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BOREL DIRECTIONS AND ITERATED ORBITS
OF MEROMORPHIC FUNCTIONS

JIANYONG QIAO

For transcendental meromorphic functions of finite order, we prove that there exist
iterated orbits which tend to the Borel directions. This gives a relation between
the value distribution theory and the iteration theory of meromorphic functions.

1. INTRODUCTION

Suppose / : C —> C is a transcendental meromorphic function. If for any e > 0, /
takes every complex value a infinitely many times on the region: | arg z — 601 < e, with
at most two exceptional values a 6 C, then the ray argz = do is said to be a Julia
direction of f(z). Furthermore, if for any e > 0,

r-»oo log r

with at most two exceptional values of o e C, where n(r, do, s,f = a) is the number of
roots of /(z) = a on the region: \z\ < r and | engz — 0o\ < e, then the ray arg2 = 0Q
is said to be a Borel direction of order at least w. These are fundamental concepts in
value distribution theory [5].

In this note, we deal with the problem: Can we choose an iterated orbit such that
it approximates to the Borel directions? Define

/( /) = I* e C | fn(z) / oo for all n and fn(z) - K » as n-» col,

where / " is the n-th iterate of / , that is, f°(z) = z and /"(«) = / o /"-1(^) for
n > 1. fn(z) is defined for all z € C except for a countable set which consists of the
poles of / , / 2 , • • • , fn~l. Obviously, the forward orbit O+(a) = {/"(a) | n > 0} is an
infinite set if o € / ( / ) . We want to find a point a e C such that a € / ( / ) and each
limiting direction of O+(a) (that is, a limit of {arg 2 | z € O+(o)}) is a Borel direction
of / . By J(f) denote the Julia set of / which is the closure of the set of the repelling
periodic points; its complement F(f) is the Fatou set (see [2]). In this note we shall
prove

THEOREM 1. Let f(z) be a transcendental meromorphic function, then / ( / ) n

J(f) * 0-
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REMARK. Eremenko [3] has proved this result for transcendental entire functions.

THEOREM 2 . Let f(z) be a transcendental meromorphic function of finite order,
tie lower order fi> 0. Then there exists a point a € I(f)!~\J(f) such that each limiting

direction of O+(a) is a BoreJ direction of order at least \i.

REMARK. It is well known that there exist transcendental meromorphic functions of
lower order zero which don't have a Julia direction [5].

Since the backward orbit O~(a) — {z \ fn(z) = a for some n} is dense on J(f)
for every point a e J(f) with at most one exceptional point [2], we easily have

COROLLARY. Let f(z) be a transcendental meromorphic function of finite order,

the lower order fj, > 0. Then there is a dense subset IB of J(f) such that, for a e
IB, O+(a) tends to infinity and each limiting direction of O+(a) is a Borel direction

of order at least fi.

2. T H E PROOF OF THEOREM 1

In order to prove Theorem 1, we need the following lemma:

LEMMA 1 . [1] Suppose, in a domain D, the analytic functions f of the family

G omit the values 0 ,1, and H is a compact subset of D on which the functions all

satisfy \f(z)\ > 1. Then there exist constants k,t, dependent only on H and D, such

that for any z,z' e H and any f e G we have | / (z ' ) | < fc|/(z)|*.

THE PROOF OF THEOREM 1: We distinguish the following two cases:

A. /(z) has infinitely many poles. Let OQ be a pole of f(z), then there exists a
constant R > 1 such that f(V(oo)) D {z | \z\ > R}, where V{r)) = {z | \z -1)\ < 1}.
Choose a pole oi € {z \ \z\ > R + 2} , then f(V(a0)) D V(ai). Since en is also a pole,
there exists a constant h >2 such that f(V(ai)) D {z | \z\ > -R'1}. By repeating this
construction, we obtain a sequence of disks V(a,j) (oj is a pole) such that V(OJ) -> oo
and

) ) D V M 0 = 0,1,2,...).

It is obvious that there exists a sequence of domains Bj C V(ao) such that Bj+i C Bj
oo

and fi{Bj) = V(o3). For a point o e f] Bj, we have a G / ( / ) . Since a,- is a pole,

then V(aj)nJ(f) ^ 0, and thus BjC\J{f) # 0 for all j [2]. So we have o € I(f)nJ(f).

