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POSITIVE FORMS ON NUCLEAR *-ALGEBRAS AND 
THEIR INTEGRAL REPRESENTATIONS 

ALAIN BÉLANGER* AND ERIK G. F. THOMAS 

ABSTRACT. The main result of this paper establishes the existence and 
uniqueness of integral representations of KMS functionals on nuclear *-
algebras. Our first result is about representations of *-algebras by means 
of operators having a common dense domain in a Hilbert space. We show, 
under certain regularity conditions, that (Powers) self-adjoint representa­
tions of a nuclear *-algebra, which admit a direct integral decomposition, 
disintegrate into representations which are almost all self-adjoint. We then 
define and study the class of self-derivative algebras. All algebras with an 
identity are in this class and many other examples are given. We show 
that if 11 is a self-derivative algebra with an equicontinuous approximate 
identity, the cone of all positive forms on 11 is isomorphic to the cone of 
all positive invariant kernels on H x 11. These in turn correspond bijec-
tively to the invariant Hilbert subspaces of the dual space 11'. This shows 
that if 11 is a nuclear L*J -space, the positive cone of 11' has bounded 
order intervals, which implies that each positive form on % has an integral 
representation in terms of the extreme generators of the cone. Given a con­
tinuous exponentially bounded one-parameter group of *-automorphisms 
of 11, we can define the subcone of all invariant positive forms satisfying 
the KMS condition. Central functionals can be viewed as KMS functionals 
with respect to a trivial group action. Assuming that 11 is a self-derivative 
algebra with an equicontinuous approximate identity, we show that the 
face generated by a self-adjoint KMS functional is a lattice. If 11 is more­
over a nuclear LJ *-algebra the previous results together imply that each 
self-adjoint KMS functional has a unique integral representation by means 
of extreme KMS functionals almost all of which are self-adjoint. 

1. Introduction. Positive forms on *-algebras and their integral representa­
tions by extreme generators are of considerable importance in Statistical Me­
chanics, Field Theory and Harmonic Analysis. For particular classes of func­
tionals defined in terms of one-parameter groups of automorphisms one has 
obtained not only the existence but also the uniqueness of the representing mea­
sures. For instance, in Statistical Mechanics, the KMS states on appropriate 
C*-algebras play an important role in the study of equilibrium as was shown by 
Haag, Hugenholtz and Winnink [14]. Their unique decomposition into extreme 
elements has been obtained by Ruelle [24]. For further references see [7: p. 
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233-234]. Lanford and Ruelle [17] have obtained a similar result for asymptot­
ically abelian functionals. On the other hand, the existence and uniqueness of 
Plancherel measures, equivalently the unique decomposition of L2 spaces into 
irreducible components, is obviously of the very nature of Harmonic Analysis. 
The Bochner-Schwartz theorem and its various non-commutative analogues are 
examples of such results. In the case of Field Theory, theorems on the existence 
of integral representations have been obtained by Borchers and Yngvason [4], 
and Hegerfeld [15]. In this article we shall be interested in KMS functionals 
on a general class of topological *-algebras. KMS functionals on *-algebras of 
unbounded operators have been previously considered by Araki [1] and more 
recently by Fulling and Ruijsenaars [11]. 

The two examples of topological *-algebras which motivated us were the con­
volution algebra of Schwartz test functions on a Lie group and the Field algebra. 
They are both nuclear Lf -spaces but the convolution algebra has no unit while 
the Field Algebra does have one. We have not therefore systematically assumed 
the existence of a unit in the algebra. This lack however can be compensated 
by the presence of an approximate unit and the property of the algebra to be 
self-derivative (4.3). 

In the case of topological *-algebras the GNS representation is in general 
realized by unbounded operators. Among the positive functionals on a *-algebra 
those for which the GNS representation is essentially self-adjoint in the sense 
of Powers [22] are particularly interesting. For convenience we have called such 
functionals self-adjoint. 

To handle fields of unbounded operators we have found convenient to make 
a systematic use of Schwartz' theory of reproducing kernels [25]. We recall the 
relevant facts in 2. 3. 

Our main result is the theorem about the existence and uniqueness of integral 
representations of self-adjoint KMS functionals on self-derivative nuclear L*J *-
algebras having an equicontinuous approximate identity. As a particular case we 
obtain an integral representation for self-adjoint abelian (i.e. central) functionals 
on such *-algebras. 

