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THE EXISTENCE OF QUADRATIC DIFFERENTIALS IN 
SIMPLY CONNECTED REGIONS OF THE 

COMPLEX PLANE 

E. GRASSMANN 

1. Introduction. The general coefficient theorem [2] and the extended 
general coefficient theorem [3] state that the existence of certain quadratic 
differentials is a sufficient condition for a function to be a solution of certain 
extremum problems. The purpose of this paper is to show that in the case of 
simply connected regions this condition is also necessary. 

We shall do this by a variational method of the Schiffer-Golusin-type. The 
main difficulty is, that the class of admissible functions for the general coeffi­
cient theorem is restricted and we must therefore have a method of variation 
with restrictions. We will basically use the method of Lagrange multipliers 
but in a somewhat unusual manner and therefore we shall give complete 
proofs. We believe that this method, which we will develop in §§ 2 and 3 is 
also interesting for its own sake. 

2. The space of variations. In this paragraph we compile a list of the 
variations which we will use later. L e t / be a fixed function, which maps the 
unit circle A conformally onto a region 12 C C, such tha t / (0 ) = 0. 

(1) Our first type of variation is the following: 
Let Wo G 12. Then the function 

4>{w) = w + tAw (A 6 C) 
w — Wo 

maps, for small t, the complement of 12 in a 1-1 manner onto a continuum, the 
complement of which we will call 121. We denote by ft(z) a function, which 
maps the unit circle onto 12, such tha t / i (0) = 0. It is determined up to rota­
tion of the unit circle around 0. It is known [1] t h a t / , can be normed in a way, 
that it depends real-analytically on t and has an asymptotic representation: 

ft(z)=m + t wA 

w — Wo 

WpA WpÂz 

\zo)\z - zo) ^ 0 ^ 7 ( 1 + zoz). 

(w = / (« ) ; so =/~1(^o)). 

- tfM [2o/(.,T_ ^ - r^r?,r.-^ I + '« 
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(2) If w0 is an exterior point of 12, then w + twA/ (w — w0) maps 12 for small 
/ conformally onto a region 121. The function 

f(z) - Wo 

gives therefore a second type of variation. 
Beside those two types we will use the following elementary types of 

variation: 
( 3 ) / . (s) = f(z)+Atf(z). 
(4) Mz) = f(ze<+) = f(z) + i*zf'(z) + o(t). 
(5) The next type of variation we need is different from the others because 

we can admit / ^ 0 only. We apply at a boundary point ZQ a small radial cut. 
We can map A conformally in such a way onto this region, that 0 corresponds 
to 0 and zQ to the end of the cut. To find an asymptotic development of this 
mapping which we will call /x*, we consider the Koebe-function k(z) = 
z/(l — z)2, which maps A conformally onto C \ ( — oo, — J]. We have for 
z0 = — 1 : i*>t(z) = fe_1((l — t)k{z)) and therefore 

à fit 

dt z=o k'(z) Zl+z' 

In the case that z0 ^ —1 we must replace /x*(z) by —ZofjLt( — z/zo) and get 
Ht = z + tz(z + z0)/(z — z0) + o(t). Of course \xt depends real analytically 
on t. Our variation is now 

Mz) = f(jit(z)) = m + tf\z)Z
z-±^ + off). 
z — Zo 

We can use linear combinations with real coefficients of the variations of 
the types ( l ) - (4) . The space of these linear combinations has a natural basis. 
We denote by em, respectively em', the two variations of type (1) (if w0 G 12) 
or of type (2) (if w0(dl)°) which belong to A = 1 respectively A = i. We 
denote further with es respectively es

f the two variations ft = / + ft and 
ft = / + itf, and with e^ the variation / 0 = / ( g ^ ) . So the space X0 has a 
representation 

Xo = e R„2 e R3. 

