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Abstract Let E be a real uniformly smooth Banach space and let A be a nonlinear φ-strongly quasi-
accretive operator with range R(A) and open domain D(A) in E. For a given f ∈ E, let A satisfy the
evolution system du(t)/dt + Au(t) = f , u(0) = u0. We establish the strong convergence of the Ishikawa
and Mann iterative methods with appropriate error terms recently introduced by Xu to the equilibrium
points of this system. Related results deal with the strong convergence of the iterative methods to the
fixed points of φ-strong pseudocontractions defined on open subsets of E.
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1. Introduction and preliminaries

Let E be a real normed space. A mapping U with domain D(U) and range R(U) in E is
called accretive if the inequality

‖x − y‖ 6 ‖x − y + s(Ux − Uy)‖ (1.1)

holds for every x, y ∈ D(U) and for all s > 0. For a Banach space E we shall denote by J

the normalized duality map from E to 2E∗
defined by Jx = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 =

‖f∗‖2}, where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality
pairing. As a consequence of a result of Kato [24], the accretive condition (1.1) can be
expressed in terms of the normalized duality map as follows. For each x, y ∈ D(U), there
exists j(x−y) ∈ J(x−y) such that 〈Ux−Uy, j(x−y)〉 > 0. A mapping T : D(T ) ⊆ E → E

is called strongly accretive if for all x, y ∈ D(T ) there exist a constant k > 0 and
j(x − y) ∈ J(x − y) such that 〈Tx − Ty, j(x − y)〉 > k‖x − y‖2. The map T is called
φ-strongly accretive if there exist j(x − y) ∈ J(x − y) and a strictly increasing function
φ : [0,∞) → [0,∞) with φ(0) = 0 such that for each x, y ∈ E:

〈Tx − Ty, j(x − y)〉 > φ(‖x − y‖)‖x − y‖. (1.2)
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The operator T is called m-accretive if it is accretive and (I + rT )(D(T )) = E for all
r > 0, where I denotes the identity operator on D(T ). Moreover, if the nullspace of T ,
N(T ) := {x ∈ D(T ) : Tx = 0}, is non-empty and the relations (1.1) and (1.2) hold for
any x ∈ D(T ) but y ∈ N(T ), then the corresponding operator T is called quasi-accretive,
quasi φ-strongly accretive, respectively.

Closely related to the class of accretive operators is the class of pseudocontractive
operators. An operator T with domain D(T ) and range R(T ) in E is called strongly
pseudocontractive if for all x, y ∈ D(T ), there exist j(x−y) ∈ J(x−y) and a constant t > 1
such that 〈Tx−Ty, j(x− y)〉 6 t−1‖x− y‖2. If t = 1, then T is called pseudocontractive.
The map T is called φ-strongly pseudocontractive if for all x, y ∈ D(T ), there exist
j(x − y) ∈ J(x − y) and a strictly increasing function φ : [0,∞) → [0,∞) with φ(0) = 0
such that

〈Tx − Ty, j(x − y)〉 6 ‖x − y‖2 − φ(‖x − y‖)‖x − y‖. (1.3)

T is called φ-hemicontractive if relation (1.3) holds for all x ∈ D(T ) and x∗ ∈ N(I − T ).
It follows from inequalities (1.2) and (1.3) that T is φ-strongly pseudocontractive if and
only if (I −T ) is φ-strongly accretive, so that the mapping theory for accretive operators
is intimately connected with the fixed-point theory for pseudocontractions.

The notion of accretive operators was introduced in 1967 by Browder [1] and Kato [24].
An early fundamental result in the theory of accretive operators, due to Browder, states
that the initial-value problem

du

dt
+ Au = 0, u(0) = u0, (1.4)

is solvable if A is locally Lipschitzian and accretive on E. This result was subsequently
generalized by Martin [28] to the continuous accretive operators. It is well known (see, for
example, [10,39]) that many physically significant problems can be modelled in terms of
an initial-value problem of the form (1.4), where T is either accretive, φ-strongly accretive
or φ-strongly quasi-accretive. Typical examples of how such evolution equations arise are
found in models involving either the heat, the wave or the Schrödinger equation. If u is
independent of t,

Au = 0, (1.5)

and the solution of this equation corresponds to the equilibrium points of system (1.4).
Consequently, considerable research effort has been devoted, especially within the last 10
years or so, to developing constructive techniques for the determination of the kernels of
accretive operators in Banach spaces (see, for example, [2,3,5–23,25,26,29–33,35,37,
39–41]).

