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Abstract. We consider an artin algebra A and its crossed product algebra Aα#σ G,
where G is a finite group with its order invertible in A. Then, we prove that A is a tilted
algebra if and only if so is Aα#σ G.
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1. Introduction. Let K be a commutative artin ring. A K-algebra A is a ring A
together with a ring homomorphism K −→ A whose image is contained in the centre
Z(A) of A. We say that A is an artin K-algebra, or artin algebra for short, if A is finitely
generated as a K-module.

Let A be an artin algebra, and G a finite group. By an action of G on A, we
mean a group homomorphism σ : G −→ Aut(A), where Aut(A) is the group of all
automorphisms of A. If a finite group G acts on an artin algebra A such that the order
|G| is invertible in A, and α : G × G −→ U(A)

⋂
Z(A) is a 2-cocycle map in the sense

of Section 2, where U(A) is the group of the units of A, we can form the crossed product
algebra Aα#σ G with respect to A and G (see Section 2). A result in [12] has attracted
our attention, which stated that: let A be an artin algebra and G a finite group acting
on A with the order |G| invertible in A, and α : G × G −→ U(A)

⋂
Z(A) a 2-cocycle

map. Then, A is a representation-finite tilted algebra if and only if so is Aα#σ G [12,
Theorem 4.6].

Here, an artin algebra A is said to be tilted provided that there exists a hereditary
artin algebra R and a tilting R-module T such that A = EndR(T) (see [7] and [13]);
and A is said to be representation-finite if the number of the isomorphism classes of
indecomposable modules in mod A is finite.

The aim of this paper is to generalize the original result of Reiten and Riedtmann
[12, Theorem 4.6] without the restriction on the representation type. The main result
is the following theorem.

THEOREM 1.1. Let A be an artin algebra, G a finite group whose order |G| is invertible
in A, σ : G −→ Aut(A) a group homomorphism, and α : G × G −→ U(A)

⋂
Z(A) a 2-

cocycle map. Then, A is a tilted algebra if and only if so is Aα#σ G.

We mention that the problem would be different from representation-finite
tilted algebras when ones consider representation-infinite titled algebras. Since a
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representation-finite artin algebra has only one component, while a representation-
infinite artin algebra is not the case.

The main idea of the proof of Theorem 1.1 is applying the criterion of tilted
algebras (see [8, Theorem 1.6] and [15, Theorem 3]) to find a generalized standard
component with a faithful section for A ∗ G (or A) when A (or A ∗ G) is supposed to be
tilted. While the proof of [12, Theorem 4.6] is based on finding a stable section under
the action of G on mod A by using all the projective modules.

Let us fix the notations and conventions of this paper. For an artin algebra A, we
always assume that A is connected. By a module, we always mean a finitely generated
right module. The category of all finitely generated right A-modules is denoted by
mod A. τA is the Auslander–Reiten translation of mod A, and �(mod A) denotes the
Auslander–Reiten quiver of A. When no possible confusion will occur, we do not distin-
guish between an indecomposable module M in mod A and the corresponding vertex
[M] in �(mod A). Aut(A) denotes the group of all automorphisms of A, U(A) denotes
the group of the units of A, and Z(A) is the centre of A. We denote by add(M) the full
subcategory of mod A consisting of all summands of a direct sum of copies of a module
M. For all unexplained notions and notations, see [1, 2, 6, 11] and [14]. The reader is
also referred to the recent papers [3,4] and [17] for a discussion of representation theory
problems over crossed product algebras and twisted group algebras.

2. Preliminaries. In this paper, we follow the construction of crossed product
algebras in [12]. The classical definition of a crossed product is introduced in [11,
Section 14.1] and [6, Chapter 3, Section 28]. A more generalized definition of crossed
product algebras can be found in [10, Chapter 1, 1.4].

Let A be an artin algebra, G a finite group acting on A, that is, there is a group
homomorphism σ : G −→ Aut(A). Following [11, Section 14.1], a map α : G × G −→
U(A)

⋂
Z(A) is defined to be a 2-cocycle if the following two conditions are satisfied:

(1) α(x, y) α(xy, z) = xα(y, z) α(x, yz) for all x, y, z ∈ G;
(2) α(x, 1G) = 1A = α(1G, x) for x ∈ G, and 1G the identity of G,
where we have denoted the action σ (x)(a) by xa for x ∈ G, a ∈ A. The crossed product
algebra Aα#σ G is defined to be the free left A-module

⊕
x∈G Ax with the basis G, and

the multiplication is defined by

(ax)(by) = a xb α(x, y) xy

for a, b ∈ A and x, y ∈ G.
The crossed product algebra Aα#σ G is still an artin algebra. Usually, we denote

the identity elements 1A of A and 1G of G by 1 if there is no confusion. If α : G × G −→
U(A) is the trivial map, that is, α(x, y) = 1A for all x, y ∈ G, then we have a special
kind of crossed product algebra construction, which is called skew group algebra, and
denote by AG instead of Aα#σ G.