Besides that, we can use linear combinations with non-negative coefficients 
of variations of the type (5). We denote ©2€ÔR RZ by Xlf with {ez} its natural 
basis, and by X+ the subset of Xx of vectors which have no negative coeffi­
cients. 

To each x £ X0 + X+ which is close enough to the origin we can define a 
varied function fx, e.g. in the following way: First we apply the variations 
of the types ( l)-(3) simultaneously, then the variations of type (5) also 
simultaneously and at last the variation e+. It is easy to check that /* depends 

https://doi.org/10.4153/CJM-1973-006-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-006-4


QUADRATIC DIFFERENTIALS 85 

real analytically on x in each finite dimensional subspace, and that the varia­
tions we have calculated are just the partial derivatives. 

3. Variations with restrictions. Let N0, iVi . . . , Nn be real functions on 
X0 + X+ with Ni(0) = 0, such that for each finite dimensional subspace E 
of Xo + Xi, the restrictions of the Nt to E H X0 + X+ are continuously 
differentiable in a neighbourhood of 0. We call x admissible if 

Nifr) = . . . = Nn(x) = 0. 

We denote by dN\ the linear functions on X0 + Xi which have on each 
vector of the basis the value of the derivative in the direction of this vector. 
For an arbitrary vector u £ X0 + X+ we then have 

dNi(u) = lim ^ M . 

The Ni can be put together to a mapping N : Xo + X+ —* Rw+1 and in the 
same manner the dNt to a mapping dN : Xo + Xi —> Rw+1. The following 
theorem gives necessary conditions that No(x) ^ 0 for all admissible x. 

THEOREM 1. If N0(x) ^ 0 for all admissible x then there are real numbers 
A0Xi • • • Xn not oil equal to 0 such that for all x Ç X0 

(1) Z A^O*) = 0, 
and for all x £ X+ 

(2) Z *4Ni(x) ^ 0. 

We shall need a Lemma which is slight generalization of a well-known 
theorem on inverse functions. The proof is word for word the same as in [4] 
and we will therefore omit it. 

LEMMA 1. LetJVbe a function, which maps the ball Ur = {x £ Rw+1|||x|| ^ r) 
into Kn+1 such that ^ ( 0 ) = 0. If the restriction of JV to every line-segment 
in Ur is differentiable except at finitely many points and if there is an s < 1 
such that for each unit vector h \\dh^V — h\\ ^ 1 holds {where dh denotes the deri­
vative in direction of h), thenJV maps Ur onto a neighbourhood of 0. 

We now prove: 

LEMMA 2. If N(x) g Ofor all admissible x then dN(X0 + X+) ^ Rw+1. 

Proof. We denote by {et} the natural basis of Rn+1. If dN(X0 + X+) is all 
of Rn+1 there would be ut

+ and ut~ in X0 + X+ such that dN(ut
+) = et and 

dN{ur) = —et. To a vector r = (r0> . . . , rn) Ç Rw+1 we define v(r) = 
£ ^i|«i, where 

_ /« ,+ ifr, ^ 0 
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Then v maps Rw+1 into X0 + X+. The composite Function ^Y = Nov maps 
Rn+1 into Rw+1 such that^yf (0) = 0. It is continuous and except at the coor­
dinate hyperplanes (where the normal derivative need not to be continuous) 
continuously differentiable. 

At the origin we have: 

deiJy = Hm K(MH = et and d_ei^ = lim mfi = _ei. 
t+o+ t t^o+ t 

It follows that there is a neighbourhood of the origin in which the assump­
tions of Lemma 1 hold. Therefore there is an e0 > 0 such that for each 
0 S e < €o een has an inverse image se. But this means that v(se) is an admis­
sible variation with No(v(se)) — e ^ 0 which contradicts the assumption. 
This completes the proof of Lemma 2. 

XQ + X+ is a convex cone and therefore dN(X0 + X±) is also a convex cone 
and since it is not the whole space, it has a supporting hyperplane at 0. Let 
the equation of this hyper-plane be ]Cl=o Ao>* = 0 and be normalized such 
that for x G Xo + X+ we have X) ^idNt(x) g 0. 