Two well-known iteration schemes—the Mann iteration scheme (see, for example,
[27]) and the Ishikawa iteration scheme (see, for example, [23])—have successfully been
employed to approximate the kernels of accretive self-maps. However, if a map T is such
that its range does not intersect its domain (and this occurs frequently in many appli-
cations), then neither the Mann nor the Ishikawa scheme may be well defined. In fact,
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equation (1.5) may not even have a solution. Take for example T : [0, 1] → R defined
by Tx = 1

2x + 1. Clearly, T is a contraction map but has no fixed point in [0, 1]. Hence
A := (I − T ) : [0, 1] → R is strongly accretive and Au = 0 has no solution. In general,
if D(A) ∩ R(A) = ∅, some extra condition on A must be imposed for equation (1.5) to
have a solution. One such condition which has been studied extensively and for which
fixed-point theorems have been established is that of ‘weak inwardness’ (see, for exam-
ple, [4]). For weakly inward maps no generality is lost if the domain is assumed to be an
open set (see, for example, [4, ch. IV]). In [2], Bruck studied the problem of iteratively
approximating the solution of Au = f for a given f ∈ H, where A := (I + T ) and
T : H → H is a monotone operator on a Hilbert space H. (In Hilbert spaces accretive
operators are called monotone.) He proved the following theorem.

Theorem B (see page 1259 in [2]). Let T be a multivalued monotone operator
with open domain D(T ) in a Hilbert space H and f ∈ R(I + T ). Then there exist a
neighbourhood N ⊆ D(T ) of x∗ = (I + T )−1f and a real number σ1 > 0 such that for
any σ > σ1, any initial guess x1 ∈ N and any single-valued section T0 of T , the sequence
{xn} generated from x1 by

xn+1 = xn − (n + σ)−1(xn + T0xn − f)

remains in D(T ) and converges to x∗ with ‖xn − x∗‖ = O(n−1/2).

Let E be a real Banach space. The modulus of smoothness of E is the function ρE :
[0,∞) → [0,∞) defined by

ρE(τ) := 1
2 sup{‖x + y‖ + ‖x − y‖ − 2 : ‖x‖ 6 1, ‖y‖ 6 τ}.

For q > 1, E is called q-uniformly smooth if there exists a constant c > 0 such that
ρE(τ) 6 cτ q, and is called uniformly smooth if

lim
τ→0

ρE(τ)
τ

= 0.

Clearly, every q-uniformly smooth Banach space is uniformly smooth. Moreover, it is well
known (see, for example, [36,38]) that Hilbert spaces are 2-uniformly smooth, while

Lp(or `p) or W p
m is

{
p-uniformly smooth if 1 < p 6 2,

2-uniformly smooth if p > 2.

Since its publication in 1973, several authors have extended Theorem B to more general
Banach spaces (see, for example, [10, 11, 13, 15, 40]). The most general result of type
Theorem B now known appears to be the following recent theorem of one of the authors.

Theorem C (see Theorem 4.1 on page 56 in [11]). Let E be a real q-uniformly
smooth Banach space, q > 1. Suppose A is a set-valued strongly accretive operator with
open domain D(A) in E and f ∈ Ax has a solution x∗ ∈ D(A). Then there exist a
neighbourhood B ⊆ D(A) of x∗ and real number r1 > 0 such that for any r > r1, any
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initial guess x1 ∈ B, any single-valued selection A0 of A and some real sequence {cn}∞
n=1,

the sequence {xn}∞
n=1 generated from x1 by

xn+1 = xn + cn(f − A0xn), n > 1,

remains in D(A) and converges strongly to x∗ with ‖xn − x∗‖ = O(n(q−1)/q).