2. Preliminaries 

2.1. Nuclear and Uf -spaces. We refer the reader to [12], [13] and [21] 
for the terminology and well-known properties of nuclear spaces and tensor 
products. Precise references will be given for deeper (or lesser known) results 
as they are used in the text. Let us warn the reader that our definition of an L*J -
space is different from Grothendieck's definition. We say that a locally convex 
space E (always assumed Hausdorff), is an LJ -space if it is the strict inductive 
limit of a sequence {En}, of Fréchet spaces. We denote this by E = lim/v As 

n 

noted in the introduction, the space of Schwartz test functions £>(G), on a Lie 
group G, assumed countable at infinity, is an LJ -space. 
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412 A. BELANGER AND E. G. F. THOMAS 

There are three propositions which are part of the "folklore" that we would 
nonetheless like to state with a sketch of their proof because they are often used 
in the text. 

PROPOSITION 2.1.1. Let E, F and G be locally convex spaces such that E is 
a Fréchet space and F is metrizable. Then any separately continuous bilinear 
map B : E x F —> G is continuous. In particular this is the case if both E and 
F are Féchet spaces. 

Proof. Let (yw)weN be a sequence converging to y in F. Then by the uniform 
boundedness principle B(x,yn) tends to B(x,y) uniformly for x belonging to a 
compact subset of E. In particular, if (xn)nes converges to x in £ , #(*£,)>„) 
converges to B(xk,y) uniformly with respect to k. This implies that B(xn,yn) 
converges to B{x,y). Thus, E x F being metrizable, B is continuous. • 

PROPOSITION 2.1.2. Let E or F be a nuclear space. Suppose also E = WmEn 

n 

and F = WmFn with En, F„ Fréchet spaces. Then E&F = MmEn<g)Fn. In partic-
n n 

ular if E and F are nuclear the space E®F is nuclear. 

We will prove this proposition using the following well-known property of 
the e-tensor product topology: 

LEMMA 2.1.3. Let E\ be a linear topological subspace of the space F\, 
equipped with the induced topology. Similarly E2 C F2. Let j and f be the 
inclusion maps of E\ in Ej and of F\ in F\ respectively; they are injective lin­
ear topological homomorphisms. Then j <8>f: E\®eF\ —> E2<È)eI

72 is a one to 
one linear topological homomorphism, i.e. the first space may be regarded as 
a linear topological subspace of the second. 

Proof of 2.1.2. By [13: Produits tensoriels topologiques, Prop. 14, p. 761, 
E<g)F = lim£V,(g)F,7. By the lemma En](&eFfU is a closed subspace of Em&(Fm 

n 

and hence it suffices to show that En®Fn = En(&Fn — En®fFn. The first equality 
is a consequence of the fact that En and Fn are Fréchet spaces (cf. 2.I.I.). By 
assumption, E or F is nuclear. Let us assume it is E, then En being a (closed) 
subspace of E is also nuclear. Thus En^Fn — E„®eFn and the proposition is 
proved. • 

PROPOSITION 2.1.4. If E is a nuclear and Lf -space then E is separable. 

Proof. Let E be the strict inductive limit of a sequence En of Fréchet spaces. 
If E is nuclear then so are the subspaces En. If each En is separable so is E. 
Thus the proposition will follow if we prove that a nuclear and Fréchet space 
E is separable. Let {pi}neN be a fundamental family of seminorms on E. All 
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the quotient maps 7r,: E —* £, : = (E/p]~\{0})Y are nuclear and therefore 
compact. Thus there exists a neighbourhood V in E such that 7T/(V) is compact 
in £,. Then 717(E) = Un^otmj(V) is separable and so is its completion E\. But 
E is isomorphic to a subspace of the countable product of the El which is also 
metrizable and separable. Therefore E itself is separable. D 

2.2 Lf *-algebras. Let 21 be an algebra over C, equipped with an anti-linear 
involution a \^ a* such that (ab)* = b*a*:. We assume that 21 is a topological 
*-algebra i.e. an algebra equipped with a locally convex Hausdorff topology 
such that the product (#, /?) t—* tf/? is separately continuous, and the involution 
continuous. 21 will always be assumed to be barrelled. The cases of most interest 
to us will be when 11 is in fact an L*J -space i.e. a strict inductive limit of a 
sequence of Fréchet spaces: 11 — Hm2I/7. The defining spaces 11 „ are then closed 

n 

subspaces in 11, not in general subalgebras. However; 

PROPOSITION 2.2.1. For every n and k in N, there exists m G N such that 
Unlit C Hm. 