B. f(z) has only finitely many poles. By Mittag-Leffler's theorem,

(1) /(*)=»(*)
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where g(z) is a transcendental entire function, a,- (j = 1, • • • , m) are m (< oo) distinct
poles of f(z), and F , is a polynomial with Pj(0) = 0. For a transcendental entire
function g{z), Eremenko [3] proved: there exist a sequence of positive numbers r,- —> oo,
a constant 6 > 1 and a sequence of domains o-j C {Z | r , / 6 < \z\ < brj} such that

(2) gfa) D jz | £r i + 1 < \z\ < 6iri+1| (j = 1,2,

where &i > 6 is a constant. For a constant 62 G (6, &i), by (1) and (2) we deduce that
there exists jo > 0 such that

(3) f(ffj) D L I ^-rj+l < \z\ < b2rj+1\ D ai+1

when j > j 0 . So there exists a sequence of domains Bp C <7,0 such that

(4) f " ( B p ) = <rjo+p, BP+1CBP, p = l , 2 , - - . .

It follows that f\~Bp~C / ( / ) , thus / ( / ) / 0.

If ( H ^ ) n. /( /) ^ 0, we have J(/) n J(f) / 0. Below we suppose f H fil) n
S=i y VP=I '

J(f) = 0, then there exists po > 1 such that Bp C F(f) when p > po - By (3) and (4)
we have

{* I ir,- < \z\ < hrj} C F(/)(5)

when j > po + jo + 1.
Now, we prove that F(f) has only bounded components: Assume D is an un-

bounded component of F(f). By (3) and (5) we know that /(£>) C D, /n(z) -> oo for
z e D and <fj C D when j > Po + jo + 1 •

then H C D. Without loss of generality, we may assume 0,1 € J(f) and |/"(z)| > 1
on H for all n. By Lemma 1, for any z' € cr^+jg+i we have

(6) |/" r
00

where k and t are two constants. Put fi = |J fn(<7po+jo+i), then for any z € fl,
n=0

there exist a point 2' € <?•,,„+J-0+i and a natural number n such that fn(z') = z. By
(6) we get

\f(z)\ < k\z\*, z 6 «.
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Noting Q D {z | Tj/b < \z\ < fer,} for sufficiently large j , we have

M(ritg) = M(TJ, f) + o(l) = O(rj) fa -> oo).

This contradicts the transcendence of g(z). Therefore F(f) has only bounded compo-
nents.

Denote the component of F(f) containing BP0 by DQ . Since BPo n / ( / ) ^ 0,
so /" (z) -> oo for z € A ) . It follows from (5) and the boundedness of Do that
fn(dD0) ->• oo, and thus dD0 C / ( / ) n J ( / ) . The proof of Theorem 1 is complete. D

3. THE PROOF OF THEOREM 2

Denote the Nevanlinna characteristic function of f(z) by T(r,f) [5]. Since /
is of positive lower order and finite order, there exists a constant a > 1 such that
T(2r,f) < Ta(r,f) for sufficiently large r. Therefore, Theorem 2 is the corollary of
the following result:

THEOREM 3 . Let f(z) be a transcendental meromorphic function of lower order
M€(0,oo). If

-T:—logT(2r,/)
lim , _ . ,. < oo,

r-+oo log T(r,f)

then there exists a point a € / ( / ) n J( / ) sucJ] t/iat eaci limiting direction of O+(a) is
a Bore/ direction of order at Jeast /i.

In order to prove Theorem 3, we need the following lemmas:

LEMMA 2 . [5] Let f be a transcendental meromorphic function. If R is suffi-
ciently large to satisfy

then there exists a point z, lying in r < \z\ < 2R such that in the domain

I i ^ i i

f takes every complex value at least
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times except for those complex values which can be contained in two spherical disks
each with radius e~n, where k > 1 is a constant, q is a sufficiently large integer, and
c* > 0 is an absolute constant. The disk T is called a filling disk of f(z).

LEMMA 3 . [4] Let T(r) be a positive, increasing and continuous function, and
T{r) -> +oo (r -> +oo). If

_ _ log T(r)
hm f v ' <v< +oo,

r->oo log r

then for any two numbers T\ > 1, r2 > 1, the lower logrithmic density of the set
{r | T(nr) < T2T(r)} is not less than 1 - (vlogri)/(logT2).

LEMMA 4 . Let T(r) be a positive, increasing and continuous function, and
T(r) -• +oo (r ->• +oo). If

i—>oo logr

where TJ > 1, r2 > 1 are two constants satisfying r? < if, then for any constant
m > 1/(1 - (Iogr2)/(wlogri)) , there exists a constant Ro>O such that

{ t | T2T(t) < T(Tlt)} n

when r > Ro-

T H E PROOF OF LEMMA 4: Put s = T(r), TQ(s) = T~1(8). Then T0(s) is a

positive, increasing and continuous function, and To(s) —> +oo (« -> +oo). Obviously,

•-»<» logs u>

By Lemma 3,

lower-logdensjs I T0(T2S) < nT0(s)\ > 1

Therefore, there exists so € [s, sm] such that To(r2So) < TiTo(so) for sufficiently large
s. Put r0 = T-^ao), then r0 = T0(s0), T(r0) = s0. Thus r2T(r0) < Tfaro). Since
ro > r, T(r0) = so < »m = r m ( r ) , we deduce r0 € [r,T-1(Tm(r))]. The proof of
Lemma 4 is complete. U