In 1995, Liu [25] first introduced what he called Ishikawa and Mann iteration pro-
cesses ‘with errors’ for nonlinear strongly accretive mappings. Recently, Yuguang Xu [37]
objected to the definition of Liu (see [37]) and then introduced the following definitions.

(A) Let K be a non-empty convex subset of E and T : K → K a mapping. For any
given x0 ∈ K, the sequence {xn}, defined iteratively by

xn+1 = anxn + bnTyn + cnun; yn = a′
nxn + b′

nTxn + c′
nvn, n > 0,

where {un}, {vn} are bounded sequences in K, and {an}, {bn}, {cn}, {a′
n}, {b′

n},
{c′

n} are sequences in (0, 1) such that an +bn +cn = 1 = a′
n +b′

n +c′
n for all integers

n > 0, is called the Ishikawa iteration sequence with errors.

(B) If, with the same notation and definitions as in (A), b′
n = c′

n = 0 for all integers n >
0, then the sequence {xn}, now defined by x0 ∈ K, xn+1 = anxn + bnTxn + cnun,
n > 0, is called the Mann iteration sequence with errors.

It is our purpose in this paper to consider iteration processes of the Ishikawa and Mann
types with errors in the sense of Yuguang [37] and prove theorems much more general
than Theorem C in the sense that our theorems hold for the much more general class
of φ-strongly accretive operators and in the more general real uniformly smooth spaces.
Moreover, our method is of independent interest.

2. Main results

In the sequel we shall need the following lemma.

Lemma X–R (see [38,39]). Let E be a real uniformly smooth Banach space. Then,
for every x, y ∈ E, and some positive constants C and D, we have

‖x + y‖2 6 ‖x‖2 + 2〈y, j(x)〉 + D max{‖x‖ + ‖y‖, 1
2C}ρE(‖y‖). (2.1)

2.1. Convergence theorems for Φ-strongly accretive operator equations

Theorem 2.1. Let E be a real uniformly smooth Banach space and let T : D(T ) ⊆
E → E be a φ-strongly accretive operator with open domain D(T ) ⊆ E. Suppose the
equation Tx = f has a solution x∗ ∈ D(T ) for a given f ∈ E. Define S : D(T ) → E by
Sx = x−Tx+ f . Then there exist a real number µ > 1 and a neighbourhood B ⊆ D(T )
of x∗ such that starting with arbitrary x0, u0, v0 ∈ B, the sequence {xn}∞

n=0 defined
iteratively by

yn = anxn + bnSxn + cnun, n > 0, (2.2)

xn+1 = a′
nxn + b′

nSyn + c′
nvn, n > 0, (2.3)
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remains in B and converges strongly to x∗, where

(i) an + bn + cn = a′
n + b′

n + c′
n = 1;

(ii) bn = b′
n = 1/(2(µ + n)), n > 0;

(iii) cn = c′
n = 1/(2(n + µ)2), n > 0; and

(iv) {un} and {vn} are arbitrary bounded sequences in E.

Proof. Set βn = bn + cn, αn = b′
n + c′

n, then (2.2) and (2.3) become

yn = (1 − βn)xn + βnSxn + cn(un − Sxn), n > 0, (2.4)

xn+1 = (1 − αn)xn + αnSyn + c′
n(vn − Syn), n > 0. (2.5)

Observe that x∗ is a fixed point of S and that (I − S) is accretive and, hence, is locally
bounded at each interior point of its effective domain. Choose r > 0 such that B =
B̄r(x∗) = {x ∈ E : ‖x − x∗‖ 6 r} is contained in D(T ) = D(S), and (I − S)(B) is
bounded. Let d := diam[(I − S)(B)], and M1 = max{sup ‖un − x∗‖, sup ‖vn − x∗‖}.
Then, for all x ∈ B,

‖un − Sx‖ 6 ‖un − x∗‖ + ‖x − x∗‖ + ‖x − Sx‖ 6 M1 + r + d.