For the convenience of the reader, we collect some basic facts about mod A and
mod Aα#σ G. We mention here that there is a slight difference between the results we
recall in this section and the ones in [12], since we deal with the right modules, while
the results in [12] are stated in the left module version.

Let A be an artin algebra, G a finite group acting on A with the order |G| invertible
in A. Then, the action σ induces a right action of G on mod A, that is, there is a
group homomorphism from Gop to the group of all autofunctors of mod A (compare
[12, Section 1, 1.5]). We give an explicit description for the action of an element x on
A-modules and A-module homomorphisms.
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For an element x ∈ G and a right A-module M, define the action of x on M
to be the right A-module xM such that xM = M as a K-module, and the right A-
multiplication is given by m · a = m xa for m ∈ M and a ∈ A. Let f : M −→ N be an
A-module homomorphism, xf : xM −→ xN is defined by xf (m) = f (m) for m ∈ xM.

From now on, we fix a group homomorphism σ : G −→ Aut(A) and a 2-cocycle
map α : G × G −→ U(A)

⋂
Z(A), and we set

B = Aα#σ G.

There is a natural algebra monomorphism i : A −→ B by assigning that i(a) =
a 1G with 1G the identity of G. Then, we have two induced exact functors, the
tensor functor F = −⊗

A B : mod A −→ mod B and the restriction functor H =
HomB(B,−) : mod B −→ mod A, we list some properties related to these two functors
for later use.

LEMMA 2.1. Keep the notations as above. Then, we have the following.

(1) (F, H) and (H, F) are two adjoint pairs of exact functors.

(2) For the adjoint pair (F, H), the unit η : 1mod A −→ HF is a split monomorphism and
the counit ε : FH −→ 1mod B is a split epimorphism.

(3) For the adjoint pair (H, F), the unit η′ : 1mod B −→ FH is a split monomorphism and
the counit ε′ : HF −→ 1mod A is a split epimorphism.

(4) Let M be an indecomposable right A-module, then HF(M) � ⊕
x∈G

xM.

(5) Let M and N be two indecomposable right A-modules, then FM � FN if and only if
M � xN for some x ∈ G.

Proof. We refer to [12, Section 1, 1.1 and 1.8]. �
LEMMA 2.2.

(1) Let M and N be two A-modules. Then, f : M −→ N is monic (or epic) if and only
if so is Ff : FM −→ FN.

(2) Let V and W be two B-modules. Then, f : V −→ W is monic (or epic) if and only
if so is Hf : HV −→ HW.

Proof. We only prove (1), the proof of (2) is similar. Suppose that f : M −→ N is
monic (or epic), then so is Ff since F is an exact functor. Now assume that Ff : FM −→
FN is monic. It follows that HF(f ) is also monic from the exactness of H. We show
that f : M −→ N is monic. Notice that η : 1mod A −→ HF is a split monomorphism
by Lemma 2.1(2), then by the naturality of η we have that ηN f = HF(f ) ηM is monic,
and hence f : M −→ N is monic. The proof of the epimorphism case can be proved
similarly by using the split epimorphism ε′ : HF −→ 1mod A from Lemma 2.1(3). We
have completed the proof. �

Let us recall the notions of almost split morphisms and almost split sequences.
Let A be an artin algebra, and let M, N, L be modules in mod A. An A-module
homomorphism g : M −→ N is called right almost split if g is not a retraction, and
if every A-module homomorphism L −→ N, which is not a retraction, can factor
through g. An A-module homomorphism g : M −→ N is called right minimal if every
endomorphism u : M −→ M such that gu = g is an automorphism. An A-module
homomorphism f : M −→ N is called right minimal almost split if it is both right
almost split and right minimal. Left almost split morphisms, left minimal morphisms
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and left minimal almost split morphisms are defined dually. An exact sequence in
mod A

0 −→ L
f−→ M

g−→ N −→ 0

is called an almost split sequence provided f is left minimal almost split and g is right
minimal almost split.

We have the following result about the relationship of almost split morphisms and
sequences between A and Aα#σ G, whose proof in the version of a dualizing K-variety
and its skew category can be found in [12, Section 3, Theorem 3.8].

LEMMA 2.3. Let B = Aα#σ G be the crossed product algebra, F : mod A −→ mod B
and H : mod B −→ mod A the two exact functors as before. Then, we have the following.

