Proceedings of the Edinburgh Mathematical Society (2004) **47**, 289–296 © DOI:10.1017/S0013091503000166 Printed in the United Kingdom

# REMARKS ON IMMERSIONS IN THE METASTABLE DIMENSION RANGE

# CARLOS BIASI<sup>1</sup> AND ALICE KIMIE MIWA LIBARDI<sup>2</sup>

<sup>1</sup>Departamento de Matemática, ICMC-USP-Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil (biasi@icmc.usp.br) <sup>2</sup>Departamento de Matemática, IGCE-UNESP, 13506-700, Rio Claro, SP, Brazil (alicekml@rc.unesp.br)

(Received 7 March 2003)

Abstract In this work we present a generalization of an exact sequence of normal bordism groups given in a paper by H. A. Salomonsen (*Math. Scand.* **32** (1973), 87–111). This is applied to prove that if  $h: M^n \to X^{n+k}$ ,  $5 \leq n < 2k$ , is a continuous map between two manifolds and  $g: M^n \to BO$  is the classifying map of the stable normal bundle of h such that  $(h,g)_*: H_i(M,\mathbb{Z}_2) \to H_i(X \times BO,\mathbb{Z}_2)$  is an isomorphism for i < n - k and an epimorphism for i = n - k, then h bordant to an immersion implies that h is homotopic to an immersion. The second remark complements the result of C. Biasi, D. L. Gonçalves and A. K. M. Libardi (*Topology Applic.* **116** (2001), 293–303) and it concerns conditions for which there exist immersions in the metastable dimension range. Some applications and examples for the main results are also given.

Keywords: bordism; normal bordism; immersion of manifold; localization

2000 Mathematics subject classification: Primary 57R42 Secondary 55Q10; 55P60

### 1. Introduction

Let  $h: M^n \to X^{n+k}$  be a continuous map from a closed smooth connected *n*-manifold into a smooth connected (n+k)-manifold,  $5 \leq n < 2k$ . Let us assume that *h* is bordant to an immersion, in the sense of Conner and Floyd [4], and let  $g: M \to BO$  be the classifying map of the stable normal bundle,  $h^*(\tau_X) \oplus \nu_M$ , of *h*, where  $\tau_X$  denotes the tangent bundle of *X* and  $\nu_M = -(\tau_M)$ . One may ask on which conditions of (h, g) is *h* homotopic to an immersion?

Let  $f : M \to N$  be a continuous map between two closed smooth connected *n*-dimensional manifolds and suppose that N immerses in  $\mathbb{R}^{n+k}$ , for some k, with  $5 \leq n < 2k$ . Under which conditions on f does M immerse in  $\mathbb{R}^{n+k}$ ? The case when M immerses in  $\mathbb{R}^{n+k}$  and in which one is looking for conditions on f such that N also immerses in  $\mathbb{R}^{n+k}$  has been considered in [2] and [5–7].

For both problems, we use a normal bordism approach [9], and give an answer in terms of the induced maps of  $\mathbb{Z}_2$ -homology groups.

We prove the following main results.

**Theorem A.** Let  $h : M^n \to X^{n+k}$  be a continuous map from a closed smooth connected *n*-manifold into a smooth connected (n + k)-manifold,  $5 \le n < 2k$ , and let  $g: M \to BO$  be the classifying map of the stable normal bundle of h. Given

$$(h,g): M \to X \times BO,$$

suppose that the induced map

$$(h,g)_*: H_i(M,\mathbb{Z}_2) \to H_i(X \times BO,\mathbb{Z}_2)$$

is an isomorphism for i < n - k and an epimorphism for i = n - k.

Then if h is bordant to an immersion, h is homotopic to an immersion.

**Theorem B.** Let M and N be closed connected *n*-manifolds and let  $f: M \to N$  be a continuous map such that

$$f_*: H_i(M, \mathbb{Z}_2) \to H_i(N, \mathbb{Z}_2)$$

is an isomorphism for  $i \ge 0$ .

Then if N immerses in  $\mathbb{R}^{n+k}$  for  $5 \leq n < 2k$ , so does M.

