BOREL DIRECTIONS AND ITERATED ORBITS OF MEROMORPHIC FUNCTIONS

Jianyong Qiao

For transcendental meromorphic functions of finite order, we prove that there exist iterated orbits which tend to the Borel directions. This gives a relation between the value distribution theory and the iteration theory of meromorphic functions.

1. Introduction

Suppose $f: \mathbf{C} \rightarrow \overline{\mathbf{C}}$ is a transcendental meromorphic function. If for any $\varepsilon>0, f$ takes every complex value a infinitely many times on the region: $\left|\arg z-\theta_{0}\right|<\varepsilon$, with at most two exceptional values $a \in \overline{\mathbf{C}}$, then the ray $\arg z=\theta_{0}$ is said to be a Julia direction of $f(z)$. Furthermore, if for any $\varepsilon>0$,

$$
\varlimsup_{r \rightarrow \infty} \frac{\log n\left(r, \theta_{0}, \varepsilon, f=a\right)}{\log r} \geq \omega>0
$$

with at most two exceptional values of $a \in \overline{\mathbf{C}}$, where $n\left(r, \theta_{0}, \varepsilon, f=a\right)$ is the number of roots of $f(z)=a$ on the region: $|z|<r$ and $\left|\arg z-\theta_{0}\right|<\varepsilon$, then the ray $\arg z=\theta_{0}$ is said to be a Borel direction of order at least ω. These are fundamental concepts in value distribution theory [5].

In this note, we deal with the problem: Can we choose an iterated orbit such that it approximates to the Borel directions? Define

$$
I(f)=\left\{z \in \mathbf{C} \mid f^{n}(z) \neq \infty \text { for all } n \text { and } f^{n}(z) \rightarrow \infty \text { as } n \rightarrow \infty\right\}
$$

where f^{n} is the n-th iterate of f, that is, $f^{0}(z)=z$ and $f^{n}(z)=f \circ f^{n-1}(z)$ for $n \geq 1$. $f^{n}(z)$ is defined for all $z \in C$ except for a countable set which consists of the poles of $f, f^{2}, \cdots, f^{n-1}$. Obviously, the forward orbit $O^{+}(a)=\left\{f^{n}(a) \mid n \geq 0\right\}$ is an infinite set if $a \in I(f)$. We want to find a point $a \in \mathbf{C}$ such that $a \in I(f)$ and each limiting direction of $O^{+}(a)$ (that is, a limit of $\left.\left\{\arg z \mid z \in O^{+}(a)\right\}\right)$ is a Borel direction of f. By $J(f)$ denote the Julia set of f which is the closure of the set of the repelling periodic points; its complement $F(f)$ is the Fatou set (see [2]). In this note we shall prove

Theorem 1. Let $f(z)$ be a transcendental meromorphic function, then $I(f) \cap$ $J(f) \neq \emptyset$.

[^0]Remark. Eremenko [3] has proved this result for transcendental entire functions.
THEOREM 2. Let $f(z)$ be a transcendental meromorphic function of finite order, the lower order $\mu>0$. Then there exists a point $a \in I(f) \cap J(f)$ such that each limiting direction of $O^{+}(a)$ is a Borel direction of order at least μ.

Remark. It is well known that there exist transcendental meromorphic functions of lower order zero which don't have a Julia direction [5].

Since the backward orbit $O^{-}(a)=\left\{z \mid f^{n}(z)=a\right.$ for some $\left.n\right\}$ is dense on $J(f)$ for every point $a \in J(f)$ with at most one exceptional point [2], we easily have

Corollary. Let $f(z)$ be a transcendental meromorphic function of finite order, the lower order $\mu>0$. Then there is a dense subset I_{B} of $J(f)$ such that, for $a \in$ $I_{B}, O^{+}(a)$ tends to infinity and each limiting direction of $O^{+}(a)$ is a Borel direction of order at least μ.