(1) If g : M −→ N is a right (or left) minimal almost split morphism in mod A, then
Fg : FM −→ FN is a direct sum of right (or left) minimal almost split morphisms in
mod B. Conversely, if g : V −→ W is a right (or left) minimal almost split morphism
in mod B, then Hg : HV −→ HW is a direct sum of right (or left) minimal almost
split morphisms in mod A.

(2) If 0 −→ L −→ M −→ N −→ 0 is an almost split sequence in mod A, then 0 −→
FL −→ FM −→ FN −→ 0 is a direct sum of almost split sequences in mod B.
Conversely, if 0 −→ U −→ V −→ W −→ 0 is an almost split sequence in mod B,
then 0 −→ HU −→ HV −→ HW −→ 0 is a direct sum of almost split sequences
in mod A.

Throughout, we denote by τA := TrA D, τ−1
A := D TrA, τB := TrB D, τ−1

B := D TrB

the Auslander–Reiten translation operators, see [1, Chapter IV, Section 2] and [2,
Chapter IV, Section 1]. The following result is an immediate consequence of the above
lemma.

COROLLARY 2.4. The functors F and H commute with τ and τ−1.

Let V be an indecomposable B-module, then HV is an A-module, which can be
decomposed into a direct sum of indecomposable A-modules. Therefore, we can select
an indecomposable summand M of HV , such that V is a summand of FM by using
Lemma 2.1(2). In this case, we call M an indecomposable A-module related to V . Notice
that, let M′ be an indecomposable A-modules such that V is a summand of FM′, then
by applying the functor H and Lemma 2.1(4), there exists an element x ∈ G such that
xM′ is an indecomposable A-module related to V .

Since irreducible morphisms can be viewed as components of minimal almost
split morphisms (see [1, Chapter IV, 1.10]), then we also get a connection between
irreducible morphisms in mod A and the ones in mod B. The following is a restatement
of [12, Section 4, Lemma 4.1].

COROLLARY 2.5.

(1) Let M and N be two indecomposable A-modules. If g : xM −→ yN is an irreducible
morphism in mod A, where x, y ∈ G. Then for every indecomposable summand
V of FM, there exists an irreducible morphism V −→ W in mod B for some
indecomposable summand W of FN.
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(2) Let L and M be two indecomposable A-modules. If f : xL −→ yM is an irreducible
morphism in mod A, where x, y ∈ G. Then for every indecomposable summand
V of FM, there exists an irreducible morphism U −→ V in mod B for some
indecomposable summand U of FL.

(3) Let V and W be two indecomposable B-modules. If g : V −→ W is an irreducible
morphism in mod B. Then for every indecomposable A-module M related to V,
there exists an irreducible morphism M −→ N in mod A for some indecomposable
A-module N related to W.

(4) Let U and V be two indecomposable B-modules. If f : U −→ V is an irreducible
morphism in mod B. Then for every indecomposable A-module M related to V,
there exists an irreducible morphism L −→ M in mod A for some indecomposable
A-module L related to U.

In the sequel of this section, we recall some notions related to the proof of Theorem
1.1 and a result about the Jacobson radical of mod A.

We denote by radA the Jacobson radical of mod A (see [1, A. Appendix, A.3] for
definition), and denote by radi

A the ith power of radA. The infinite radical
⋂∞

i=1 radi
A of

mod A is denoted by rad∞
A . Let C be a component of �(mod A), if rad∞

A (M, N) = 0 for
all modules M, N ∈ C, then C is called a generalized standard component of �(mod A)
(see [15] and [16]).

For a component C of �(mod A), we denote by annA(C) the annihilator of C in
A, that is, the intersection of the annihilators annA(M) of all modules M in C. If
annA(C) = 0, then we call C a faithful component. Likewise, for a subset D of C, the
annihilator annA(D) in A is the intersection of the annihilators of all modules in D.
And D is faithful if annA(D) = 0.

Let C be a component of �(mod A). A connected full subquiver � in C is a section,
if it is subject to the three conditions: first, � is acyclic; second, � meets each τA-orbit
in C exactly once; third, � is convex in C, that is, for a path M0 −→ M1 −→ · · · −→ Mt

in C, if M0 and Mt belong to �, then Mi belong to � for i = 0, . . . , t.
Let M and N be two indecomposable A-modules. A walk in mod A from M to N

is a sequence of A-module homomorphisms

M = M0
f ∗
1−→ M2

f ∗
2−→ · · · −→ · · · f ∗

t−→ Mt = N,

where all Mi are indecomposable, and for each i, f ∗
i is either a nonzero nonisomorphism

gi : Mi−1 −→ Mi or a nonzero nonisomorphism hi : Mi −→ Mi−1 in mod A. And a
path in mod A from M to N is a sequence of A-module homomorphisms as above such
that for each i, f ∗

i is an A-module homomorphism gi : Mi−1 −→ Mi in mod A. A path
from an indecomposable A-module M to itself is called a cycle in mod A.