The paper is divided into four sections. In § 2 we present two exact sequences of bordism groups. One of them is a generalization of the exact sequence of normal bordism groups given by Salomonsen [13]; it will be applied to prove Theorem A.

In §3 we prove Theorems A and B and in §4 we present an application of Theorem B by using a non-standard obstruction theory, and we give some examples for Theorem A.

In this work, C will denote the class of all torsion groups where the torsion is odd.

#### 2. Exact sequences of bordism groups

In this section we generalize an exact sequence given in [13], by using identifications of some normal bordism groups.

Given a topological space X and a virtual bundle  $\phi$  over X (i.e. an ordered pair of vector bundles  $\phi^+$  and  $\phi^-$  over X, written  $\phi^+ - \phi^-$ ), the *n*th normal bordism group of X with coefficient  $\phi$ , denoted by  $\Omega_n(X, \phi)$ , is the bordism group of pairs  $(h: M \to X, g)$ , where g is the stable bundle isomorphism  $\tau_M \oplus g^*(\phi^-) \simeq \varepsilon^n \oplus g^*(\phi^+)$  and  $\varepsilon^n$  denotes the trivial bundle of dimension n. We recall that  $\Omega_n(X, \phi) = \Omega_n(X, \phi + \varepsilon^r)$ , and if  $\phi$  can be expressed in the form  $\phi = \varepsilon^l - (\phi^-)^l$ , there is an isomorphism  $\Omega_n(X, \phi) \simeq \pi^S_{n+l}(T(\phi^-))$ , where  $T(\phi^-)$  is the disjoint union of the (total space)  $\phi^-$  and a point  $\infty$ . For more details see [13] or [9]. We adopt the Salomonsen convention.

Let us now consider X, an (n+k)-manifold, and let  $\nu_X^p = -(\tau_X)$  be the stable normal bundle of X, with p large enough. If  $\phi^{p+k} = \varepsilon^{p+k} - \nu_X^p \times \gamma^k$ , an element of  $\Omega_n(X \times BO(k), \phi^{p+k})$  can be considered as  $[(h,g): M^n \to X \times BO(k), H]$ , where

$$H: \tau_M \oplus h^*(\nu_X^p) \oplus g^*(\gamma^k) \to \varepsilon^{p+k} \oplus \varepsilon^n$$

https://doi.org/10.1017/S0013091503000166 Published online by Cambridge University Press

is a stable bundle isomorphism and q is the classifying map of the stable normal bundle of h. This is equivalent to the isomorphism  $\nu_M \simeq h^*(\nu_X^p) \oplus g^*(\gamma^k)$  and, since  $\nu_X \oplus \tau_X$  is trivial,  $h^*(\tau_X) \oplus \nu_M \simeq g^*(\gamma^k) \oplus \varepsilon^{p+n}$ . In this case, the stable normal bundle of h has an O(k)-structure and then, by Hirsch [8], h is homotopic to an immersion. Let us denote  $\Omega_n(X \times BO(k), \phi^{p+k})$  by  $I_n(X)$  and let  $\mathcal{F}: I_n(X) \to \eta_n(X)$  be the forgetful map. We remark that if  $[M, f] \in \eta_n(X)$  is an element of  $\mathcal{F}(I_n(X))$ , then f is homotopic to an immersion.

Let  $\psi = \psi^+ - \psi^-$  be a virtual bundle over X. We note that the geometric dimension  $g\dim(\psi) \leq k$  if and only if there exists a k-dimensional vector bundle  $\mu^k$  such that  $\mu^k \oplus \psi^- = \varepsilon^k \oplus \psi^+$ . We recall that if we consider  $f: M^n \to X^{n+k}$  to be a continuous map between two closed smooth manifolds and  $\psi = f^* \tau_X - \varepsilon^k \oplus \tau_M$ , then  $g \dim(\psi) \leq k$ if there exists a vector bundle  $\mu^k$  such that  $\mu^k \oplus \varepsilon^k \oplus \tau_M \simeq \varepsilon^k \oplus f^* \tau_X$ . This isomorphism is equivalent to  $\mu^k \oplus \tau_M \simeq f^* \tau_X$ , and then, by [8], f is homotopic to an immersion.