Similarly, ‖vn −Sx‖ 6 M1 + r + d. Set d∗ := 2(r + d)+M1, M = D max{d∗, 1
2C}, where

D and C are the constants appearing in inequality (2.1). Since E is uniformly smooth,

ρE(d∗τ)
τ

→ 0 as τ → 0.

Thus we can choose τ0 > 0 such that for all 0 < τ < τ0, we have

ρE(d∗τ)
τ

6
φ( 1

2r)r2

3M(1 + φ(r) + r)
.

Furthermore, the uniform continuity of j on bounded subsets of E implies that given

ε :=
φ( 1

2r)r2

6d(1 + φ(r) + r)
,

we can choose δε > 0 such that ‖x − y‖ < δε implies ‖j(x) − j(y)‖ 6 ε. Choose δ0 > 0
such that δ0 < δε; define

µ := max
{

1,
1
τ0

,
8d∗

r
,
d∗

δ0
,
24d∗(1 + φ(r) + r)

φ( 1
2r)r

}

and generate the sequence {xn} iteratively by (2.4) and (2.5). We show that {xn} is well
defined and is in B. To do this we first prove that yn ∈ B whenever xn ∈ B. Suppose, for
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contradiction, that there exists n > 0 such that xn ∈ B and yn /∈ B. Then ‖xn −x∗‖ 6 r

and ‖yn − x∗‖ > r. Hence

‖xn − x∗‖ > ‖yn − x∗‖ − βn‖xn − Sxn‖ − cn‖un − Sxn‖
> r − 2d∗βn (since ‖xn − Sxn‖ 6 d∗, ‖un − Sxn‖ 6 d∗ and cn 6 βn)

> r − 2d∗

µ
> 1

2r,

so that φ(‖xn − x∗‖) > φ( 1
2r). Since T is φ-strongly accretive, inequality (1.2) implies

that for all x, y ∈ D(T ), there exists j(x − y) ∈ J(x − y) such that

〈(I − S)x − (I − S)y, j(x − y)〉 > φ(‖x − y‖)‖x − y‖

> φ(‖x − y‖)
1 + φ(‖x − y‖) + ‖x − y‖‖x − y‖2

= r(x, y)‖x − y‖2, (2.6)

where

r(x, y) =
φ(‖x − y‖)

1 + φ(‖x − y‖) + ‖x − y‖ ∈ [0, 1), ∀x, y ∈ D(T ).

Using (2.6) and inequality (2.1) we obtain

‖yn − x∗‖2 = ‖xn − x∗ − βn(xn − Sxn) + cn(un − Sxn)‖2

6 ‖xn − x∗‖2 − 2βn〈xn − Sxn, j(xn − x∗)〉 + 2cn〈un − Sxn, j(xn − x∗)〉
+ D max{‖xn − x∗‖ + ‖βn(xn − Sxn) + cn(un − Sxn)‖, 1

2C}
× ρE(‖βn(xn − Sxn) + cn(un − Sxn)‖)

6 [1 − 2βnr(xn, x∗)]‖xn − x∗‖2 +
2βnd∗r

(µ + n + 1)
+ D max{d∗, 1

2C}ρE(d∗βn)

6 [1 − βnr(xn, x∗)]‖xn − x∗‖2 +
2d∗rβn

(µ + n + 1)
+ Mβn

ρE(d∗βn)
βn

6 [1 − βnr(xn, x∗)]r2 + 2
d∗rβn

µ
+ Mβn

ρE(d∗βn)
βn

, (2.7)

since βnr(xn − x∗) ∈ [0, 1). Since 1
2r < ‖xn − x∗‖ 6 r, we have

r(xn, x∗) =
φ(‖xn − x∗‖)

(1 + φ(‖xn − x∗‖ + ‖xn − x∗‖)
>

φ( 1
2r)