The vector space dN(x0) lies, of course, on the hyperplane and therefore for 
x G Xo we have: 5Z XidNt(x) = 0; this completes the proof of Theorem 1. 

4. The Extremum problem. In order to state our problem we need first 
a concept of homotopy of two functions. 

Definition. Let B' C B be two finite subsets of the complex plane. We say 
that two univalent analytic functions / i : A —> C, f2 : A —» C with B' G fi (A) 
are admissibly homotopic with respect to (B', B) if there is a continuous 
function h(z, i) (z G A, 0 ^ t ^ 1) such that: 

(1) h(z,0) = / i ( s ) , M M ) = / S ( s ) . 
(2) If Wo G i3, then h(z, t) = w0 if and only if z = fi^iwo). 
(3) If wo = /(*<>) G S ' , then 

lim (arg[/2(s) - w0] — arg[/i(z) - w0]) = 0 
z-^zo 

where arg is continued continuously along the deformation path h(z, t). 

Remarks. The limit in (3) always exists and is equal to 

arg(/1
,(so)//2

,(^o)) + 2^7r. 

(3) means therefore that arg fi(z0) = arg/2'(£o) and that k = 0. (Compare [2].) 

One checks easily, that this is an equivalence relation and that the equi­
valence classes are closed with respect to locally uniform convergence. We 
shall call such an equivalence class a homotopy class. 

C = B\f(A) is the same for all functions of a homotopy-class. We further 
denote D = B\C and E = D\B'. 
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Consider a given homotopy class H with respect to (Bf,B) and for each 
b Ç Bf a system of complex numbers bt (i = 1 . . . rb). We consider now the 
class of functions of H which also satisfy f{i)(zb) = bt (zb = f"1^)). We 
want to maximize among these functions the real part of a functional L(f ) 
which we shall assume to be a linear combination of the form: 

2rb 

Re L(f ) = Re £ d„ log/ ' fe) + Re £ £ ^'/ (< )(z6) V , d> € C. 

We assume here, that Redblogf (zb) can be defined consistently for all 
functions which are analytic in a neighbourhood of D. We can further assume 
tha t / (0 ) = 0 e D. 

In order to apply Theorem 1 we have to formulate our side conditions with 
the help of functions on Xo + X+. For each c 6 C we define a linear function 
Nc : Xo + X\ —-> C by its values on the basis vectors: 

Nc{em) = c/(c - Wo), Nc{em
f) = ic/{c - w0); 

Nc(es) = c, Ne(e/) = ic\ 

N cfe0) = NeM = 0. 

If one writes down the variation which is defined by x one sees easily that 
if/ omits c and Nc(x) = 0 then alsofx omits c. It should be observed that Nc 

must be split into real and imaginary parts if Theorem 1 is to be applied. 
The second restriction is that the/ ( i )(s&) (i = 0, . . . , zb, b £ D; rb = 0 if 

b 6 E) stay fixed. We define Nb*(x) = fx
{i)(zb) — f{i){zb), which is a differen­

t i a t e function o n l 0 + X+. Also, iV&* must be split in real and imaginary 
parts. We let NQ(X) = L(fx) — L(f), which is also a differentiate function 
on Xo + X+. 