In order to study whether  $g \dim(\psi) \leq k$  we need to define a fibre bundle  $\tilde{V}_k(\psi^q)$ over X. Consider the bundle  $\operatorname{Iso}(\varepsilon^k \oplus \psi^-, \varepsilon^k \oplus \psi^+) \to X$ , whose fibre consists of  $\operatorname{Iso}(\mathbb{R}^k \oplus \psi^-, \varepsilon^k \oplus \psi^+) \to X$ .  $(\psi^{-})_{x}, \mathbb{R}^{k} \oplus (\psi^{+})_{x})$ . The linear group  $Gl_{k}$  acts freely on the right and then we define  $V_k(\psi) = \operatorname{Iso}(\varepsilon^k \oplus \psi^-, \varepsilon^k \oplus \psi^+)/Gl_k$ , which is a fibre bundle over X with fibre homotopy equivalent to a Stiefel manifold. For each t we can construct  $V_k(\psi^+ \oplus \varepsilon^t - \psi^- \oplus \varepsilon^t)$  over X whose fibre is also (k-1)-connected. Then we define

$$\tilde{V}_k(\psi) = \bigcup_{t=0}^{\infty} V_k(\psi^+ \oplus \varepsilon^t - \psi^- \oplus \varepsilon^t)$$

over X with (k-1)-connected fibre. Since  $Gl_k$  acts freely on  $\operatorname{Iso}(\varepsilon^k \oplus \psi^-, \varepsilon^k \oplus \psi^+)$  and effectively on  $\mathbb{R}^k$ , we have that  $\operatorname{Iso}(\varepsilon^k \oplus \psi^-, \varepsilon^k \oplus \psi^+) \times_{Gl_k} \mathbb{R}^k$  is a k-dimensional vector bundle  $\mu^k$  over  $\tilde{V}_k(\psi)$  [13]. In this paper we will consider

$$\tilde{V}_k(\psi) \xrightarrow{\pi} X \times BO(q),$$

with  $\psi = \gamma^q - \varepsilon^q$  a virtual bundle over  $X \times BO(q)$  and where  $\gamma^q$  denotes the pull-back of the universal vector bundle over BO(q), by the second projection  $\pi_2: X \times BO(q) \rightarrow$ BO(q).

Let us consider  $\theta': \tilde{V}_k(\psi) \to BO(k)$ , the classifying map of the vector bundle  $\mu^k$ , which is a high homotopy equivalence, for k large enough.

Let  $\alpha^p$  be an arbitrary p-dimensional vector bundle over X, and, for each q, consider  $\phi^{p+q} = \varepsilon^{p+q} - (\alpha^p \times \gamma^q)$ , a virtual bundle over  $X \times BO(q)$ . We note that, for q large,

$$\Omega_n(X \times BO, \phi^{p+q}) \simeq \pi^S_{n+p+q}(T(\alpha) \wedge MO),$$

where  $T(\alpha)$  is the Thom space [9] and, since  $T(\alpha)$  is (p-1)-connected, we conclude that  $\eta_n(X) \simeq \Omega_n(X \times BO, \phi^{p+q})$  and then this normal bordism group does not depend on  $\alpha^p$ .

The following diagram is commutative:

where  $\theta_*$ , induced by  $\theta'$ , is an isomorphism for q large, from remarks above.

C. Biasi and A. K. M. Libardi

Let us suppose that  $n \leq 2k+2$ . These identifications and Diagram (I) fit in a sequence of Salomonsen [13] yielding the following exact sequence:

(II) 
$$\longrightarrow \Omega_{n-k}(X \times BO(q) \times P^{\infty}, \Gamma_k) \longrightarrow I_n(X) \xrightarrow{\mathcal{F}} \eta_n(X)$$
  
 $\xrightarrow{\tilde{\gamma}_{k-1}} \Omega_{n-k-1}(X \times BO(q) \times P^{\infty}, \Gamma_{k-1}) \longrightarrow \cdots,$ 

where

$$\Gamma_k = \nu_X^p \times \gamma^q \oplus (\varepsilon^{q-n+k} - \gamma^q) \otimes \lambda - \varepsilon^{p+q-n+k}$$

and  $\lambda$  is the canonical bundle over the real projective space  $P^{\infty}$ .