(1 + φ(r) + r)
,

so that inequality (2.7) implies

r2 < r2 − βn

[
φ( 1

2r)r2

(1 + φ(r) + r)
− 2d∗r

µ
− M

ρE(d∗βn)
βn

]
6 r2,

a contradiction, so that yn ∈ B. We now prove that xn ∈ B, ∀n > 0. The proof is
by induction. By our choice x0 ∈ B. Suppose xn ∈ B. Then yn ∈ B. We prove that

https://doi.org/10.1017/S001309159800114X Published online by Cambridge University Press

https://doi.org/10.1017/S001309159800114X


Equilibrium points for a system involving m-accretive operators 193

xn+1 ∈ B. Assume for contradiction that xn+1 /∈ B. Then ‖xn+1 − x∗‖ > r. Thus we
have the following estimates,

‖xn − x∗‖ > ‖xn+1 − x∗‖ − αn‖xn − Syn‖ − c′
n‖vn − Syn‖

> r − 2d∗αn (since c′
n 6 αn, ‖xn − Syn‖ 6 d∗ and ‖vn − Syn‖ 6 d∗),

and

‖yn − x∗‖ > ‖xn − x∗‖ − βn‖xn − Sxn‖ − cn‖un − Sxn‖
> r − 2d∗αn − 2d∗αn = r − 4d∗αn > 1

2r,

so that φ(‖yn − x∗‖) > φ( 1
2r). Thus,

‖xn+1 − x∗‖2

= ‖xn − x∗ − αn(xn − Syn) + c′
n(vn − Syn)‖2

6 ‖xn − x∗‖2 − 2αn〈xn − Syn, j(xn − x∗)〉 + 2c′
n〈vn − Syn, j(xn − x∗)〉

+ D max{‖xn − x∗‖ + ‖αn(xn − Syn) + c′
n(vn − Syn)‖, 1

2C}
× ρE(‖αn(xn − Syn) + c′

n(vn − Syn)‖
6 ‖xn − x∗‖2 − 2αn〈xn − yn, j(xn − x∗)〉

− 2αn〈yn − Syn, j(xn − x∗)〉 +
2αnd∗r

(µ + n + 1)
+ MρE(d∗αn)

6 ‖xn − x∗‖2 − 2αnβnφ(‖xn − x∗‖)‖xn − x∗‖ + 2cnαn〈un − Sxn, j(xn − x∗)〉

− 2αn〈yn − Syn, j(xn − x∗)〉 +
2αnd∗r

(µ + n + 1)
+ Mαn

ρE(d∗αn)
αn

. (2.8)

Observe that

〈yn − Syn, j(xn − x∗)〉 = 〈yn − Syn, j(xn − x∗) − j(yn − x∗)〉 + 〈yn − Syn, j(yn − x∗)〉
> r(yn, x∗)‖yn − x∗‖2 + 〈yn − Syn, j(xn − x∗) − j(yn − x∗)〉.

(2.9)

‖yn − x∗‖ = ‖xn − x∗ − βn(xn − Sxn) + cn(un − Sxn)‖
> |‖xn − x∗‖ − ‖βn(xn − Sxn) − cn(un − Sxn)‖|,

so that

‖yn − x∗‖2 > ‖xn − x∗‖2 − 2‖xn − x∗‖‖βn(xn − Sxn) − cn(un − Sxn)‖
+ ‖βn(xn − Sxn) − cn(un − Sxn)‖2. (2.10)

Using (2.10) in (2.9) yields

〈yn − Syn, j(xn − x∗)〉
> r(yn, x∗)‖xn − x∗‖2 − 2r(yn, x∗)‖xn − x∗‖‖βn(xn − Sxn) − cn(un − Sxn)‖

+ r(yn, x∗)‖βn(xn − Sxn) − cn(un − Sxn)‖2

+ 〈yn − Syn, j(xn − x∗) − j(yn − x∗), (2.11)
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and using this in (2.8) we obtain

