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SUMMARY
The method of heritability estimation proposed by Abplanalp ('linear

heritability' estimation) is reviewed and the formulation simplified. It is
equivalent to the regression of performance of sibs of an individual, itself
excluded, on that of the individual. The method is found to be slightly
biased in small samples but, in terms of sampling variance, can make
efficient use of the data.

1. INTKODUCTION
Heritability estimates are used for predicting the regression of offspring on parent

or response to selection, and are often estimated in that way if records are available
on two generations. No assumption needs to be made of linearity of the offspring on
parent regression, for a non-linear model can be fitted or the regression computed on
only a selected set of parents. For example, it may be possible to check whether the
regression in the direction of desired improvement of the trait is the same as in the
opposite direction. Theoretical aspects of non-linearity of breeding value on pheno-
type or of offspring-parent regression have been discussed recently by Nishida & Abe
(1974) andRobertson (1977), who give other references. Some experimental evidence
of non-linearity of offspring on parent regression has been given by Nishida
(1972) and Meyer & Enfield (1975) for Tribolium, Robertson (1977) for Drosophila
melanogaster, and Clayton (1975) and Shalev (1977) for egg production in poultry.

If records are available solely on a single generation, or in populations undergoing
directional selection where only a narrow range of parental phenotypes (the inde-
pendent variates) are used, heritabilities are usually estimated from the intra-class
correlation among sibs obtained from an analysis of variance. No tests of
linearity are then performed because sums of squares of all observations are
computed. Abplanalp (1961) suggested a method, 'linear heritability estimation',
to partially overcome this deficiency. Abplanalp's method parallels a selection
experiment, except that 'paper' selection among individuals is practised on their
own performance and their breeding value estimated from the mean of their sibs.
I t has received little attention, however, apart from studies by Yamada (1972),
Arthur & Abplanalp (1975) and Shalev (1977). The estimator originally proposed by
Abplanalp (1961) is biased and a correction to remove bias was given by Arthur &
Abplanalp (1975). Their presentation is rather obscure, however, so in this note the
methodology of linear heritability estimation is clarified and some of its statistical
properties and relationships to other estimators are described.
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2. METHODS

Abplanalp (1961) discusses the hierarchical classification, but for simplicity of
illustration most emphasis will be given to the one-way classification, for example
pair matings giving full-sib families or where there is one progeny per dam giving
half-sib families.

Let Xti be the observation on individual j in family i, there being n€ members of
family i, with s families and N = T>ini individuals in all. The usual means are

•£<. = S, *«,/»< and X.. = XtZiXij/N. (1)

It is useful as a basis to consider the random effects model

Xi^/i + di + ey, (2)

where at and eti are independently normally distributed with E(ai) = E(eij) = 0,
vax(ai) = ta2 and var(e^) = (1 — t)<r2, so that Xti is normally distributed with
E(Xit) = (i, var {Xit) = a2 and intra-class correlation t. In this case the regression of
at on Xi;j> for example, is linear and equals t, so the intra-class correlation contains all
the useful information about the heritability. The intra-class correlation can be
estimated by the analysis of variance, maximum likelihood or other procedure
assuming the model (2).

Abplanalp (1961) considers the regression of family effects estimated from model
(2), Xt — X , on individual deviations, Xy — X . This regression, even in the normal
case, depends on the within family variance in addition to the intra-class correlation,
since Xy is included in Xt . In the appendix to their paper Arthur & Abplanalp
(1975) show how to eliminate this bias for the case when all families are of equal size
by making corrections to the deviations Xt —X using terms in X^ — Xt . It can be
shown, however, that their manipulations simply produce family means from which
the individual's own observation is excluded and overall means from which the
whole relevant family is excluded. There is then no difficulty in generalizing to
families of unequal size. Abplanalp's methodology will therefore be presented in a
rather different but somewhat simpler form.

Special definitions are needed. Let the mean of the sibs of individual j in family i,
itself excluded, be

X'i.W = 2 Xik/(nt- 1) = K ^ . - Z ^ / K - 1)

«*and let X[M = £ 2 Xhk/(N-ni) (3b)

be the mean of individuals unrelated to members of family i. If family sizes are
equal (n€ = n for all i), (36) reduces to

-X«.)/(«-l). (3c)

Consider first model (2). Then for randomly chosen individuals

! X t . , . ) = *o-2 (4)
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and the regression of the mean of sibs on individual performance equals t. This
relationship (4) provides the motivation for Abplanalp's linear estimator. He pro-
poses that paper selection be practised among individuals on the basis of their own
performance (Xi:j), thereby constructing a selection differential, and the mean of the
sibs (X't [j]) of these individuals computed to give a response. Let qti = 1 if the
individual is 'selected' and qi:j = 0, otherwise, with Q = SfS^g^ being the total
number selected; for example Q might comprise the top 10 % of individuals
ranked on their own performance, Xy. (Here and elsewhere summation is over all
individuals: i = 1,..., s; j = 1,..., nt). Then, since for normality,