Next we take  $\psi$  a virtual vector bundle over M and suppose that  $5 \leq n < 2k$ . Then from the exact sequence of Salomonsen [13], we have the following exact sequence:

(III) 
$$\longrightarrow \Omega_n(\tilde{V}_k(\psi), \tau_M - \varepsilon^n) \xrightarrow{\pi_{M_*}} \Omega_n(M, \tau_M - \varepsilon^n) \xrightarrow{\gamma_M} \Omega_{n-k-1}(M \times P^\infty, \Phi) \longrightarrow \cdots,$$

where  $\Phi = -(n-k-1)\lambda - \lambda \otimes \psi + \tau_M - \varepsilon^n$  and  $\gamma_M$  is defined in the construction of the sequence (see Theorem 6.1 in [13]).

We recall that if  $\psi = h^* \tau_X - \varepsilon^k \oplus \tau_M$ , where  $h : M \to X$  is a continuous map,  $5 \leq n < 2k$ , then  $\gamma_M([M])$  is the invariant  $\omega_k(\nu_h)$  defined by Koschorke [10, 11], which is an obstruction to the existence of a monomorphism from  $M \times \mathbb{R}^{\ell}$  into  $\nu_h$ . With this notation, h is homotopic to an immersion if and only if  $\gamma_M([M]) = 0$ .

Here,  $[M] = [M, 1_M, t_M] \in \Omega_n(M, \tau_M - \varepsilon^n)$  is the fundamental class of  $M, t_M : \tau_M \oplus \varepsilon^n \to \varepsilon^n \oplus \tau_M$  being the isomorphism which interchanges factors.

## 3. Proofs of Theorems A and B

**Proof of Theorem A.** Let  $h: M \to X$  be a continuous map from a closed connected smooth *n*-dimensional manifold M into a smooth connected (n + k)-dimensional manifold X.

Let us now consider the following commutative diagram, where the left-hand vertical sequence is (III) with  $\psi = h^* \tau_X - \varepsilon^k \oplus \tau_M$ , the right-hand vertical sequence is (II) and  $(h, g)_*$  and  $((h, g) \times \mathrm{Id})_*$  are induced maps of (h, g) in convenient normal bordism groups:

$$\begin{array}{cccc}
& & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ \Omega_n(M, \tau_M - \varepsilon^n) & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \Omega_{n-k-1}(M \times P^{\infty}, \Phi) & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Suppose that h is bordant to an immersion. Then

$$0 = \tilde{\gamma}_{k-1}([M,h]) = ((h,g) \times \mathrm{Id})_*(\gamma_M([M])).$$

Since, by assumption,

$$(h,g)_*: H_i(M,\mathbb{Z}_2) \to H_i(X \times BO,\mathbb{Z}_2)$$

is an isomorphism for i < n - k and an epimorphism for i = n - k, we conclude that  $((h,g) \times \mathrm{Id})_*$  is a  $\mathcal{C}$ -isomorphism for i = n - k - 1 and then  $\ker((h,g) \times \mathrm{Id})_* \in \mathcal{C}$ .

We recall that the order of the elements of the image of  $\gamma_M$  is a power of 2 [9,13]. Therefore,  $\gamma_M([M,h]) = 0$  and h is homotopic to an immersion [10].  $\square$ 

**Proof of Theorem B.** We recall that under the hypotheses of Theorem B,

$$f_*: \Omega_n(M, f^*\tau_N - \varepsilon^n) \to \Omega_n(N, \tau_N - \varepsilon^n)$$

is a C-isomorphism and  $f^*(\beta_2) = \alpha_2$ , where  $\alpha = \nu_M$ , and  $\beta = \nu_N$  are the stable normal bundles of M and N, and  $\alpha_2$  and  $\beta_2$  are the respective 2-localization [2].