‖xn+1 − x∗‖2

6 [1 − 2αnr(yn, x∗)]‖xn − x∗‖2 + 4αn‖xn − x∗‖‖βn(xn − Sxn) − cn(un − Sxn)‖

+ 2cnαn〈un − Sxn, j(xn − x∗)〉 +
2αnd∗r

(µ + n + 1)
+ Mαn

ρE(d∗αn)
αn

− 2αn〈yn − Syn, j(xn − x∗) − j(yn − x∗)〉
6 [1 − 2αnr(yn, x∗)]‖xn − x∗‖2 + 4αnβnd∗r +

2d∗rαn

(µ + n + 1)
+

2d∗rαn

(µ + n + 1)

+ Mαn
ρE(d∗αn)

αn
+ 2dαn‖j(xn − x∗) − j(yn − x∗)‖

6 [1 − 2αnr(yn, x∗)]‖xn − x∗‖2 +
8αnd∗r
(µ + n)

+ Mαn
ρE(d∗αn)

αn
+ 2dαn‖j(xn − x∗) − j(yn − x∗)‖. (2.12)

Hence

r2 < ‖xn+1 − x∗‖2 6 [1 − αnr(yn, x∗)]r2 +
8d∗rαn

µ
+ Mαn

ρE(d∗αn)
αn

+ 2dαn‖j(xn − x∗) − j(yn − x∗)‖

6 r2 − αn

[
φ( 1

2r)r2

(1 + φ(r) + r)
− 8d∗r

µ
− M

ρE(d∗αn)
αn

− 2d‖j(xn − x∗) − j(yn − x∗)‖
]

6 r2,

a contradiction, so that xn+1 ∈ B. Hence xn ∈ B, ∀n > 0.
We now prove that limn→∞ xn = x∗. From (2.12) we obtain

‖xn+1 − x∗‖2 6 [1 − 2αnr(yn, x∗)]‖xn − x∗‖2 +
8d∗rαn

(µ + n)

+ 2αnd‖j(xn − x∗) − j(yn − x∗)‖ + M
αnρE(d∗αn)

αn

= [1 − 2αnr(yn, x∗)]‖xn − x∗‖2 + αnλn, (2.13)

where

λn =
8d∗r

(µ + n)
+ 2d‖j(xn − x∗) − j(yn − x∗)‖ + M

ρE(d∗αn)
αn

.

Observe that lim inf ‖yn − x∗‖ = lim inf ‖xn − x∗‖. Let lim inf ‖yn − x∗‖ = δ > 0. We
prove that δ = 0. Assume for contraction that δ > 0. Then there exists a positive integer
N0 such that ‖yn − x∗‖ > 1

2δ and ‖xn − x∗‖ > 1
2δ, ∀n > N0. Since limλn = 0, we can

choose a positive integer N1 such that

λn 6
δ2φ( 1

2δ)
4(1 + φ(r) + r)

, ∀n > N1.
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Hence, for all n > N = max{N0, N1} we have

‖xn+1 − x∗‖2 6 ‖xn − x∗‖2 − αnδ2φ( 1
2δ)

4(1 + φ(r) + r)
− αn

[
δ2φ( 1

2δ)
4(1 + φ(r) + r)

− λn

]
,

so that
δ2φ( 1

2δ)
4(1 + φ(r) + r)

αn 6 ‖xn − x∗‖2 − ‖xn+1 − x∗‖2, ∀n > N.

Thus
δ2φ( 1

2δ)
4(1 + φ(r) + r)

n∑
j=N

αj 6 ‖xN − x∗‖,

so that
∑∞

n=0 αn < ∞ contradicting
∑∞

n=0 αn = ∞.
Hence lim inf ‖yn − x∗‖ = lim inf ‖xn − x∗‖ = 0, so that there exists a subsequence

{‖xnj
− x∗‖}∞

n=0 of the sequence {‖xn − x∗‖} such that limj→∞ ‖xnj
− x∗‖ = 0. It fol-

lows that given any ε > 0 there exists a positive integer j0 such that

‖xnj
− x∗‖ < ε, ∀j > j0 (∀nj > nj0).