LEMMA 2.2.2. Eet F be a Fréchet space, and u : F —> E = lim£/7 a continuous 
n 

linear map to any Lf -space. Then there exists an index n such that u(F) C E„. 

Proof. The spaces En being closed in £, F is the countable union of closed 
subspaces F — Unu~[(En). By Baire's theorem one of them has an interior point, 
hence equals the whole space F. • 

Proof of 2.2.L The product restricted to 11,, x llk is separately continuous, 
hence continuous (2I/? and llk being Fréchet spaces). Thus there exists a con­
tinuous linear map u : lln®llk —• 21 such that u(x 0 v) = A. v. Applying the 
lemma to this map gives the result. • 

Examples (1) 11 = <D(G\ G a Lie group: <DK(G)*(DH(G) C 0fc//(G). 
(2) Let E be a locally convex space. Recall that the tensor algebra over £, is 

the locally convex direct sum: 

T(E) = C 0£ 0 (£(§£) 0 (£®£(g£)... 

The sum and the product by a complex scalar is defined componentwise. The 
product of two elements xf (guf®.. .®A| G E®k and _y{ 0 ^ ( 0 . . .®V/ G E®1 is the 
element jcf®*!®- • ^xk

k^y[^yl
2^.. .(giv/ of E®k'xE®1 obtained by concatenation. 

This product being bilinear and separately continuous extends to the completions 
and finally if x = {xo,x\,... ,*w,...} and y — {vo, Vi,..., v„,...} G T(E) we 
define their product by xy — {AOJO^OVI + ^i^o,. . . , X^+/=/, -V*V/, • • •}• Clearly, 
if 21 is the tensor algebra over a Fréchet space and 11 „ denote the sum of the 
tensors of order ^ n. Then Hnllk C 21,,+*. If £ is Fréchet then 21 = lim2I/? is 

https://doi.org/10.4153/CJM-1990-023-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-023-3


414 A. BELANGER AND E. G. F. THOMAS 

therefore an LJ -algebra. When E has a continuous involution, denoted * as 
usual, we define an involution on EQ;]k by 

(x\ 0 . 4 ® ••• <8> 4 )* = (xj )* <g) ( 4 _ , )* <8>... <8> (A-f )* 

we extend to the completion by continuity and bilinearity, and we finally define 
it on T(E) componentwise. T(E) then becomes an LJ *-algebra. For example, 
if E — J>(R4), the space of rapidly decreasing functions, then the tensor alge­
bra (B = T(S(R4)) is the Field Algebra defined by Borchers in his algebraic 
formulation of Quantum Field Theory. 

Approximate identities. We say that an algebra 11 has an approximate iden­
tity if there exists a net (ea)ae/ composed of hermitian elements such that 
\\maeaa — a for all a G 11 (and consequently \\maaea = a \/a). If all the 
elements of the net (ea)ae/ belong to a bounded set, we say that 11 has a 
bounded approximate identity. We say that 11 has an equicontinuous approxi­
mate identity if the family of operators {ECn}aeI defined by left multiplication 
by ea\ ECa{a) — eaa, is an equicontinuous family. If 11 has an equicontinu­
ous approximate identity and 11 is separable then 11 has a sequence which is 
an approximate identity (cf. 4.2.4). If 91 is an LJ -space which has a sequen­
tial approximate identity then it is automatically an equicontinuous approximate 
identity by the principle of uniform boundedness. We will come back to these 
concepts in chapter 4. 

2.3. Embedded Hilbert spaces. Let £ be a quasi-complete locally con­
vex Hausdorff space over C. In this section we recall the main results from 
Schwartz's theory of Hilbert subspaces needed in the sequel [25J. Later we 
shall specialize to the case where E is the strong dual of the *-algebra 11. 