E\Zi1ljqii{X'iAj]-li)\ = tE^^q^Xti-M)-] (5)

an estimator of t is given by the ratio of the two quantities within the expectations in
(5) although, since it is a ratio, it is not unbiased. Of course (5) cannot be used in
practice since fi is an unknown parameter. Abplanalp (19 61), as modified by Arthur
& Abplanalp (1975), in effect propose that the selection differential be

(6)

i.e. the deviation of observations from unrelated individuals, and the response be

JB = SiSyg«(J;.w-Z:.w)/g, (7)

i.e. the deviation of sibs from unrelated individuals. The linear estimator of intra-
class correlation proposed by Abplanalp is then

= R / S = XtZjqtjjXtMX.M)

and it is multiplied by 2 or 4 according to whether family members are full- or half-
sibs. Note that the estimator is not strictly linear, since it is a ratio, but the numer-
ator and denominator are both linear in the observations, in contrast to the usual
estimator of intra-class correlation from the analysis of variance which is a ratio of
sums of squares of observations. Also, because of their connexion through the mean
of unrelated individuals, even for the normal model

cov(X;.[,.1-X:.[il,Xi3.-X'..w) * ta* (9)

and the regression of X\_[3) — X[ ti] on X^ — X'^^] does not equal t. This undesirable
property cannot be corrected by replacing the unrelated mean X[mli-\ by the overall
mean X in (8) or (9). Thus it is probably best to accept that Abplanalp's estimator
is difficult to justify in any rigorous manner, but to examine its behaviour as it
stands.

An alternative procedure is to plot E and S from (6) and (7), respectively, for the
whole population split up into groups of similar size. Such a plot, given subsequently
in section 4, may be useful in illustrating both non-normality and non-linearity.

Relation to the analysis of variance. It is shown in the appendix that the usual
estimator of intra-class correlation from the analysis of variance, ty, obtained by
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estimating the between and within group components of variance, can be expressed
as

when subclass numbers are equal. In (10) the deviations of individual or sibs' mean
from the unrelated mean are weighted by the individual observation, rather than by
1 or 0 as in Abplanalp's linear estimator (8).

It is possible to construct another estimator in which summation in (10) is taken
only over some of the individuals, i.e. by inserting q^ (= 1 or 0) in the numerator and
denominator. The properties of this quadratic estimator are little different from
those of Abplanalp's and it will not be discussed further.

Hierarchical design. The extension of the linear estimator to this design is im-
mediately obvious. Let Xijk be the observation on the kth individual from the jth
dam mated to the ith sire. The deviations needed for a complete analysis are as
follows, the definitions following naturally from (3):

A. Deviation of observation from unrelated, Xijk — X' ^,
B. Deviation of half-sibs from unrelated, X\ ^ — X' [$,
C. Deviation of full-sibs from unrelated, X'y.ik\ — X\ [ih

D. Deviation of full-sibs from half-sibs, X'y m — X't^ ^.

When practising paper selection qm = 1 or 0, and the estimator of heritability from
half-sibs is obtained as

and the full-sib and full-sib as a deviation from half-sib (dam component) estimators
are obtained using C and D, respectively, rather than B in the numerator.

Two or more traits. Estimation of a 'linear' genetic correlation between two traits,
or genetic regression of one trait on another, is straightforward. Assume measure-
ments are available on all individuals on two traits, say Xti and Tijt in a one way
classification. A possible method is to rank individuals on X, select the best Q,
setting qXa> say, to unity on these individuals, and estimate the sibs' mean for trait
Y; and then rank on Y and select the best Q, setting qYii to unity. The quantity

is an estimate of the genetic regression of Y on X, and the product

is Abplanalp's 'linear' estimate of the genetic correlation.
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3. PROPERTIES

As a standard for comparison of Abplanalp's linear estimator with other esti-
mators of intra-class correlation it is useful to take as a basis the normal model (2).
The bias and sampling variance will both be examined.