2. The proof of Theorem 1

In order to prove Theorem 1, we need the following lemma:
Lemma 1. [1] Suppose, in a domain D, the analytic functions f of the family G omit the values 0,1 , and H is a compact subset of D on which the functions all satisfy $|f(z)| \geq 1$. Then there exist constants k, t, dependent only on H and D, such that for any $z, z^{\prime} \in H$ and any $f \in G$ we have $\left|f\left(z^{\prime}\right)\right|<k|f(z)|^{t}$.

The proof of Theorem 1: We distinguish the following two cases:
A. $f(z)$ has infinitely many poles. Let a_{0} be a pole of $f(z)$, then there exists a constant $R>1$ such that $f\left(V\left(a_{0}\right)\right) \supset\{z||z|>R\}$, where $V(\eta)=\{z| | z-\eta \mid<1\}$. Choose a pole $a_{1} \in\{z| | z \mid>R+2\}$, then $f\left(V\left(a_{0}\right)\right) \supset \overline{V\left(a_{1}\right)}$. Since a_{1} is also a pole, there exists a constant $l_{1} \geq 2$ such that $f\left(V\left(a_{1}\right)\right) \supset\left\{z\left||z|>R^{l_{1}}\right\}\right.$. By repeating this construction, we obtain a sequence of disks $V\left(a_{j}\right)$ (a_{j} is a pole) such that $V\left(a_{j}\right) \rightarrow \infty$ and

$$
f\left(V\left(a_{j}\right)\right) \supset \overline{V\left(a_{j+1}\right)} \quad(j=0,1,2, \ldots)
$$

It is obvious that there exists a sequence of domains $B_{j} \subset V\left(a_{0}\right)$ such that $\overline{B_{j+1}} \subset B_{j}$ and $f^{j}\left(B_{j}\right)=V\left(a_{j}\right)$. For a point $a \in \bigcap_{j=1}^{\infty} \overline{B_{j}}$, we have $a \in I(f)$. Since a_{j} is a pole, then $V\left(a_{j}\right) \cap J(f) \neq \emptyset$, and thus $B_{j} \cap J(f) \neq \emptyset$ for all $j[2]$. So we have $a \in I(f) \cap J(f)$.
B. $f(z)$ has only finitely many poles. By Mittag-Leffer's theorem,

$$
\begin{equation*}
f(z)=g(z)+\sum_{j=1}^{m} P_{j}\left(\frac{1}{z-a_{j}}\right) \tag{1}
\end{equation*}
$$

where $g(z)$ is a transcendental entire function, $a_{j}(j=1, \cdots, m)$ are $m(<\infty)$ distinct poles of $f(z)$, and P_{j} is a polynomial with $P_{j}(0)=0$. For a transcendental entire function $g(z)$, Eremenko [3] proved: there exist a sequence of positive numbers $r_{j} \rightarrow \infty$, a constant $b>1$ and a sequence of domains $\sigma_{j} \subset\left\{z\left|r_{j} / b<|z|<b r_{j}\right\}\right.$ such that

$$
\begin{equation*}
g\left(\sigma_{j}\right) \supset\left\{z\left|\frac{1}{b_{1}} r_{j+1}<|z|<b_{1} r_{j+1}\right\} \quad(j=1,2, \cdots)\right. \tag{2}
\end{equation*}
$$

where $b_{1}>b$ is a constant. For a constant $b_{2} \in\left(b, b_{1}\right)$, by (1) and (2) we deduce that there exists $j_{0}>0$ such that

$$
\begin{equation*}
f\left(\sigma_{j}\right) \supset\left\{z\left|\frac{1}{b_{2}} r_{j+1}<|z|<b_{2} r_{j+1}\right\} \supset \sigma_{j+1}\right. \tag{3}
\end{equation*}
$$

when $j \geq j_{0}$. So there exists a sequence of domains $B_{p} \subset \sigma_{j_{0}}$ such that

$$
\begin{equation*}
f^{p}\left(B_{p}\right)=\sigma_{j_{0}+p}, \quad \overline{B_{p+1}} \subset B_{p}, \quad p=1,2, \cdots \tag{4}
\end{equation*}
$$