A Hilbert subspace 9-1 of E is a linear subspace, equipped with an inner 
product making it into a Hilbert space, and such that the inclusion map 

(1) <H^E 
.1 

is continuous. 
It will be convenient to introduce the space E* conjugate to the dual E', 

i.e. a linear space over C together with an anti-linear bijection between E' and 
E*. Thus all anti-linear maps on E' become linear on E*. The elements of £* 
will generally be denoted by greek letters (until we identify E* with 11). The 
canonical bilinear map on E x E' becomes a sesquilinear map on E x E*, which 
we denote as: 

(2) <-v,0 

It is linear with respect to A, anti-linear with respect to £. 
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If £ is a Hilbert space we shall usually identify F and F* and replace the 
duality bracket (2) by the inner product. 

Given a continuous linear map from the locally convex space £ to a locally 
convex space F, u : E —> F, we denote w* the adjoint map, defined by the 
equation 

(3) (ux.rj) = (x,u*ri) 

This is a linear map w* : F* —» F* continuous with respect to the weak* and 
strong dual topologies. 

If E and F are Hilbert spaces, identified with their conjugate dual spaces, the 
adjoint of a map u : E —-> F is simply the usual Hilbert space adjoint. 

If u : F —• F is antilinear the adjoint of u is defined similarly by 

(3') (ux,r]) = {x1u*r1) 

u* is then a weak* and strongly continuous antilinear map from F* to F*. 
Given the Hilbert subspace 9F <—• F there exists by the Riesz representation 

theorem a unique element y*^ G OF such that 

(4) (.v|/0 = <>-,0 

We denote //£ = jy*£ the same element regarded as element in F. The linear 
operator H : F* —• F, will be called the reproducing operator of the space OF . 
If F is a Hilbert space, identified with F*, and ^ is a closed subspace of F,y*£ 
is obviously the orthogonal projection of £ on ^ . Consequently in that case H 
is the orthogonal projector whose image is 9{. 

Replacing x by j*r] in OF we obtain: 

(5) (HV,0 = (fv\fO V»7,eG£* 

In particular, for £ = 77 one has 

(6) (//?/, 77) = HAH2 Vr/GF* 

The equations (5) and (6) show that H is hermitian, i.e.: 

(7) (HÇ,ri) = {Hti,Z) Vr,,Çe£* 

and that // is positive: 

(8) (7/77,77)^0 V77GF* 

As a consequence one has the triangle inequality: 

(9) |< / /^} |^( / /Ç,O l / 2 ( t f ' ? ,>7) l / 2 
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Sometimes it is convenient to consider, instead of the reproducing operator 
/ / , the sesquilinear form (£,77) ( ^ (//£, 77). This we shall generally denote by 
the same symbol: 

(10) H(^r1) = (H^71) 

It is a non-negative (hermitian) sesquilinear form, which is seprately continuous 
with respect to the weak* topology. Conversely, any non-negative sesquilinear 
form on £* x E* which is separately weak* continuous, gives rise to a positive 
operator H : E* —> £\ via formula (10). If H is the reproducing operator of 0T , 
the sesquilinear form H is called the reproducing kernel of 9T. 

Let Hilb(£) be the set of Hilbert subspaces of E, and let L +(£*. E) be the set 
of linear operators H : E* —> E satisfying (7) and (8), briefly: positive operators 
(recall that (7) is a consequence of (8)). 

PROPOSITION 2.3.1 The map 9T —> / / , which associates with 9{ its reproduc­
ing operator, is a bijection from Hilb(£) onto L+(E*,E). 

Let us sketch the proof: Uniqueness: i.e. 0T is determined by H. By (4) the 
subspace y*(£*) is dense in 0T, no element 7̂  0 being orthogonal to it. The unit 
ball B of 9{ which is weakly compact, is weakly closed in E. Being convex, 
B is closed. Thus B is the closure in E of the set {//£ : (//£,£)1/2 ^ !}• This 
proves that 9T is determined by H. Moreover it can be shown that one has, if 

cm H-.H = T J f c | L 

(the supremum being taken over all £ G £* with (//£, £) > 0) conversely if this 
expression is finite A' belongs to 0T (cf. [25: p. 146]). 

Existence. Let N = {77 G £* : (Hrf./q) = 0}. Equip E*/N with the inner 
product structure derived from the sesquilinear form H. It is a consequence of 
the triangle inequality (9) that N = {ij : Hrj = 0} and there exists a continuous 
linear map H : E* /N —> E characterized by the relation H £ = / /£. This map 
has a one-to-one continuous extension H : (£*/Ny—> E to the completion. The 
image 0T — Im H with the Hilbert structure making H an isometry is a Hilbert 
subspace with reproducing operator H. (cf. [25: p. 154]). 