Since lim λn = limαn = limβn = 0, there exists a positive integer N2 such that

λn 6
2ε2φ( 1

2ε)
(1 + φ(r) + r)

, αn 6 ε

8d∗ , βn 6 ε

8d∗ ∀n > N2.

Since limj→∞ nj = ∞, we can choose j∗ such that nj∗ > max{nj0 , N2} so that ‖xnj∗ −
x∗‖ < ε, and

λn 6
2ε2φ( 1

2ε)
(1 + φ(r) + r)

, αn 6 ε

8d∗ , βn 6 ε

8d∗ ∀n > nj∗ .

We prove that
‖xnj∗+p − x∗‖ < ε, for all integers p > 1.

The proof is by induction. For p = 1, we prove that ‖xnj∗+1 − x∗‖ < ε. Suppose for
contradiction that ‖xnj∗+1 − x∗‖ > ε. Then

‖xnj∗ −x∗‖ > ‖xnj∗+1−x∗‖−αnj∗ ‖xnj∗ −Synj∗ ‖−c′
nj∗

‖vnj∗ −Synj∗ ‖ > ε−2αnj∗ d∗ > 3
4ε,

and

‖ynj∗ −x∗‖ > ‖xnj∗ −x∗‖−βnj∗ ‖xnj∗ −Sxnj∗ ‖−cnj∗ ‖unj∗ −Sxnj∗ ‖ > 3
4ε−2d∗βnj∗ > 1

2ε.

Hence

r(ynj∗ , x∗) >
φ( 1

2ε)
(1 + φ(r) + r)

,

so that it follows from (2.13) that

ε2 6 ‖xnj∗+1 − x∗‖2 < ε2 − 2αnj∗ r(ynj∗ , x∗)ε2 + αnj∗ λnj∗ 6 ε2,
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a contradiction, so that ‖xnj∗+1 − x∗‖ < ε. Assume now that ‖xnj∗+p0 − x∗‖ < ε for
some p0 > 1. We prove that ‖xnj∗ + (p0 + 1) − x∗‖ < ε. Assume for contradiction that
‖xnj∗+(p0+1) − x∗‖ > ε. Then

‖xnj∗+p0 − x∗‖ > ‖xnj∗+(p0+1) − x∗‖ − αnj∗+p0‖xnj∗+p0 − Synj∗+p0‖
− c′

nj∗+p0
‖vnj∗+p0 − Synj∗+p0‖ > 3

4ε,

and

‖ynj∗+p0 − x∗‖ > ‖xnj∗+p0 − x∗‖ − βnj∗+p0‖xnj∗+p0 − Sxnj∗+p0‖
− cnj∗+p0‖unj∗+p0 − Sxnj∗+p0‖

> 3
4ε − 2βnj∗+p0d

∗ > 1
2ε.

From (2.13) we obtain

ε2 6 ‖xnj∗+(p0+1) − x∗‖2 < ε2 − 2ε2αnj∗+p0r(ynj∗+p0 , x
∗) + αnj∗+p0λnj∗+p0 6 ε2,

a contraction, so that ‖xnj∗+(p0+1) − x∗‖ < ε. Hence ‖xnj∗+p − x∗‖ < ε, for all integers
p > 1, and this implies lim ‖xn − x∗‖ = 0, completing the proof of Theorem 2.1. �

2.2. Convergence theorems for m-accretive operator equations

Corollary 2.2. Let E be a real uniformly smooth Banach space and let T : D(T ) ⊆
E → E be an m-accretive operator with open domain D(T ). Let x∗ denote the solution
of the equation x + Tx = f , f ∈ E. Define S : D(T ) → E by Sx = f − Tx. Let {an},
{bn}, {cn}, {a′

n}, {b′
n}, {c′

n}, {un} and {vn} be as in Theorem 2.1. Then there exist a real
number µ > 1 and a neighbourhood B ⊆ D(T ) of x∗ such that starting with arbitrary
x0, u0, v0 ∈ B, the sequence {xn}∞

n=0 defined iteratively by

yn = anxn + bnSxn + cnun, n > 0,

xn+1 = a′
nxn + b′

nSyn + c′
nvn, n > 0,

remains in B and converges strongly to x∗.