Especially, if the morphisms involved are irreducible, then we call them a
walk of irreducible morphisms, a path of irreducible morphisms and a cycle of
irreducible morphisms respectively. Two indecomposable A-modules M and N are
in the same component if and only if there is a walk of irreducible morphisms from
M to N. A component is acyclic provided that there are no cycles of irreducible
morphisms.

The following result is well known, whose proof in the version of an additive
category can be found in ([1, A. Appendix, Lemma 3.4]).
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LEMMA 2.6. Let

φ =

⎛
⎜⎜⎜⎝

φ11 φ12 · · · φ1u

φ21 φ22 · · · φ2u
...

...
. . .

...
φv1 φv2 · · · φvu

⎞
⎟⎟⎟⎠ : L =

u⊕
s=1

Ls −→ L′ =
v⊕

t=1

L′
t

be an A-module homomorphism. The A-module homomorphism φ belongs to radA(L, L′),
if and only if each of the A-module homomorphisms φts belongs to radA(Ls, L′

t), for
s = 1, . . . , u and t = 1, . . . , v.

3. The Proof of Theorem 1.1. In this section, we give the proof of Theorem
1.1. It is worthy to notice that the crossed product algebra Aα#σ G is not necessarily
a connected artin algebra even if A is. However, we prove Theorem 1.1 under the
assumption that Aα#σ G is connected, based on the following observation.

LEMMA 3.1. Let A be an artin algebra with a decomposition A = ∏t
i=1 Ai, where

each Ai is an artin algebra. Then, A is a tilted algebra if and only if Ai is a titled algebra,
for i = 1, . . . , t.

Here, recall that, a right R-module T is called a tilting module if T is subject to the
three conditions:

(1) the projective dimension proj.dim. T ≤ 1;
(2) ExtA(T, T) = 0;
(3) there is an exact sequence 0 −→ R −→ T0 −→ T1 −→ 0 with T0, T1 ∈ add(T).
It is well known that, if TR is a tilting module with A = EndR(T), then AT is a tilting
module that induces a canonical algebra isomorphism R � (End( AT))op(for instance,
see [1, Chapter VI, Lemma 3.3] and [5, Chapter 3, Proposition 3.2.2]).

Proof. We first prove the “only if” part. Suppose that A = ∏t
i=1 Ai is tilted. Then,

we have the isomorphism of left module categories mod Aop � ∏t
i=1 mod Aop

i . So the
tilting module T can be identified as an object (T1, . . . , Tt) in

∏t
i=1 mod Aop

i , where
each Ti is a left module over the artin algebra Ai. Then, we have that each Ti is a tilting
left module over Ai by a direct verification that Ti satisfies the tilting condition. Let
End( Ai Ti)op = Ri, then each Ri is hereditary since R = ∏t

i=1 Ri is hereditary. Moreover,
it immediately follows that each Ti Ri is a tilting module by the left version of the well-
known result we quote above. Therefore, each Ai = End(Ti Ri ) is a tilted algebra.

For the “if” part, suppose that each Ai is tilted, that is, there exists a tilting module
Ti Ri over a hereditary algebra Ri such that Ai = End(Ti Ri ). This gives rise to a tilting
module T in mod R which corresponds to the object (T1, . . . , Tt) in

∏t
i=1 mod Ri,

where R = ∏t
i=1 Ri is hereditary. Hence, A is a tilted algebra with A = End(TR). We

have completed the proof. �
The following results immediately follow from Corollary 2.5.

LEMMA 3.2. Let B = Aα#σ G be the crossed product algebra. Then, the following
statements hold.

(1) Let M and N be two indecomposable A-modules. If M and N are in the same
component, then for every indecomposable summand V of FM, there exists an
indecomposable summand W of FN, such that V and W are in the same component.
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(2) Let V and W be two indecomposable B-modules. If V and W are in the same
component. Then for every indecomposable A-module M related to V, there exists
an indecomposable A-module N related to W such that M and N are in the same
component.

LEMMA 3.3. Let B = Aα#σ G be the crossed product algebra and M an
indecomposable A-module. A component C containing M is acyclic in �(mod A) if and
only if, for any indecomposable summand W of FM, the component containing W is
acyclic in �(mod B).

We need the following observation about Aα#σ G-modules.

LEMMA 3.4. Let B = Aα#σ G be the crossed product algebra and W a B-module.
Then for any x ∈ G, the map βx(W ) : HW −→ xHW defined by w 
−→ wx−1 defines
an A-module isomorphism.