Remark. One often limits this construction to the abstract space (E*/Ny 
Particularly in connection with fields of unbounded oprators it will be very useful 
to embed the space 9T in E. In the case, considered below, where H is a kernel 
defined on a *-algebra 11 by means of a positive functional: H(a,b) = uj(b*a), 
the Hilbert space 0{ is the space Hilbert space occuring in the classical GNS 
construction. It will be naturally embedded in the dual of 91. 

Remark. We retain from the proof the following fact which will be repeatedly 
used in the sequel: Every Hilbert subspace 9T ^ E has a privileged dense 
subspace DM =/*(£'*). 
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Note that the m a p / \ E* -^ Of is one to one, i.e. (E*,0f,£) is a Gelfand 
triplet, if and only if Of is dense in E. 

Let El be the space E* endowed with the topology of uniform convergence 
on bounded subsets of E. For future reference we note the following corollary. 

COROLLARY 2.3.2. Any positive kernel H : E* x E* —* C is continuous on 
E*h x El 

Proof. Since j * : E* —> Of is continuous with respect to the strong dual 
topology on £* and the norm topology on Of, identified with the strong dual 
topology of Of*, it is a consequence of (5) that the sesquilinear form H is 
continuous on El x E% [25: p. 157]. • 

Image spaces. Let u : E —> E be a continuous linear map to a second locally 
convex space. Let Of <—+ E be a Hilbert subspace with reproducing operator H. 
Let Af be the kernel of the restriction of u to Of . This is a closed linear subspace 
of Of. The image u(Of ) is always equipped with the Hilbert structure making 
the restriction of u to the orthogonal complement NL of N in Oi an isometry. 
It follows that u(Of) is a Hilbert subspace of F. 

PROPOSITION 2.3.3. The inner product in u(Of ) of elements ux\ and uxi, with 
X\,X2 G Of, is 

(12) (WC\ \UX2)U{9{) = (*1 |*2)# 

provided x\ or x2 belongs to N1. 

This is clear if both belong to /V1. If x\ G N1 one can replace x2 by its 
orthogonal projection o n / V 1 without changing either the inner product on the 
right or the image ux2. 

If the restriction of u to Of is one-to-one u : Of —* u(Of ) is an isometric 
isomorphism. 

The preceding proposition has an obvious analogue for antilinear maps w, the 
right hand side of twelve being replaced by its conjugate. 

PROPOSITION 2.3.4. Let u : E —> F he a continuous linear or antilinear map. 
Then the reproducing operator of u(Of) is uHu*. 

Proof. (For u linear). Let y — ux, with x 6 N 1 . Then 

(y\uHu*0<K. = (*\Hu*0 = <*,"*0 = O>,0-

COROLLARY 2.3.5. Let Of he a Hilbert space, identified with 0{*, and let 
0Ç ^-+ Of be a Hilbert subspace having the reproducing operator T : Of —> Of . 
Then 0Ç[ = Txl2(Of). 
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Proof. The reproducing operator of TXI2{H) is equal to r j/2(r1//2*) = 

COROLLARY 2.3.6. Under the previous assumption, let j : H ^ E be a 
Hilbert subspace of E. The reproducing operator of Ĉ as subspace of E is 
JTj*. 

Proof % "as Hilbert subspace of £" is precisely j(9£). D 

COROLLARY 2.3.7. If H is an abstract Hilbert space identified to H *, and u : 
H —> E is a continuous linear map, the image space u(H ) has the reproducing 
operator uu*. 

The cone structure of Hilb(Zs). The sum of two positive operators from E* 
to E is again a positive operator, as is the product of a positive operator by a 
non negative number. Following Schwartz let us give a direct description of the 
corresponding Hilbert spaces: 

Let H\ and H2 be Hilbert subspaces of E. Let H\ x Hi as usual be equipped 
with the norm defined by ||(XI,JC2)||2 = ||xi||2 + ||A-2||

2. Let O : H\ x H2 —+ E 
be the map defined by <Ï>(AI7;C2) = x\ + x2. Then ^ + ^ is by definition the 
image Hilbert space &(H{ x H2). If Ker(O) = (0) i.e. if Hx H ^ 2 = (0), the 
map O : H\ x 7/2 —• #" is an isometric isomorphism. In that case the sum 
Of — H\ + Hi is said to be direct and one writes Of = H\ 0 ^6. 