Bias. In model (2), for a randomly chosen individual with value Xti,

E(Xiw \Xi}) = fi + t(Xtj -/i), (11)

but if the population is of finite size and only extreme individuals are chosen such as
in Abplanalp's method, (11) no longer holds exactly. For example, the highest
ranking individual in the population must be best in its own family, so XJ.M < Xi}-

1-2

1-0

0-8

£0-6

0-4

0-2

x s = 8, n = 4

• s = 16, n = 4

o s = 4, n = 8

ns = 32 -j

Fig. 1. E(X'iM)_a,gainst E(Xir)) for individuals ranking r = 1, 2, 3, 4, 6, 8, 12 and 16.
For t = 0, E(X'iW) = —E(XM)/(na- 1) and is shown by dotted lines. The solid lines
have slope tE(XM). fi = 0, a* = 1.

and E(X'i ^ |X^) < /i + ̂ X^—pi,) for the sibs of this individual. For ranked indi-
viduals, E^X'tij)) can be computed by a simple modification of eqn. (18) of Hill
(1977); the details are unnecessary here. Some additional notation is useful: if Xti is
the observation on the rth ranking individual, let XKr) = Xip X'iM = X\ ^ be the
mean of its sibs, and X'M = X ' . M be the mean of unrelated individuals.

In Fig. 1 examples are plotted of E(X'iM) against E(XM) for the best individual
(rank 1) down to rank ns/2. The same results apply with only a sign change for
r = ns/2 + 1 to r = ns. The bias shown in Fig. 1, i.e. E{X'iW) — tE{XM), is always
negative for individuals ranking in the top half of the population, becoming greatest
with the most extreme individuals which are necessarily best in their own family.
The bias is largest when there are few families and the intra-class correlation is high.

19 GBH 32
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In Abplanalp's linear estimator (8), observations and sib means are expressed as
deviations from unrelated individuals, so E(X'lir) — X\(r>) is plotted against

in Fig. 2. This completely removes bias when t = 0, very much reduces the negative
bias for extreme ranking individuals, but leaves a positive bias for those not at the
extreme. Deviations from the regression line decrease with increase in number of

1-2

10

Fig. 2. As Fig. 1, but with correction for unrelated individuals, i.e. E(X'j(r) —
against E(Xir)-X'M). For t = 0, E(X(r)-X~'M) = 0.

families, roughly as 1/s. It seems, therefore, that in a population of size sufficient to
do useful analysis of linearity of regression of sibs on individual performance, bias
induced by the ranking procedure will be trivial.

Sampling error. Monte Carlo simulation was used to investigate sampling vari-
ances of the linear estimators. Pseudo-random normal deviates were sampled as in
(2), ranked and the means of the observations and their ' sibs' computed for several
groupings; for example with s = 32 and n = 4, giving 128 observations, 4 groups
each of size 32, consisting of individuals ranking 1-32, 33-64, . . . , were taken. Esti-
mates, such as tL from (8) were computed using each group (i.e. in the first group,
qi} = 1 if the individual ranked between 1 and 32). By replication, the expectation
and standard error (i.e. standard deviation between replicates) of the various
estimators were computed.

Examples of simulation results are given in Table 1. Because of symmetry, the
mean and standard error of iL computed from, for example, the highest and lowest
ranking groups have the same expectation. Thus to reduce sampling errors due to
the finite number of replicates of Monte Carlo simulation, the means and standard
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errors shown are the averages of those computed separately for the top and bottom
groups. It is clear from Table 1 that an extreme group comprising only part of the
total population gives linear estimators which are not much less efficient than the
analysis of variance estimator. The intermediate ranking individuals give much
poorer estimators. The results also show that designs optimal for estimating herita-
bility by standard intra-class correlation methods are also optimal for estimating
linear heritabilities.

Table 1. Monte Carlo simulation of R replicates of normal model with s families each
of n individuals and intra-class correlation t.

(Mean and s.E. (= standard deviation among replicates) of analysis of variance
(iv) and linear (iL) estimators of t. The linear estimator is given for a range of sizes
(Q) of ranked groups, where group 1 comprises individuals 1 to Q, group 2 comprises
individuals Q + 1 to 2Q, etc.)

Rank of group and mean and s.E. of iL%

tv%

t%

0
10
25

50

Mean

-0-3
101
2 4 1

49-2

S.E.

7-3
9-2
9-2

9-0

Q Mean s.E. Mean s.E. Mean s.E. Mean s.E.