Proof. The bijectivity of the map βx(W ) is obvious. So it suffices to show that
βx(W ) is an A-module homomorphism. It is well known that HW has a G-action
structure since W is an A ∗ G-module (see [2, Section 4 of Chapter III] for more details).
Then, we can directly verify that βx(W )(wa) = wax−1 = wx−1 xa = fW (w) · a, where
fW (w) · a is the right A-multiplication of the module xW . Consequently, the map fW

is an A-module homomorphism. �
We introduce the following two notions for later use. A component CA of

�(mod A) is called G-stable if for any M ∈ CA, xM ∈ CA for all x ∈ G. A component
CB of �(mod B) is called F-summands closed, if for any V ∈ CB, all indecomposable
summands V ′ of FM are still in CB, where M is an indecomposable A-module related
to V .

LEMMA 3.5. Let A be an artin algebra, and G = {x1 = 1, x2, . . . , xn} a finite group
acting on A with the usual assumptions. Let B = Aα#σ G be the crossed product algebra.
Then, we have the following.

(1) Let CA be a G-stable component of �(mod A). If CA is a generalized standard
component, then any component CB ⊆ F(CA) is a generalized standard component.

(2) Let CB be a F-summands closed component of �(mod B). If CB is a generalized
standard component, then any component CA ⊆ H(CB) is a generalized standard
component.

Proof. We only prove (1), because the statement (2) can be proved by carrying a
similar approach. Fix an indecomposable A-module L ∈ CA. Then, we get a component
CB in �(mod B) which contains an indecomposable summand U of FL. We claim that
the component CB is generalized standard. In fact, if it is not the case, then there exist
two indecomposable B-modules V and W such that rad∞

B (V, W ) �= 0. Put

S = {(M, N) | M, N are indecomposable A-modules related to V and W respectively},
which is a finite set. It follows that S ⊆ CA from Lemma 2.1(5) and the assumption
that CA is G-stable.

Since rad∞
A (M, N) is a finitely generated K-module, then we have rad∞

A (M, N) =
radi

A(M, N), for some i > 0, and rad∞
A (M, N) = radi

A(M, N) = 0, by the assumption
that CA is a generalized standard component.
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Let l be the maximal number of the set

I = {i | rad∞
A (M, N) = radi

A(M, N) = 0 for (M, N) ∈ S}.
Since rad∞

B (V, W ) �= 0, then radl
B(V, W ) �= 0. Thus, there exists a nonzero B-

module homomorphism f = flfl−1 · · · f2f1 ∈ radl
B(V, W ), where each nonzero B-

module homomorphism fj : Vj−1 −→ Vj belongs to radB(Vj−1, Vj), and V1 = V ,
Vl = W .

Observe that, for each B-module homomorphism fj : Vj−1 −→ Vj, and Mj−1

and Mj two indecomposable A-modules related to Vj−1 and Vj respectively, the A-
module homomorphism H(fj) : H(Vj−1) −→ H(Vj) is a summand of the A-module
homomorphism

λ =

⎛
⎜⎜⎜⎝

λ11 λ1x2 · · · λ1xn

λx21 λx2x2 · · · λx2xn

...
...

. . .
...

λxn1 λxnx2 · · · λxnxn

⎞
⎟⎟⎟⎠ :

⊕
x∈G

xMj−1 −→ ⊕
y∈G

yMj,

where λxp1 : Mj−1 −→ xp Mj are A-module homomorphisms for all xp ∈ G, and
λxpxq : xq Mj−1 −→ xp Mj is α(xpx−1

q , xq) xqλ(xpx−1
q ) 1. Since H(fj) is nonzero, then there

is at least one nonzero A-module homomorphism λxp1 : Mj−1 −→ xp Mj. Notice that
f = flfl−1 · · · f2f1 is nonzero, then there must be a composition ϕ = ϕlϕl−1 · · ·ϕ2ϕ1 of
nonzero A-module homomorphisms, where each ϕj belongs to HomA(Mj−1,

xp Mj) for
some xp ∈ G.

We claim that ϕj belongs to radA(Mj−1,
xp Mj), for j = 1, . . . , l. In fact, each H(fj) is

nonisomorphic since fj is nonisomorphic, by Lemma 2.2. Therefore, each H(fj) belongs
to radA(H(Vj−1), H(Vj)). Hence, each fixed ϕj belongs to radA(Mj−1,

xp Mj), by Lemma
2.6. So we have a nonzero A-module homomorphism

ϕ = ϕlϕl−1 · · ·ϕ2ϕ1 ∈ radl
A(M′, N ′) = rad∞

A (M′, N ′)

with some (M′, N ′) ∈ S. This contracts to the maximal choice of l and completes the
proof. �

LEMMA 3.6. Let CA be a preprojective component. If CA is faithful, then CA contains
all the indecomposable projective A-modules.