According to Theorem 1 there are Xo, vb\ /V, vc and juc such that 

2rb 

Xorf Re No(x) + £ £ Wd Re Nb\x) + ^d Im Nh\x)) 
b£D i=rb+l 

+ £ (ve Re Nc(x) + »c Im Nc(x)) { < 5' * G * ° 

We can combine the terms in brackets by setting X&* = vb* — inb* and 
Xc = vc — i\).c and we have: 

Re{\odtfo(*) + E £ ^dNt\x) + £ XciVc(*)} { ?' * (3) Re<; XodWoC*) + D D X 6 W S ' W + i ; KNc(x) M < n Z c ï ° 
V s e e i = n + l c€C J V = <->, * t -rt-+, 

where Xo is real, and not all \ t vanish. 
We set A = a + ia' and we have according to (1): 

'Kt'dN^iaeu,,, + a'ewa') 

dz* . / ( * ) - Wo * Z o / ' ( 2 o ) 2 ( 2 - 2o) ^ * 2 o / ' ( 2 o ) 2 ( l - ZoS)J z—zb 
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We are interested in the real part only and can therefore change the last 
term to its complex conjugate to obtain: 

-RcA'k\
tdi KZ) 2 — , 

0 dz1 f(z) — Wo zof (zo)2dzl z — Zo Zof'(zo)2dzl 1 — z0z. 

_Wo dl zf (z)\b
l _Wo\b

l dl zf(z) 

For Ao Re dNo(aewo + a'e'm), we ob ta in b y the same reasoning as above : 

\ \f(z) — wo/ 
Ao Re dN0(aem + a'em') = Re A* 

where 

We now set: 

J(z) - wo) 

Zof {zo) L \z — zol M — zoz] \) Zof (Zo) 

dug®) = z - # f + z i; /(ofe) • db\ 
b£E J \Zb) b£B' i=rb+l 

Rb (zo) = £oA6
ï ~Tï  

az z — Zo I z=z\ 

rTï dl zf(z) 
2oA& 7 i -i 

dz 1 — SoS 

Ro(zo) = ZoXodL^-^-) - Zo\odL(p^$-\ 
\z — zol M — zoz) 

(3) now yields for x = aem + a!aewJ Ç X 0 

Jg6*(g0)tt;o] 
Re ,4 { [ * i^o(go)^o1 

S o / (Zo)J 6€Z> f=0 
(w«) ~3v;,ur? i + z z <2» (wo) - -f? 2 r / / \ 2 

* o / Oo) J 

+z cAc 

6 C £ — ^ 0 . 
= 0 

and since A is arbitrary we get after dividing by w0 

ze/0 L 
cAc f4i w iCoM+Z Z Q . ' N + E r w 

^ 4 ; Wo L b£D t=0 c€C^ ~" Wo 
] 

Zoj \Zo) L 3 

We will call the left hand side of this equation Q(w0) and the term in square 
brackets on the right hand side R(zo). They are meromorphic functions of w0 

respectively ZQ. R(Z0) has no poles on the boundary, and Q(w0) has simple poles 
at the points of C. 
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Since the Qb
l are analytic except at b, where they have a pole of order 

i + 1, the poles of Q at a point b are of the following form: 

^V Wo \f(z) — wo/ (wo — b) &+ 

where r(wQ) is analytic at 6. 
Next we prove that Q(w)dw2 has at most a simple pole at infinity. All the 

Qtt* and Ço have simple zeros at infinity; therefore Q(w0) has a double zero. 
We want to prove that also the term with 1/wo2 vanishes. We have, close to 
infinity 

m 
m- f f(z)Y ™-i c m 
m- — — Z^ \ 1 a n ( l 

Wo fci \ w0 / c — Wo 
and therefore by definition: 

(5) Q(w0) = — 
V Wo 

In order to show that the first term is zero we apply (3) to aes + a'e's and 
obtain: 

ReA[\odLf(z)) + Z Z V / ( % » ) + Z c\cl = 0, 
L ft i c6C J 

and since A is arbitrary: 

\<4L(f(z)) + £ ^ Xsy
<0(Zs) + 2: cXc = 0; 

but this is, according to (5) just the term with 1/WQ2 in the development of 
Q(wo) around infinity. So Q(w)2dw2 has at most a simple pole at infinity. 