It follows that $\bigcap_{p=1}^{\infty} \overline{B_{p}} \subset I(f)$, thus $I(f) \neq \emptyset$.
If $\left(\bigcap_{p=1}^{\infty} \widetilde{B_{p}}\right) \cap J(f) \neq \emptyset$, we have $I(f) \cap J(f) \neq \emptyset$. Below we suppose $\left(\bigcap_{p=1}^{\infty} \overline{B_{p}}\right) \cap$ $J(f)=\emptyset$, then there exists $p_{0} \geq 1$ such that $B_{p} \subset F(f)$ when $p \geq p_{0}$. By (3) and (4) we have

$$
\begin{equation*}
\left\{z\left|\frac{1}{b_{2}} r_{j}<|z|<b_{2} r_{j}\right\} \subset F(f)\right. \tag{5}
\end{equation*}
$$

when $j \geq p_{0}+j_{0}+1$.
Now, we prove that $F(f)$ has only bounded components: Assume D is an unbounded component of $F(f)$. By (3) and (5) we know that $f(D) \subset D, f^{n}(z) \rightarrow \infty$ for $z \in D$ and $\overline{\sigma_{j}} \subset D$ when $j \geq p_{0}+j_{0}+1$. Put

$$
H=\overline{\sigma_{p_{0}+j_{0}+1} \cup f\left(\sigma_{p_{0}+j_{0}+1}\right)}
$$

then $H \subset D$. Without loss of generality, we may assume $0,1 \in J(f)$ and $\left|f^{n}(z)\right| \geq 1$ on H for all n. By Lemma 1, for any $z^{\prime} \in \sigma_{p_{0}+j_{0}+1}$ we have

$$
\begin{equation*}
\left|f^{n+1}\left(z^{\prime}\right)\right|<k\left|f^{n}\left(z^{\prime}\right)\right|^{t}, \quad n=1,2, \cdots \tag{6}
\end{equation*}
$$

where k and t are two constants. Put $\Omega=\bigcup_{n=0}^{\infty} f^{n}\left(\sigma_{p_{0}+j_{0}+1}\right)$, then for any $z \in \Omega$, there exist a point $z^{\prime} \in \sigma_{p_{0}+j_{0}+1}$ and a natural number n such that $f^{n}\left(z^{\prime}\right)=z$. By (6) we get

$$
|f(z)|<k|z|^{t}, \quad z \in \Omega
$$

Noting $\Omega \supset\left\{z\left|r_{j} / b<|z|<b r_{j}\right\}\right.$ for sufficiently large j, we have

$$
M\left(r_{j}, g\right)=M\left(r_{j}, f\right)+o(1)=O\left(r_{j}^{t}\right) \quad\left(r_{j} \rightarrow \infty\right)
$$

This contradicts the transcendence of $g(z)$. Therefore $F(f)$ has only bounded components.

Denote the component of $F(f)$ containing $B_{p_{0}}$ by D_{0}. Since $B_{p_{0}} \cap I(f) \neq \emptyset$, so $f^{n}(z) \rightarrow \infty$ for $z \in D_{0}$. It follows from (5) and the boundedness of D_{0} that $f^{n}\left(\partial D_{0}\right) \rightarrow \infty$, and thus $\partial D_{0} \subset I(f) \cap J(f)$. The proof of Theorem 1 is complete.

3. The proof of Theorem 2

Denote the Nevanlinna characteristic function of $f(z)$ by $T(r, f)$ [5]. Since f is of positive lower order and finite order, there exists a constant $\alpha>1$ such that $T(2 r, f)<T^{\alpha}(r, f)$ for sufficiently large r. Therefore, Theorem 2 is the corollary of the following result:

Theorem 3. Let $f(z)$ be a transcendental meromorphic function of lower order $\mu \in(0, \infty)$. If

$$
\varlimsup_{r \rightarrow \infty} \frac{\log T(2 r, f)}{\log T(r, f)}<\infty,
$$

then there exists a point $a \in I(f) \cap J(f)$ such that each limiting direction of $O^{+}(a)$ is a Borel direction of order at least μ.