Proof. Recall that a component CA is called sincere if any simple A-module occurs
as a simple composition factor of a module in CA. Since CA is faithful, then it is sincere
(see [16, Preliminaries]). Therefore, for any indecomposable projective A-module P,
there is at least one module M ∈ CA, such that HomA(P, M) �= 0. This implies that P
lies in the projective component CA by [1, Chapter VIII, Corollary 2.6], which means
that CA contains all the indecomposable projective A-modules. �

Finally, let us recall the following useful criterion for tilted algebras (see [8,
Theorem 1.6] and [15, Theorem 3]) and a description of the shapes of all components
of tilted algebras ([9, Theorem 3.7]).

LEMMA 3.7. A connected artin algebra A is a tilted algebra if and only if the
Auslander–Reiten quiver �(mod A) of A admits a generalized standard component CA

with a faithful section �A.

LEMMA 3.8. Let A be a connected artin tilted algebra and CA be a component
of �(mod A). Then, CA is of one of the following shapes: the connecting component;
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the preprojective component; the preinjective component; quasi-serial; the component
obtained from a quasi-serial translation quiver by ray insertions or by coray insertions,
see [14].

Proof of Theorem 1.1 First, assume that A be a tilted algebra. We prove that the
crossed product B = Aα#σ G is also a tilted algebra.

By Lemma 3.7, �(mod A) has a generalized standard component CA with a faithful
section �A. Put �A = {L1, . . . , Lt}, and define �B as the set of all indecomposable B-
modules W which is a summand of F(Li) for some Li ∈ �A. Obviously, �B is a finite
set.

Choose an indecomposable B-module V such that L1 is an indecomposable A-
module related to V . Denote by CB the component containing V . It follows that CB is
acyclic from Lemma 3.3 since the component CA is acyclic. We now claim that �B ∩ CB

meets each τB-orbit in CB. That is, for any given module W in CB, there exists some
module U ∈ �B ∩ CB such that W � τ i

BU for some integer i ∈ �. By Lemma 3.2, there
exists an indecomposable A-module M related to W lies in CA. Then, there is some
L ∈ �A such that M � τ i

AL for some integer i ∈ �. This yields that W is a summand of
FM � F(τ i

AL) � τ i
BF(L) by Corollary 2.4. Hence, there exists a module U ∈ �B ∩ CB

such that W � τ i
BU , by Lemma 2.3(2).

Now, we claim that one can choose a connected full subquiver �′
B of �(mod B) in

the finite set �B ∩ CB, which is a section of CB.
For this purpose, choose an indecomposable B-module U ∈ �B ∩ CB with an

indecomposable A-module L related to U . Consider its neighbours U+ ⋃
U−. If

W ∈ U−, that is, there is an irreducible morphism W −→ U in CB. Then, there exists an
indecomposable A-module M related to W , such that there is an irreducible morphism
M −→ L in CA by Corollary 2.5(4). Since �A is a section of CA, then we have that
either M ∈ �A or τ−1

A (M) ∈ �A. If M ∈ �A, then W ∈ �B ∩ CB. If τ−1
A (M) ∈ �A, then

τ−1
B (W ) ∈ �B ∩ CB. Denote this indecomposable B-module belonging to �B ∩ CB by

U ′. Likewise, if W ∈ U+, we can find an indecomposable B-module that belongs
to �B ∩ CB and denote it by U ′′. Now, for each τB-orbit in the neighbours of U ,
we just select one indecomposable B-module U∗ ∈ �B ∩ CB (that is, either U∗ = U ′

or U∗ = U ′′), and define that U∗ and all arrows between U∗ and U belong to �′
B.

Continue this process, we can get a connected full subquiver �′
B of �(mod B) from

�B ∩ CB. This subquiver is acyclic since the component CB is. And also, it is convex,
and meets each τB-orbit exactly once by the construction. So, it is a section of CB.

We show that CB is a generalized standard component. If CA is a preprojective
component (resp. a preinjective component), then CA contains all the indecomposable
projective modules (resp. indecomposable injective modules) since CA is faithful by
Lemma 3.6 (resp. by the dual version of Lemma 3.6). Thus, CA is the unique
preprojective component (resp. preinjective component). Therefore, x�A ⊆ CA for
all x ∈ G, by using the facts that the exact functors F and H preserve projective
modules (resp. injective modules) and F and H commute with the Auslander–Reiten
translations (see Corollary 2.4). If CA is neither a preprojective component nor a
preinjective component, then we also have that x�A ⊆ CA for all x ∈ G, by comparing
the shape of components in �(mod A) by Lemma 3.8. This implies that CA is a G-stable
component since �A is a section of CA and x�A ⊆ CA for all x ∈ G. Thus, it follows
from Lemma 3.5 that CB is a generalized standard component.