Proof. As in the proof of Theorem 2.1, set βn = bn + cn, and αn = b′
n + c′

n, then

yn = (1 − βn)xn + βnSxn + cn(un − Sxn), n > 0,

xn+1 = (1 − αn)xn + αnSyn + c′
n(vn − Syn), n > 0.

Observe that x∗ is a fixed point of S, and, since T is accretive, (I − S) is also accretive.
The corollary follows from Theorem 2.1. �

2.3. Convergence theorems for Φ-strong pseudocontractions

Corollary 2.3. Let E be a real uniformly smooth Banach space and let T : D(T ) ⊆
E → E be a φ-strong pseudocontraction with open domain D(T ) ⊆ E. Suppose T has
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a fixed point x∗ ∈ D(T ). Let {an}, {bn}, {cn}, {a′
n}, {b′

n}, {c′
n}, {un} and {vn} be as

in Theorem 2.1. Then there exist a real number µ > 1 and a neighbourhood B ⊆ D(T )
of x∗ such that starting with arbitrary x0, u0, v0 ∈ B, the sequence {xn}∞

n=0, defined
iteratively by

yn = anxn + bnTxn + cnun, n > 0,

xn+1 = a′
nxn + b′

nTyn + c′
nvn, n > 0,

remains in B and converges strongly to x∗.

Proof. As in the proof of Theorem 2.1, set βn = bn + cn, and αn = b′
n + c′

n, then

yn = (1 − βn)xn + βnTxn + cn(un − Txn), n > 0,

xn+1 = (1 − αn)xn + αnTyn + c′
n(vn − Tyn), n > 0.

Since T is φ-strongly pseudocontractive, (I − T ) is accretive. The corollary follows from
Theorem 2.1. �

2.4. Convergence theorems for quasi-accretive operators

An operator T : D(T ) ⊆ E is called quasi-accretive if N(T ) := {x ∈ D(T ) : Tx = 0} 6=
∅ and for all x ∈ D(T ) and x∗ ∈ N(T ), there exists j(x − x∗) ∈ J(x − x∗) such that

〈Tx − Tx∗, j(x − x∗)〉 > 0,

and is called strongly quasi-accretive if there exists k > 0 such that

〈Tx − Tx∗, j(x − x∗)〉 > k‖x − x∗‖2.

T is called φ-strongly quasi-accretive if N(T ) 6= ∅ and for all x ∈ D(T ) and x∗ ∈ N(T )
there exist j(x − x∗) ∈ J(x − x∗) and a strictly increasing function φ : [0,∞) → [0,∞)
with φ(0) = 0 such that

〈Tx − Tx∗, j(x − x∗)〉 > φ(‖x − x∗‖)‖x − x∗‖.

It is easy to see that our proof of Theorem 2.1 carries over to the class of φ-strongly
quasi-accretive operators, while the proof of Corollary 2.2 carries over to quasi-accretive
operators, if the operators are locally bounded at each interior point of their effective
domains.

2.5. Convergence theorems for Φ-hemicontractions

An operator T : D(T ) ⊆ E → E is called a φ-hemicontraction (see, for example, [29])
if F (T ) := {x ∈ D(T ) : x ∈ Tx} 6= ∅ and for all x ∈ D(T ), x∗ ∈ F (T ), there exist
j(x−x∗) ∈ J(x−x∗) and a strictly increasing function φ : [0,∞) → [0,∞) with φ(0) = 0
such that

〈Tx − x∗, j(x − x∗)〉 6 ‖x − x∗‖2 − φ(‖x − x∗‖)‖x − x∗‖.

An example in [14] shows that the class of φ-strong pseudocontractions with non-empty
fixed-point sets is a proper subclass of the class of φ-hemicontractions.

It is easy to see that Corollary 2.3 carries over to φ-hemicontractions T for which
(I − T ) is locally bounded at each interior point of its effective domain.
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