In order to prove Theorem 3 , we need the following lemmas:
Lemma 2. [5] Let f be a transcendental meromorphic function. If R is sufficiently large to satisfy

$$
T(R, f) \geq \max \left\{240, \frac{240 \log (2 R)}{\log k}, 12 T(r, f), \frac{12 T(k r, f)}{\log k} \log \frac{2 R}{r}\right\}
$$

then there exists a point z_{j} lying in $r<|z|<2 R$ such that in the domain

$$
\Gamma: \quad\left|z-z_{j}\right|<\frac{4 \pi}{q}\left|z_{j}\right|
$$

f takes every complex value at least

$$
n=c^{*} \frac{T(R, f)}{q^{2}\left(\log \frac{r}{R}\right)^{2}}
$$

times except for those complex values which can be contained in two spherical disks each with radius e^{-n}, where $k>1$ is a constant, q is a sufficiently large integer, and $c^{*}>0$ is an absolute constant. The disk Γ is called a filling disk of $f(z)$.

LEMMA 3. [4] Let $T(r)$ be a positive, increasing and continuous function, and $T(r) \rightarrow+\infty(r \rightarrow+\infty)$. If

$$
\varlimsup_{r \rightarrow \infty} \frac{\log T(r)}{\log r} \leq \nu<+\infty,
$$

then for any two numbers $\tau_{1}>1, \tau_{2}>1$, the lower logrithmic density of the set $\left\{r \mid T\left(\tau_{1} r\right) \leq \tau_{2} T(r)\right\}$ is not less than $1-\left(\nu \log \tau_{1}\right) /\left(\log \tau_{2}\right)$.

Lemma 4. Let $T(r)$ be a positive, increasing and continuous function, and $T(r) \rightarrow+\infty(r \rightarrow+\infty)$. If

$$
\lim _{r \rightarrow \infty} \frac{\log T(r)}{\log r} \geq \omega>0
$$

where $\tau_{1}>1, \tau_{2}>1$ are two constants satisfying $\tau_{2}<\tau_{1}$, then for any constant $m>1 /\left(1-\left(\log \tau_{2}\right) /\left(\omega \log \tau_{1}\right)\right)$, there exists a constant $R_{0}>0$ such that

$$
\left\{t \mid \tau_{2} T(t) \leq T\left(\tau_{1} t\right)\right\} \cap\left[r, T^{-1}\left(T^{m}(r)\right)\right] \neq \emptyset
$$

when $r>R_{0}$.
The proof of Lemma 4: Put $s=T(r), T_{0}(s)=T^{-1}(s)$. Then $T_{0}(s)$ is a positive, increasing and continuous function, and $T_{0}(s) \rightarrow+\infty(s \rightarrow+\infty)$. Obviously,

$$
\varlimsup_{s \rightarrow \infty} \frac{\log T_{0}(s)}{\log s} \leq \frac{1}{\omega}<+\infty
$$

By Lemma 3,

$$
\text { lower-logdens }\left\{s \mid T_{0}\left(\tau_{2} s\right) \leq \tau_{1} T_{0}(s)\right\} \geq 1-\frac{\log \tau_{2}}{\omega \log \tau_{1}}
$$

Therefore, there exists $s_{0} \in\left[s, s^{m}\right]$ such that $T_{0}\left(\tau_{2} s_{0}\right) \leq \tau_{1} T_{0}\left(s_{0}\right)$ for sufficiently large s. Put $r_{0}=T^{-1}\left(s_{0}\right)$, then $r_{0}=T_{0}\left(s_{0}\right), T\left(r_{0}\right)=s_{0}$. Thus $\tau_{2} T\left(r_{0}\right) \leq T\left(r_{1} r_{0}\right)$. Since $r_{0} \geq r, T\left(r_{0}\right)=s_{0} \leq s^{m}=T^{m}(r)$, we deduce $r_{0} \in\left[r, T^{-1}\left(T^{m}(r)\right)\right]$. The proof of Lemma 4 is complete.