Let us consider the following commutative diagram:

$$\begin{array}{c} & & \downarrow & & \downarrow \\ \Omega_n(\tilde{V}_k(\psi'_M), f^*\tau_N - \varepsilon^n) \xrightarrow{G_*} \Omega_n(\tilde{V}_k(\psi_N), \tau_N - \varepsilon^n) \\ & & \downarrow^{(\pi'_M)_*} & & \downarrow^{(\pi_N)_*} \\ \Omega_n(M, f^*\tau_N - \varepsilon^n) \xrightarrow{f_*} \Omega_n(N, \tau_N - \varepsilon^n) \\ & & \downarrow^{\gamma'_M} & & \downarrow^{\gamma_N} \\ \Omega_{n-k-1}(M \times P^{\infty}, f^*(\phi_N)) \xrightarrow{F_*} \Omega_{n-k-1}(N \times P^{\infty}, \phi_N)
\end{array}$$

where the right-hand sequence is obtained from (III),  $\psi_N = \varepsilon^{n+k} - \tau_N \oplus \varepsilon^k$ ,  $\psi'_M =$  $\varepsilon^{n+k} - f^* \tau_N \oplus \varepsilon^k$ . The left-hand sequence is induced from the right-hand sequence by f and by G and F, which are induced by f and are given in [13].

We observe that  $(\pi'_M)_*$  is the induced map of  $\pi_M$  in normal bordism groups with virtual bundle  $f^*\tau_N - \varepsilon^n$ .

If N immerses in  $\mathbb{R}^{n+k}$ , then  $(\pi_N)_*$  is surjective [13] and, since  $f_*: H_i(M, \mathbb{Z}_2) \to \mathbb{Z}$  $H_i(N,\mathbb{Z}_2)$  is an isomorphism for  $i \ge 0$ ,  $F_*$  is a  $\mathcal{C}$ -monomorphism. Therefore,  $(\pi'_M)_*$  is a  $\mathcal{C}$ -epimorphism and since the order of every element of the image of  $\gamma'_{\mathcal{M}}$  is a power of 2 [13], we conclude that  $(\pi'_M)_*$  is an epimorphism.

Now, we only to need to show that  $(\pi_M)_* : \Omega_n(\tilde{V}_k(\psi_M), \tau_M - \varepsilon^n) \to \Omega_n(M, \tau_M - \varepsilon^n)$ is a C-epimorphism, where  $\psi_M = \varepsilon^{n+k} - \tau_M \oplus \varepsilon^k$ . For this, we consider the commutative diagram

$$\pi_{n+p}^{s}(T\hat{\alpha}) \longrightarrow \pi_{n+p}^{s}(Tf^{*}(\hat{\beta}))$$

$$\downarrow^{(\pi_{M})_{*}} \qquad \downarrow^{(\pi'_{M})_{*}}$$

$$\pi_{n+p}^{s}(T\alpha) \longrightarrow \pi_{n+p}^{s}(Tf^{*}\beta)$$

where  $\hat{\beta}$  and  $\hat{\alpha}$  denote the pull-back of  $\beta$  and  $\alpha$  by  $\pi_N$  and  $\pi_M$ , respectively. The two horizontal maps are C-isomorphisms [2] and  $(\pi_M)_*$  is a C-epimorphism. 

# 4. Applications

Let M and N be closed smooth manifolds of dimension n and (n + k), respectively, and let  $f: M \to N$  be a continuous map. Define  $U_f \in H^k(N, \mathbb{Z}_2)$  to be the image of the fundamental class  $[M] \in H_n(M, \mathbb{Z}_2)$  by the composite map

$$H_n(M, \mathbb{Z}_2) \xrightarrow{f_*} H_n(N, \mathbb{Z}_2) \xrightarrow{D_N^{-1}} H^k(N, \mathbb{Z}_2),$$

where  $D_N$  denotes the Poincaré duality isomorphism.