To show, that R(z0) is real on the boundary we need some auxiliary calcu­
lation. We set ZQ = I/20 and have 

\z0z — Zo/ \ 1 — ZoZ / 

\ZoZ — Zo/ \ 1 — ZoZ I 

\ZZo — 1 I — ZoZ \ 1 — ZoZ ZZo — 1 / 

= 2ilmdL{zf'(z))\o. 

In the same way we derive for Rh
l on the boundary: 

2ilmRb
i = 2ilm%-izf(z)\i

l 
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Therefore we have also on the boundary: 

Im R(z) = - Re(dL(izf(z))\o + £ £ -£*sf (*)X»'). 
6 i &Z 

The right side of the above is just the left side of (3) applied to e^ and is 
therefore zero. So R(z) is real on the boundary. 

We now apply (3) to ^20(No| = 1) and obtain: 

(6) i 4 * . ( ™ ^ ) + Ç S ».'£ («TMf±*)} s o. 
and since for |s0| = 1 

Z — Zo ZQ ZQZ 

z — Zo z — Zo 1 — ZoZ 

the left hand side of (6) is precisely ReR(z0). We can write (4) in the form 
R{z){dz/z)2 = Q(w)dw2, and since (dz/z)2 < 0 on the boundary we have 
Q(w)dw2 ^ 0 on the boundary. 

Q(w) does not vanish identically because not all the X6* = 0. We will use 
this fact to show tha t / (A) has no exterior points. In fact let w0 be an exterior 
point. Applying (3) to aem + a!ew^ we obtain: 

Re A o ^ T r r M + E £ £ (TA^—W + £ - ^ - } . 
{ \f(z) —wo/ b t dz \f(z) -wo/ Têcc - w0) 

and since A is arbitrary the expression in brackets is zero. But this expression 
is just Q(wo)\ therefore Q(w0) would be identically zero if there were exterior 
points, which is not possible. 

We have proven the following theorem. 

THEOREM 2. Iff is an extremal function, then f (A) has no exterior points and 
there is a rational function Qiw) with the following properties: 

(i) Qiw) has at most simple poles at the points c G C. 
(ii) At the points b 6 D, Q has poles of the form: 

wo f(z) — w (wo — o)rb + 1 

where r(w0) is analytic at b. 
(iii) Q(w)dw2 ^ 0 on the boundary of / (A) . 

We use the extended general coefficient Theorem [3] to prove: 

THEOREM 3. If /(A) has no exterior points and if there is a Q(w) in / (A) 
satisfying (i)-(iii), then f is an extremal function; it is maximal if X0 > 0, 
minimal if Xo < 0 and the only admissible function if X0 = 0. 
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Proof, If g is any other function then gof _ 1 has around each point of D an 
expansion: 

oo 

gof~x{w) = J2 ai(w - &)« 

We now express L{g) in terms of a* and get: 

L(g) = Z ^[logax6 + logfM] + E Z 7 * V 

where the yt
& are certain complex numbers. 

If g is also an admissible function, then a^ = 1, a* = . . . , =arh
13 = 0, and 

therefore 

(7) I ( j ) = Z < / , log «is + D E 7i V + L(f ). 

On the other hand we have: 

w b + (w-b) r i ^ (w-bf i 
ze; ~ ^ 0 (w - ft) - (wo - ft) Lw0 - ft + ™° t t (w0 - ft)*+1 J ' 

and therefore 

4 — ) = -4z7As>+E E , 7V+11 
\ W — Wo/ L feff (Wo — ft) 6CB' i i ^ + 1 (Wo — ft) J 

and 

n / , N v T/XO , g(wo) 

By the extended general coefficient theorem we have 

- X 0 ( L ( g ) - L ( / ) ) ^ 0 , 

i.e., / is maximal if X0 < 0 and minimal if X0 > 0. 
If Xo = 0 already, the side conditions are extremal as one sees in the same 

manner of the general coefficient theorem, and for each admissible function 
equality holds. It is easy to see then t h a t / is the only admissible function. 
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