The proof of Theorem 3: Choose two constants $k>1$ and $\tau_{1}>1$ such that

$$
\frac{12}{\log k} \log \left(2 k \tau_{1}\right)<\tau_{1}^{\mu}
$$

Put

$$
\tau_{2}=\frac{12}{\log k} \log \left(2 k \tau_{1}\right) \text { and } \alpha=\varlimsup_{r \rightarrow \infty} \frac{\log T(2 r, f)}{\log T(r, f)}
$$

Choose a natural number m such that

$$
\begin{equation*}
m>\max \left(\frac{1}{1-\left(\log \tau_{2}\right) /\left(\mu \log \tau_{1}\right)}, 2 \alpha\right) \tag{7}
\end{equation*}
$$

For convenience, we put $T(r, f)=T(r)$. It is obvious that there exists a constant $M_{0}>0$ such that

$$
\begin{equation*}
M_{0}>\max \left\{R_{0}, e^{8 \pi}\right\} \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
T(r)>\max \left\{\frac{1}{K}(\log r)^{2 m^{4 p+1}+2}, \quad \frac{240 \log (2 r)}{\log k}\right\}, \tag{9}\\
T(2 r, f)<T^{2 \alpha}(r, f) \tag{10}
\end{gather*}
$$

$$
\begin{equation*}
c \cdot c^{*} \frac{\tau_{1}^{\mu / 2} r^{\mu / 4}}{\left(\log \left(k \tau_{1}\right) \log r\right)^{2}}>1 \tag{11}
\end{equation*}
$$

when $r \geq M_{0}$, where $R_{0}>0$ is the constant stated in Lemma $4, c^{*}>0$ is the constant stated in Lemma 2, and
(12) $c=\frac{1}{1+9 \tau_{1}^{2}}, \quad K=\frac{c^{\mu / 2}(\mu / 2)^{m^{2 p+1}+1}}{\left(m^{4 p+1}+1\right)!} \frac{\left(c^{*}\right)^{m^{2 p+1}+1}}{\left(\log \left(k \tau_{1}\right)\right)^{2 m^{4 p+1}+2}}, p=\left[\frac{\log \left(6 k \tau_{1}\right)}{\log 2}\right]+2$,
(where [.] denotes the integral part). Put $r^{*}=\max \left\{M_{0}, M_{0}^{4 / \mu}\right\}$. From (11) we deduce that

$$
\begin{equation*}
c \cdot c^{*} \frac{\left(\tau_{1} r\right)^{\mu / 2}}{\left(\log \left(k \tau_{1}\right) \log r\right)^{2}}>r^{\mu / 4} \geq M_{0} \tag{13}
\end{equation*}
$$

for $r \geq r^{*}$.
By Lemma 4, there exists $r_{0} \in\left[r^{*}, T^{-1}\left(T^{m}\left(r^{*}\right)\right)\right]$ such that

$$
\tau_{2} T\left(r_{0}\right) \leq T\left(\tau_{1} r_{0}\right)
$$

Put $r_{1}=r_{0} / k, R_{1}=r_{1} r_{0}$, then

$$
\begin{equation*}
\frac{12}{\log k} \log \frac{2 R_{1}}{r_{1}} T\left(k r_{1}\right) \leq T\left(R_{1}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
12 T\left(r_{1}\right) \leq \frac{12}{\log k} \log \frac{2 R_{1}}{r_{1}} T\left(k r_{1}\right) \leq T\left(R_{1}\right) . \tag{15}
\end{equation*}
$$

By (8), (9), (14), (15) and Lemma 2, there exists z_{0} lying in $r_{1}<|z|<2 R_{1}$ such that in the disk

$$
\Gamma_{0}:\left|z-z_{0}\right|<\frac{4 \pi}{\log r^{*}}\left|z_{0}\right|
$$

f takes every complex value a at least

$$
n_{0}=c^{*} \frac{T\left(R_{1}\right)}{\left(\log r^{*}\right)^{2}\left(\log \left(k \tau_{1}\right)^{2}\right)}
$$

times except for those complex values which can be contained in two spherical disks γ_{0}^{\prime} and $\gamma_{0}^{\prime \prime}$ with radius $e^{-n_{0}}$, that is, Γ_{0} is a filling disk of $f(z)$. Obviously,