We also consider the following commutative diagram:

$$\begin{array}{c} H^p(N, \mathbb{Z}_2) \xrightarrow{\cup U_f} H^{p+k}(N, \mathbb{Z}_2) \\ \downarrow^{D_M \circ f^*} & \downarrow^{D_N} \\ H_{n-p}(M, \mathbb{Z}_2) \xrightarrow{f_*} H_{n-p}(N, \mathbb{Z}_2) \end{array}$$

where ' $\cup$ ' denotes the cup product.

**Theorem 4.1.** Let M and N be closed smooth manifolds of dimension n. Suppose that

$$H_i(M, \mathbb{Z}_2) \simeq H_i(N, \mathbb{Z}_2), \text{ for all } i \ge 0,$$

and there exists  $f: M \to N$  with  $\deg_2 f = 1$ . Then  $f_*: H_i(M, \mathbb{Z}_2) \to H_i(N, \mathbb{Z}_2)$  is an isomorphism, for  $i \ge 0$ .

**Proof.** Since the dimension of M and of N is n, we have that  $U_f \in H^0(N, \mathbb{Z}_2)$  and  $U_f = \deg_2 f$ .

Therefore,  $\cup U_f$  is a multiple of deg<sub>2</sub> f = 1, so that

$$\cup U_f: H^p(N, \mathbb{Z}_2) \to H^p(N, \mathbb{Z}_2)$$
 is the identity map

for  $p \ge 0$  and

$$f_*: H_{n-p}(M, \mathbb{Z}_2) \to H_{n-p}(N, \mathbb{Z}_2)$$
 is onto

for all  $p \ge 0$ . But  $H_i(M, \mathbb{Z}_2) \simeq H_i(N, \mathbb{Z}_2), i \ge 0$ , and the result follows.

**Corollary 4.2.** Let M and N be closed smooth n-manifolds with isomorphic homology groups. Suppose that there exists  $f: M \to N$  with  $\deg_2 f = 1$ . Then M immerses in  $\mathbb{R}^{n+k}$ ,  $5 \leq n < 2k$ , if and only if N does.

Let M and N be closed smooth n-manifolds. Given  $x_0 \in M^n$  and  $y_0 \in N^n$ , let us take  $D_1^n$  and  $D_2^n$  discs containing  $x_0$  and  $y_0$ , respectively, for which there exists a homeomorphism  $h: D_1^n \to D_2^n$  with  $h(x_0) = y_0$ .

Put  $A = \partial D_1$ ,  $\tilde{M}_{n-1} = M^{(n-1)} \cup A$ , where  $M^{(n-1)}$  is the (n-1)-skeleton of M,  $Y = N - h(\mathring{D}_1)$ ,  $f_0 = h|_A$ , and let

$$\chi_n^{n-1}: H^n(M, A, \pi_{n-1}(Y)) \to H^n(M, A, H_{n-1}(Y))$$

be the homomorphism induced in cohomology by the Hurewicz homomorphism.

Let us suppose that  $f_0$  extends to  $M_{n-1}$ , Y is (n-1)-simple and  $H_{n-1}(A, \mathbb{Z})$  is a free group.

**Theorem 4.3.** Suppose that  $M^n$  and  $N^n$  are such that  $H_*(M, \mathbb{Z}_2) \simeq H_*(N, \mathbb{Z}_2)$ .

If  $\chi_n^{n-1}$  is a monomorphism and there exists a homomorphism  $\psi : H_n(M,\mathbb{Z}) \to H_n(N,\mathbb{Z})$  such that  $(f_0)_* = \psi \circ i_*$ , with  $i_* : H_n(A,\mathbb{Z}) \to H_n(M,\mathbb{Z})$  induced by the inclusion, then there exists  $f : M \to N$  with  $\deg_2 f = 1$ .

