paleontology 81, 116–42.Google Scholar
Paterson, J. R., Edgecombe, G. D., García-Bellido, D. C., Jago, J. B. & Gehling, J. G. 2010. Nektaspid arthropods from the lower Cambrian Emu Bay Shale Lagerstätte, South Australia, with a reassessment of lamellipedian relationships. Palaeontology 53, 377402.CrossRefGoogle Scholar
Peng, S. C. & Babcock, L. E. 2011. Continuing progress on chronostratigraphic subdivision of the Cambrian System. Bulletin of Geosciences 86, 391–6.Google Scholar
Peng, S., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian Period . In The Geologic Time Scale 2012 2-Volume Set. Volume 2 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G.), pp. 437–88. Amsterdam: Elsevier.Google Scholar
Pojeta, J. & Runnegar, B. 1976. The Paleontology of Rostroconch Mollusks and the Early History of the Phylum Mollusca. US Geological Survey Professional Paper 968, 188.Google Scholar
Rozanov, A. Y., Khomentovsky, V. V., Shabanov, Y. Y., Karlova, G. A., Varlamov, A. I., Luchinina, V. A., Demidenko, Y. E., Parkhaev, P. Y., Korovnikov, I. V. & Skorlotova, N. A. 2008. To the problem of stage subdivision of the Lower Cambrian. Stratigraphy and Geological Correlation 16, 119.Google Scholar
Rozanov, A. Y., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pychova, N. G. & Sidorov, A. D. 1969. The Tommotian Stage and the Cambrian lower boundary problem. Transactions of the Academy of Sciences of the USSR Nauka 206, 1380.Google Scholar
Seilacher, A. 1956. Der Beginn des Kambriums als biologische Wende. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 103, 155–80.Google Scholar
Seilacher, A., Buatois, L. A. & Mángano, M. G. 2005. Trace fossils in the Ediacaran-Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography. Palaeoclimatology. Palaeoecology 227, 323–56.Google Scholar
Shaler, N. S. & Foerste, A. F. 1888. Preliminary description of North Attleborough fossils. Harvard Museum of Comparative Zoology Bulletin 16, 2741.Google Scholar
Smith, E. F., Macdonald, F. A., Petach, T. A., Bold, U. & Schrag, D. P. 2015. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia. Geological Society of America Bulletin, 128.Google Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M. & Erdtmann, B.-D. 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography. Palaeoclimatology. Palaeoecology 254, 6799.Google Scholar
Swart, P. K. 2015. The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology 62, 1233–304.Google Scholar
Tate, R. 1892. The Cambrian fossils of South Australia. Transactions of the Royal Society of South Australia 15, 183–9.Google Scholar
Thomson, B. P. & Horwitz, R. C. 1961. Cambrian‒Pre-Cambrian unconformity in Sellick Hill‒Normanville area of South Australia. Australian Journal of Science 24, 40.Google Scholar
Vendrasco, M. J., Checa, A. G. & Kouchinsky, A. V. 2011. Shell microstructure of the early bivalve Pojetaia and the independent origin of nacre within the mollusca. Palaeontology 54, 825–50.Google Scholar
Vendrasco, M. J., Kouchinsky, A. V., Porter, S. M. & Fernandez, C. Z. 2011. Phylogeny and escalation in Mellopegma and other Cambrian molluscs. Palaeontologia Electronica 14, 11A1–44.Google Scholar
Vostokova, V. A. 1962. Cambrian gastropods from Siberian platform and Taimyr. Sbonik Statej po Paleontologii i Biostratigrafii 28, 5174.Google Scholar
Yu, W. 2014. On the Yangtzeconus priscus-Archaeospira ornata Assemblage (Mollusca) of the Earliest Cambrian of China. Acta Geologica Sinica - English Edition 88, 1262–87.CrossRefGoogle Scholar
Zang, W. L., Jago, J. B., Alexander, E. M. & Paraschivoiu, E. 2004. A review of basin evolution, sequence analysis and petroleum potential of the frontier Arrowie Basin, South Australia. In Eastern Australian Basins Symposium II (eds Boult, P. J., Johns, D. R. & Lang, S. C.), pp. 243–56. Petroleum Exploration Society of Australia, Special Publication.Google Scholar
Zhu, M.-Y., Babcock, L. E. & Peng, S.-C. 2006. Advances in Cambrian stratigraphy and paleontology: Integraging correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–22.Google Scholar
Supplementary material: File

Jacquet supplementary material

Table S1

Download Jacquet supplementary material(File)
File 29.4 KB