$$
\begin{equation*}
n_{0} \geq \frac{c^{*}}{\left(\log k \tau_{1}\right)^{2}} \frac{T\left(1 / 2\left|z_{0}\right|\right)}{\left(\log \left(k\left|z_{0}\right|\right)\right)^{2}} \geq\left(\left|z_{0}\right|\right)^{\mu-\varepsilon\left(\left|z_{0}\right|\right)} \tag{16}
\end{equation*}
$$

where $\varepsilon(r)>0$, and $\varepsilon(r) \rightarrow 0$ as $r \rightarrow \infty$. It can be easily verified from (8) that

$$
\Gamma_{0} \subset\left\{z\left|\frac{1}{2 k} r^{*}<|z|<3 \tau_{1} T^{-1}\left(T^{m}\left(r^{*}\right)\right)\right\}\right.
$$

Put $t_{j}=T^{-1}\left(T^{m^{j}}\left(r^{*}\right)\right)$. It is obvious that $t_{0}=r^{*},\left\{t_{j}\right\}$ is an increasing sequence and $t_{j} \rightarrow \infty$. So the sequence of annuli $A_{j}=\left\{z\left|t_{j} / 2 k<|z|<3 \tau_{1} t_{j+1}\right\}\right.$ tends to infinity as $j \rightarrow \infty$ and $\Gamma_{0} \subset A_{0}$. By $T\left(t_{j+1}\right)=T^{m}\left(t_{j}\right)$, (7) and (10) we get

$$
T\left(t_{j+2}\right)=T^{m}\left(t_{j+1}\right)>T^{2 \alpha}\left(t_{j+1}\right)>T\left(2 t_{j+1}\right) .
$$

It follows that $t_{j+2}>2 t_{j+1}$, so $t_{j+p}>2^{p-1} t_{j+1}$, and thus $t_{j+p}>6 k r_{1} t_{j+1}$. Therefore,

$$
A_{j} \cap A_{j+p}=\emptyset \quad(j=0,1,2, \cdots)
$$

Next we prove that there is at least one in five annuli $A_{p}, A_{2 p}, A_{3 p}, A_{4 p}, A_{5 p}$ which does not meet $\gamma_{0}^{\prime} \cup \gamma_{0}^{\prime \prime}$. Assume γ_{0}^{\prime} (or $\gamma_{0}^{\prime \prime}$) meet both $A_{j p}$ and $A_{(j+2) p}(j \in\{1,2,3\})$. Then we have
where $c>0$ is the constant in (12). This means

$$
\begin{equation*}
T^{\left(m^{(j+1) p+1}\right.}\left(r^{*}\right) \geq T\left(c e^{n_{0}}\right) . \tag{17}
\end{equation*}
$$

On the other hand, by (10) and (13) we have

$$
c e^{n_{0}}>c n_{0}>c \cdot c^{*} \frac{\left(\tau_{1} r^{*}\right)^{\mu / 2}}{\left(\log \left(k \tau_{1}\right) \log r^{*}\right)^{2}} \geq M_{0}
$$

and hence

$$
\begin{equation*}
T\left(c e^{n_{0}}\right)>c^{\mu / 2} e^{(\mu / 2) n_{0}}>c^{\mu / 2} \frac{(\mu / 2)^{m^{(j+1) p+1}+1}}{\left(m^{(j+1) p+1}+1\right)!} n_{0}^{m^{(j+1) p+1}+1}>K \frac{T^{m^{(j+1) p+1}+1}\left(r^{*}\right)}{\left(\log r^{*}\right)^{2 m^{4 p+1}+2}} \tag{18}
\end{equation*}
$$

where $K>0$ is the constant in (12). By (17) and (18) we have

$$
T\left(r^{*}\right)<\frac{1}{K}\left(\log r^{*}\right)^{2 m^{4 p+1}+2}
$$

This contradicts (9). Therefore, γ_{0}^{\prime} (or $\gamma_{0}^{\prime \prime}$) can not meet both $A_{j p}$ and $A_{(j+2) p}(j \in\{1,2,3\})$. It follows immediately that there exists at least one in five annuli $A_{p}, A_{2 p}, A_{3 p}, A_{4 p}, A_{5 p}$ which does not meet γ_{0}^{\prime} or $\gamma_{0}^{\prime \prime}$. Denote this annulus by A_{0}^{1}. So $f\left(\Gamma_{0}\right) \supset A_{0}^{1}$.