**Proof.** Under these conditions,  $f_0$  extends to  $f: M \to N$  (see [1]) with  $f(M - \mathring{D}_1) = N - f(\mathring{D}_1)$ . By excision,  $H_n(M, \mathbb{Z}_2)$  (respectively,  $H_n(N, \mathbb{Z}_2)$ ) is isomorphic to  $H_n(M, M - x_0, \mathbb{Z}_2)$  (respectively,  $H_n(N, N - y_0, \mathbb{Z}_2)$ ), which is isomorphic to  $H_n(D_1, D_1 - x_0, \mathbb{Z}_2)$  (respectively,  $H_n(f(D_1), f(D_1) - y_0, \mathbb{Z}_2)$ ) and the result follows.

We finish with some examples which illustrate Theorem A. In these examples, we are supposing that  $h: M^n \to X^{n+k}$  is bordant to an immersion.

**Example 4.4.** Let us consider  $n \ge 5$  and k = n - 2. In order for

$$(h,g)^*: H^1(X,\mathbb{Z}_2) \oplus H^1(BO,\mathbb{Z}_2) \to H^1(M,\mathbb{Z}_2)$$

to be an isomorphism, one needs to take M such that  $w_1(M) \neq 0$ , because otherwise  $(h,g)^*(w_1(X) + w_1(\gamma)) = 0$ . For example,  $M^n = P^n$ , n even, and  $H^1(X, \mathbb{Z}_2) = 0$ .

**Example 4.5.** If  $n \ge 7$  and k = n - 3, we take  $M^n$  as the real Grassmannian manifold  $G_{l+2,2}$  with l > 3 and X sufficiently highly connected that  $H^i(X \times BO, \mathbb{Z}_2) = H^i(BO, \mathbb{Z}_2)$ . Then, by [12],  $H^i(BO, \mathbb{Z}_2) \to H^i(G_{l+2,2}, \mathbb{Z}_2)$  is an isomorphism for  $i \le 3$ .

Acknowledgements. The authors express their thanks to Ulrich Koschorke and Pedro Pergher for their helpful comments and many suggestions.

#### References

- C. BIASI, Teoria da obstrução e aplicações, in Notas do Instituto de Ciências Matemáticas de S. Carlos-USP (1986).
- C. BIASI, D. L. GONÇALVES AND A. K. M. LIBARDI, Immersions in the metastable dimension range via the normal bordism approach, *Topology Applic.* 116 (2001), 293– 303.
- 3. R. L. W. BROWN, Immersions and embeddings up to cobordism, *Can. J. Math.* **23** (1971), 1102–1115.
- 4. P. E. CONNER AND E. E. FLOYD, *Differentiable periodic maps*, Ergenbisse der Mathematik und ihrer Grenzgebiete, vol. 33, pp. 10–19 (Springer, 1964).
- H. GLOVER AND W. HOMER, *Immersing manifolds and 2-equivalence*, Lectures Notes in Mathematics, vol. 657, pp. 194–197 (Springer, 1978).
- H. GLOVER AND W. HOMER, Metastable immersion, span and the two-type of a manifold, Can. Math. Bull. 29 (1986), 20–24.
- H. GLOVER AND G. MISLIN, Immersion in the metastable range and 2-localization, Proc. Am. Math. Soc. 43 (1974), 443–448.
- 8. M. HIRSCH, Immersions of manifolds, Trans. Am. Math. Soc. 93 (1959), 242–276.
- 9. U. KOSCHORKE, Vector fields and other vector bundle morphism—a singularity approach, Lecture Notes in Mathematics, vol. 847 (Springer, 1981).

- 10. U. KOSCHORKE, The singularity method and immersions of m-manifolds into manifolds of dimensions 2m 2, 2m 3 and 2m 4, Lecture Notes in Mathematics, vol. 1350 (Springer, 1988).
- U. KOSCHORKE, Nonstable and stable monomorphisms of vector bundles, *Topology Applic.* 75 (1997), 261–286.
- J. W. MILNOR AND J. STASHED, Lectures on characteristic classes, Ann. Math. Stud. 76 (1974), 73–81.
- 13. H. A. SALOMONSEN, Bordism and geometric dimension, Math. Scand. 32 (1973), 87-111.