Parameters: s = 32, n = 4, R = 400

32 -0-3 8-5 -1-3 29-3 — — — —
32 9-9 10-8 8-8 32-5 — — — —
64 23-6 10-4 _ _ _ _ _ _
32 24-3 11.1 20.7 350 — — — —
16 24-4 12-5 23-9 19-5 19-9 33-7 58-2 802
32 49-4 11-1 480 36-2 — — — —

Parameters: 8 = 64, n = 2, B = 400

10 10-4 12-4 32 10-5 14-8 10-6 51-9 — — — —
25 25-8 11-4 32 26-2 14-5 29-9 50-2 — _ — —

Parameters: a = 16, n = 8, B = 400

10 9-8 7-7 32 10-2 8-8 6-7 24-8 — — — —
25 25-0 9-8 32 25-4 11-3 25-8 30-4 — — — —

Parameters: s = 128, n = 4, B = 100

25 24-7 4-6 256 24-7 4-9 — — — — — —
— — 128 24-8 5-6 24-6 16-9 — — — —
— — 64 24-7 6 1 24-9 10-1 23-1 16-6 28-4 48-7

Parameters: a = 128, n = 16, B = 100

5 4-9 1-3 1024 4-9 1-3 — — — — — —
— — 512 4-9 1-4 4-9 4 1 — — — —
— — 256 4-8 1-6 5-1 2-2 4-8 4-0 5-5 12-7

4. EXAMPLE

Data on egg production of 1685 chickens pedigreed to sire and dam over 2 years
were kindly made available by Dr B. Shalev. Individual observations were expres-
sed as deviations from year hatch mean, and the quantities described in section 2 on
hierarchical designs computed for each bird. The birds were ranked on individual

19-2
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observation and split into 8 groups each of size 210, with the residual 5 mid-ranking
birds excluded. Plots of group means are shown in Fig. 3, and the linear estimators
obtained by taking the bottom and top groups only are as follows:

Top Bottom

Individuals: S2SgWi

Half-sibs: SSSg^j.
Full-sibs: SSSgW4i

Full within half sibs: 2,2,Xqm

(X<,k-X'_

(•?y.'ia-?;
(X'il.M-X'i

ta)/Q

"..w)/Q
\.m)IQ

Mean

19-35
1-62
312
1-50

hi

0-34
0-32
0-31

Mean

-35-20
-1-32
-3-54
-2-22

h

0-
0-
0-

?L

15
20
25

Fig. 3. Plot of sibs against individual egg production in Shalev's data. Individual
observations were ranked into eight groups.

The distribution of egg production is skewed downwards, and there is some evidence
of non-linearity, the heritability being higher in the up direction, surprisingly
perhaps as this is the direction of previous selection. For comparison, from the
analysis of variance the estimates of heritability were: 0-16 from half-sibs, 0-22 from
full-sibs and 0-28 from full-sibs within half-sibs. One hypothesis which might explain
these results is that the genetic distribution is nearly symmetric, while the environ-
mental distribution is skewed downwards, a model discussed by Nishida & Abe
(1974). More data would be needed to confirm this, however.

5. COMMENTS

This note has drawn attention to Abplanalp's idea of using the regression of sib on
individual performance, whether displayed as a graph (e.g. Fig. 3) or expressed as a
ratio of response to paper selection differential, to check on linearity using data on a
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single generation. Some further problems remain. The first is methods of testing for
non-linearity of sib on individual regression in data such as shown in Fig. 3. The
difficulty is that individuals appear both in the abscissa and in the ordinate as many
times as they have sibs or sibs falling in different ranked classes, so the error struc-
ture is clearly involved. The second area is more genetical: how, to what extent, and
under what genetic models, does the sib on individual regression depart from
linearity? Work on this problem is being undertaken in Edinburgh by A. Maki-
Tanila (personal communication) and will be presented elsewhere.

I am grateful to Marjorie McEwan and Jenny Smith for computational assistance and to
Dr Baruch Shalev for use of his data.
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APPENDIX

An alternative formulation of the analysis of variance {AN OVA). From (4),

and V{XV) = E [(*<, - X[M) Xrf = a*.
These formulae suggest estimators of between group (family) variance and of total
(phenotypic) variance as

(£*) = ^(Ziv-T^Xv/N, (A 1)

P» = Sf S,(X,, - X[M) Xi}/N (A 2)

and of the intra-class correlation as the ratio of terms in (A 1) and (A 2), given by
(10). This estimator (10) turns out to be the same as the usual ANOVA estimator
in a balanced design.
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Let B = riL^X^-Xy/is-y) and W = 'Li^j(Xii-Xi)
2/[s{n-l)'\ be the usual

between and within group mean squares in ANOVA. Expanding (A 1) using (3),
gives

Xi. — Xjj sX^ — X^ -jr

n _ 1 jzri—JAa

^ z , , ) ^ ^ ^ - ^ . ^ = g(jB_ W) (A3)

Similarly, from (A 2),

(» - 1) W\. (A 4)

The ratio of expressions in (A 3) and (A 4), (B— W)/[B + (n— 1) W] is the usual
estimator of intra-class correlation.

The methodology can be extended to hierarchical or cross classified designs. For
example, in the balanced hierarchical design, the analysis of variance estimator of
the intra-class correlation among sires can be written

— X[ m)Xm.
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