By the same discussion, we can deduce that there exists a filling disk $\Gamma_{1} \subset A_{0}^{1}$ and an annulus $A_{0}^{2} \in\left\{A_{j} \mid j \in \mathbf{N}\right\}$ such that $f\left(\Gamma_{1}\right) \supset A_{0}^{2}$. Repeating this construction, we obtain a sequence of filling disks Γ_{j} such that

$$
\begin{equation*}
f\left(\Gamma_{j}\right) \supset \overline{\Gamma_{j+1}}, \Gamma_{j} \rightarrow \infty(j \rightarrow \infty) \tag{19}
\end{equation*}
$$

Denote the centre of Γ_{j} by z_{j}. From (16) we know that each limiting point of $\left\{\arg z_{j} \mid\right.$ $j=1,2, \cdots\}$ is a Borel direction of order at least μ (see [5]). It follows (19) that there is a sequence of domains $B_{j} \subset A_{0}$ such that $f^{j-1}\left(B_{j}\right)=\Gamma_{j}$ and $\Gamma_{0} \supset B_{j} \supset \overline{B_{j+1}}$.

Now, we prove $\left(\bigcap_{j=1}^{\infty} \overline{B_{j}}\right) \cap J(f) \neq \emptyset$: Otherwise, there exists a natural number j_{0} such that $B_{j} \subset F(f)$ when $j \geq j_{0}$. Since Γ_{0} is a filling disk, we have $f^{j}\left(B_{j}\right)=$ $f\left(\Gamma_{j}\right) \supset \overline{\mathbf{C}} \backslash\left(\gamma_{j}^{\prime} \cup \gamma_{j}^{\prime \prime}\right)$ (where γ_{j}^{\prime} and $\gamma_{j}^{\prime \prime}$ are two spherical disks each with radius $e^{-n_{j}}$ and $n_{j} \rightarrow \infty$ as $j \rightarrow \infty$), so $J(f) \subset \gamma_{j}^{\prime} \cup \gamma_{j}^{\prime \prime}$ when $j \geq j_{0}$. This implies $J(f)$ contains at most two points. This is a contradiction [2].

For a point $a \in\left(\bigcap_{j=1}^{\infty} \overline{B_{j}}\right) \cap J(f)$, we have $a \in I(f)$ and each limiting direction of $O^{+}(a)$ is a Borel direction of order at least μ. The proof of Theorem 3 is complete. \square

References

[1] I.N. Baker, 'Infinite limits in the iteration of entire functions', Ergodic Theory Dynamical Systems 8 (1988), 503-507.
[2] W. Bergweiler, 'Iteration of meromorphic functions', Bull. Amer. Math. Soc. 29 (1993), 151-188.
[3] A.E. Eremenko, 'On the iteration of entire functions', in Dynamical System and Ergodic Theory, Banach Center Publications 23 (Polish Scientific Publishers, Warsaw, 1989), pp. 339-345.
[4] W.K. Hayman, 'Angular value distribution of power series with gaps', Proc. London Math. Soc. 24 (1972), 590-624.
[5] L. Yang, Value distribution theory (Springer-Verlag, Berlin, Heidelberg, New York; Science Press, Beijing, 1993).

Center for Mathematics
China University of Mining and Technology (Beijing)
Xueyuan Road, Ding 11
Beijing 100083
Peoples Republic of China
e-mail: qjy@mail.cumtb.edu.en

Academy of Mathematics and System Sciences
Chinese Academy of Sciences
Beijing 100080
Peoples Republic of China

[^0]: Received 16th February, 1999
 Project supported by the National Natural Science Foundation of China.