Finally, we show that �′
B is faithful. Let Ũ be the direct sum of all modules

forming the vertices of �′
B with a set of generators {u1, . . . , us}. Let f : B −→ Ũs be
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the B-module homomorphism defined by f (1) = (u1, . . . , us). Then, �′
B is faithful is

and only if the homomorphism f is monic (see [2, p. 317]). Notice that H preserves
epimorphism by Lemma 2.2(2). Hence, H preserves generators of modules. Therefore,
we have an A-module homomorphism H(f ) : A|G| � H(B) −→ H(Ũs) � H(Ũ)s which
sends (1, 0, . . . , 0) to (m1, . . . , ms) with {m1, . . . , ms} a set of generators of H(Ũ). Thus,
�′

B is faithful in mod B if and only if H(Ũ) is faithful in mod A, by Lemma 2.2(2).
Denote by  the set of indecomposable summands of H(Ũ). Then  ⊆ CA, by the fact
that CA is G-stable. This implies annA(H(Ũ)) = annA() ⊆ annA(�A) = 0, by combing
Lemmas 2.1(5) and 3.4. Hence, we conclude that �′

B is faithful.
We have shown that �′

B is a faithful section of the generalized standard component
CB. By Lemma 3.7, B is a tilted algebra.

The proof of the converse is analogous, and we just sketch the proof. Let B be a
tilted algebra, and let �B = {W1, . . . , Ws} be a faithful section of a generalized standard
component CB in �(mod B). Put �A as the set of all indecomposable A-modules M
related to some W ∈ �B. It is easy to see that �A is finite. Select a component CA

containing a module M ∈ �A. Then, we get a finite set �A
⋂

CA of �(mod A), which
meets each τA-orbit in CA.

Carrying a similar procedure of the construction of the section �′
B as before, one

can find a connected full subquiver �′
A of �(mod A) in the finite set �A ∩ CA, such

that �′
A a section of CA. Moreover, CB is closed under taking F-summands by a similar

investigating the components in �(mod B) as the proof of the necessity. Then, it follows
that CA is a generalized standard component from Lemma 3.5. Thus, we can draw a
conclusion that �′

A is a section of the generalized standard component CA.
Finally, we show that �′

A is faithful. Let L̃ be the direct sum of all modules
forming the vertices of �′

A with a set of generators {l1, . . . , lt}. Let f : A −→ L̃t be
the A-module homomorphism defined by f (1) = (l1, . . . , lt). Notice that f is monic if
and only if F(f ) : F(A) = B −→ F(L̃t) � F(L̃)t is monic by Lemma 2.2(1). Then, the
faithfulness of �′

A follows from the fact that annB(F(L̃)) ⊆ annB(�B) = 0. Again by
Lemma 3.7, A is a tilted algebra. We have completed all the proof. �

At the end of this paper, we illustrate Theorem 1.1 by the following example, in
which the tilted algebras are representation-infinite.

EXAMPLE 3.9. Let k be an algebraically closed field with char k �= 3, and A the
canonical k-algebra C(2, 2, 2) of the Euclidean type �̃4 given by the bound quiver
(QA, IA):

e2
β1

�������������

e1 e2′
β2�� e3

α1

�������������
α2��

α3�������������

e2′′

β3

�������������

with the relation β1α1 + β2α2 + β3α3 = 0. Let G = {1, x, x2} be a cyclic group of order
3 with generator x, which acts on A by x(e2) = e2′ , x(e2′) = e2′′ , x(e2′′ ) = e2, x(β1) = β2,
x(β2) = β3, x(β3) = β1, x(α1) = α2, x(α2) = α3, x(α3) = α1, and by fixing e1 and e3.
Then, we obtain the skew group algebra B = AG, which is Morita equivalent to a
basic and connected finite dimensional k-algebra B′ = (B)basic.

https://doi.org/10.1017/S0017089515000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000336


TILTED ALGEBRAS AND CROSSED PRODUCTS 569

Compute its ordinary quiver QB′ of B′ as follows:

ε1 ε3
�1

�������������

ε1′ ε2

ρ1

�������������ρ2��

ρ3�������������
ε3′

�2��

ε1′′ ε3′′

�3

�������������

where

ε2 = e2,

ε1 = 1
3 (e1 + e1x + e1x2), ε1′ = 1

3 (e1 − (−1)
1
3 e1x + (−1)

2
3 e1x2),

ε1′′ = 1
3 (e1 + (−1)

2
3 e1x − (−1)

1
3 e1x2),

ε3 = 1
3 (e3 + e3x + e3x2 ), ε3′ = 1

3 (e3 − (−1)
1
3 e3x + (−1)

2
3 e3x2),

ε3′′ = 1
3 (e3 + (−1)

2
3 e3x − (−1)

1
3 e3x2),

ρ1 = β1 + β2x + β3x2, ρ2 = β1 − (−1)
1
3 β2x + (−1)

2
3 β3x2,

ρ3 = β1 + (−1)
2
3 β2x − (−1)

1
3 β3x2,

�1 = α1 + α1x + α1x2, �2 = α1 − (−1)
1
3 α1x + (−1)

2
3 α1x2,

�3 = α1 + (−1)
2
3 α1x − (−1)

1
3 α1x2.