THE PROOF OF THEOREM 3: Choose two constants k > 1 and T% > 1 such that

1 2 Iog(2*r1)<r1".
logfc
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Put

) and Q = TI

Choose a natural number m such that

(7) m > m a x ( - r ^-TJ—

For convenience, we put T(r,f) = T(r). It is obvious that there exists a constant

Mo > 0 such that

(8) Mo>max{iJo,e8'r},

(10) T(2r,f)<T2a(r,f),

(H) «•'

when r > Mo, where Ro > 0 is the constant stated in Lemma 4, c* > 0 is the constant

stated in Lemma 2, and

1)! (]flg ( J f c n ) )a»^»+a' P [ log 2 J + A

(where [.] denotes the integral part). Put r* = max{Mo, MQ }. Prom (11) we deduce
that

(13) c • c* (T-
ir)" -j > r"/4 > Mo

(log(fcr!)logr)

for r>r*.

By Lemma 4, there exists r0 € [r ' .T-^r171^*))] such that

Put ri = ro/A;, i?i = nr0, then

(14) ^

and

(15) 12T(n) < -^r log ^ - T ( * n ) <
lOg K "i
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By (8), (9), (14), (15) and Lemma 2, there exists ZQ lying in r i < \z\ < 2RX such that
in the disk

/ takes every complex value a at least

„._„. T(Ri)

times except for those complex values which can be contained in two spherical disks -y'o
and 7Q with radius e~n", that is, Fo is a filling disk of / ( z ) . Obviously,

where e(r) > 0, and e(r) —> 0 as r —> oo. It can be easily verified from (8) that

r0 c |z | JLr» < |z| < anr

Put tj = T " 1 ( r m J ( r * ) J . It is obvious that to = *"*, {tj} is an increasing sequence

and tj —• oo. So the sequence of annuli Aj = {z \ tj/2k < \z\ < 3ritj+x} tends to

infinity as j ->• oo and r 0 C Ao. By T(tj+1) = T m ( ^ ) ) (7) and (10) we get

T(ti+2) =

It follows that tj+2 > 2tj+\, so tj+p > 2p~Hj+i, and thus tj+p > 6kritj+i. Therefore,

Air\Ai+P = 9 (j = 0,1,2, ••)•

Next we prove that there is at least one in five annuli Ap, Aiv, A$p, A^p, Asp which
does not meet 70U70'. Assume y'o (or Yo) meet both AjP and A^+2)P U e {1,2,3}).
Then we have

g—"0 >

where c > 0 is the constant in (12). This means

(17) r
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On the other hand, by (10) and (13) we have

cen° >cno>c- c* (-L-1 =• > Mo,
(log (fen) logr ' ) 2 -

and hence
(18)

T(ce ) > C e >d* ( m O + 1 ) p + 1 + l ) ,»o

where K > 0 is the constant in (12). By (17) and (18) we have

n o < ^ 2 4 p + 1 2

This contradicts (9). Therefore, j ' o (or JQ) can not meet both AjP and
A(j+2)p (j € {1,2,3}). It follows immediately that there exists at least one in five
annuli Ap, Aip, Azp, AiP, A*,p which does not meet 7g or 7Q . Denote this annulus
by A\. So f (To) DA*.

By the same discussion, we can deduce that there exists a filling disk F\ c A\ and
an annulus A% € {A,- | j G N} such that f(Tx) D A%. Repeating this construction, we
obtain a sequence of filling disks Tj such that

(19) f{Tj) D Tj+U Tj -4 00 (i ->• 00).

Denote the centre of Tj by Zj . Prom (16) we know that each limiting point of {arg Zj |
j = 1,2, • • • } is a Borel direction of order at least (j, (see [5]). It follows (19) that there
is a sequence of domains Bj C AQ such that P~1(Bj) = Tj and To D Bj D Bj+i.

( 00 \

p| Bj J n J(f) / 0: Otherwise, there exists a natural number

jo such that Bj C F(f) when j > j 0 - Since Fo is a filling disk, we have f'(Bj) =
f(Tj) : C \ (f'j U7") (where 7J and 7" are two spherical disks each with radius e~ni
and n,j —> 00 as j —> oo), so J(f) C 7J U 7 '̂ when j > jo • This implies J(f) contains

at most two points. This is a contradiction [2].

( 00 \

|"| Bj ) n J(f), we have a e / ( / ) and each limiting direction of
3=1 ;

O+(a) is a Borel direction of order at least ft. The proof of Theorem 3 is complete. D
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