Using the explicit description of the arrows given above, one can directly compute the
relations IB′ as ρi�i = 0 for i = 1, 2, 3.

It is well known that �(mod A) has a preinjective component CA = Q containing
a faithful section �A. We depict this component as follows, and denote the modules of
�A by circles.

� �

�

�

�

�
� �

�

�

�

�

�

�

�

��

�

��
��

1
0 0 1

0

0
0 1 1

0

��
��

0
0 0 1

1

0
0 0 1

0��
��

1
0 1 2

1

0
0 1 1

1

��
��

1
0 0 1

1

1
0 1 1

0

��
��

1
1 1 2

1

2
1 2 3

2

· · ·

· · ·

· · ·

· · ·

It is not difficult to see that �A is not stable under the action of G. In fact, we have

x(
1

0 0 1
0

) � 0
0 1 1

0
, x(

0
0 1 1

0
) � 0

0 0 1
1

, x(
1

0 0 1
1

) � 1
0 1 1

0
, x(

1
0 1 1

0
) � 0

0 1 1
1

,

and the rest modules in �A are fixed points under the action of G. Apply the
composition, which is still denoted by F , of the functor F = −⊗

A B : mod A −→
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mod B and the Morita equivalent functor mod B
∼−→ mod B′, on the section �A,

we get

F(
1

0 0 1
0

) � F(
0

0 1 1
0

) � F(
0

0 0 1
1

) � 0 1
0 1 1
0 1

= I(ε2), F(
1

0 0 1
1

) � F(
0

0 1 1
1

) � F(
1

0 1 1
0

) � 0 1
0 2 1
0 1

,

F(
1

0 1 2
1

) � 0 2
0 3 2
0 2

� 0 0
0 1 1
0 1

⊕ 0 1
0 1 0
0 1

⊕ 0 1
0 1 1
0 0

, and

F(
1

1 1 2
1

) � 1 2
1 3 2
1 2

� 1 0
0 1 1
0 1

⊕ 0 1
1 1 0
0 1

⊕ 0 1
0 1 1
1 0

= I(ε1)
⊕

I(ε1′ )
⊕

I(ε1′′ ).

By Theorem 1.1, �(mod B′) has a generalized standard component CB′ containing
a faithful section �B′ whose elements are the modules denoted by circles as follows.

�
�

���

�
�

���

� � �
�

�
���

�
�

���

�
�

���

�
�

���

�

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

��
�

�
���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���
0 1
0 2 1
0 1 ��

�	
0 1
0 1 0
0 1

��
�	

0 0
0 1 1
0 1

��
�	

0 1
0 1 1
0 0

��
�	

0 1
0 1 1
0 1

0 0
0 0 1
0 0

0 1
0 0 0
0 0

0 0
0 0 0
0 1

��
�	

1 0
0 1 1
0 1

��
�	

0 1
1 1 0
0 1

��
�	

0 1
0 1 1
1 0

0 1
1 2 1
0 1

1 1
0 2 1
0 1

0 1
0 2 1
1 1

1 2
1 4 2
1 2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

By [1, Chapter VI, Section 6], we know that B′ is now tilted by the path algebra C
of the quiver

7

6

��

1 2�� 3�� ��

��

4 �� 5

of the Euclidean type �̃6. Denote the modules in �B′ by U1 = 1 0
0 1 1
0 1

, U2 = 0 0
0 1 1
0 1

, U3 =
0 1
0 1 1
0 1

, U4 = 0 1
0 1 1
0 0

, U5 = 0 1
0 1 1
1 0

, U6 = 0 1
0 1 0
0 1

, U7 = 0 1
1 1 0
0 1

. Then, we get a tilting C-module

T = 0
0

1 0 0 0 0

⊕ 1
0

0 0 0 0 0

⊕ 0
0

0 0 0 0 1

⊕ 1
1

1 1 1 1 1

⊕ 1
1

0 0 1 1 1

⊕ 0
0

1 1 1 1 1

⊕ 1
1

0 1 1 0 0

such that HomC(T, T) � B′.
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14. D. Simson and A. Skowroński, Elements of the representation theory of associative
algebras, Vol. 2, London Mathematical Society Student Texts, vol. 71 (Cambridge University
Press, Cambridge, 2007).
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