Let A ^ 0. Then if ^ c—> E is a Hilbert subspace the space XH is defined 
as follows: if À = 0, XH — (0). If À > 0 the underlying linear space for XH 
equals H, the inner product on XH is (1/À) times the inner product of H. 

Finally it is useful to introduce an order relation in Hilb(£) as follows: 
H\ ^ Hi if B\ C B2 i.e. the unit ball of H\ is contained in the unit ball of 
Hi. Equivalently H\ C Hi, the inclusion being an operator of norm at most 1. 

One then has: 

PROPOSITION 2.3.8. ([25 : §6]) Let H ,H{ and H2 be Hilbert subspaces of E 
with reproducing operators respectively equal to H^H\ and Hi. 

1. The reproducing operator of H\ + Hi is H\ + Hi. 
2. The reproducing operator of XH is XH. 
3. Hx ^ Hi is equivalent to Hx S H2 i.e. H2-H{ G L+(E*,E). 

Proof 
1. 6(xux2) = M i +72*2, O*(0 = U1U2O' Thus 00*£ = //,£ + //2£. 
2. (f\XHOx9( =(f\HOx = ( / , 0 . 
3. This is a consequence of (11) (cf. [25: p. 160]). • 

Example . Let % be a nuclear LJ space equipped with an anti-automorphism 
x i—» x*. Then if £ = ÎIJ, we can identify £^ with 21, the anti-duality being 
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defined by: 

(C,a) = C(a*). 

The reproducing kernel H of a Hilbert subspace Of <~^ 2f corresponds to a 
continuous bilinear form B on 21 x 21 by 2.3.2 or to a continuous linear form L 
on 21(8)51 by the formulas 

/ / (a , /?) = B(a, b*) = L(a ® b*) 

Thus the cone L+(E*,E) can be identified to a closed convex subcone T of 
the conuclear space (21® 21)' : T = {L : L ( a ® a * ) à 0 V a G 21}. We shall 
later consider the case where 21 is a topological *-algebra, i.e. an algebra with a 
separately continuous product and a continuous involution. Then, if LU G 2F is a 
positive form the sesquilinear form //^ defined by H^ia, b) — uo(b*a) is positive 
and continuous! 

2.4. Integrals of Hilbert subspaces. In this section we summarize the main 
properties of the integrals of Hilbert subspaces following [29]. 

We equip the space Herm(£*,£) of all hermitian operators, i.e. operators 
satisfying condition (7), with the topology of pointwise convergence on £* 
in E. It is a quasi-complete locally convex space over R, subspace of EE\ 
The corresponding weak topology is the topology of pointwise convergence 
in E equipped with the weak topology. The dual of Herm(£*,£) is generated 
by the linear forms H \—> (f/77, £) or even, by polarisation, the linear forms 
H i—> ( / /£ ,£) . The set L+(E*,E) is a closed convex cone in Herm(£*,£). 

Let A be a topological Hausdorff space, equipped with a Radon measure 
m (i.e. an inner regular locally finite measure on the Borel sets). Let F be a 
topological space (in the sequel E of Herm(£*,£)). A m a p / : A —+ E is said to 
be m-measurable if for every compact set K and e > 0 there exists a compact 
set K' C K such that m(K\K') ^ e, and such that the restriction of / to Kf is 
continuous. If E has a countable base of open sets every Borel function is m-
measurable (Lusin's theorem). In particular every lower semicontinuous function 
/ : A —> [0, +00] is m-measurable. If F is a topological vector space it is clear 
that the sum of m-measurable functions is m-measurable. Also the product of a 
vector valued and a scalar m-measurable function is m-measurable. 

Definition 2.4.1. A family (9J\)\EA of Hilbert subspaces of E is continuous 
(resp. m-measurable) if the map A 1—> H\ G Herm(£*,£) is continuous (resp. 
m-measurable). 

If (9-{\)\eh be an m-measurable family of Hilbert subspaces of E, a measurable 
field is an m-measurable map A »—>/(A) G E such that/(A) G ^4 for all A. 

Example. A i—>//A£ is an m-measurable field for all £ G F*. 

LEMMA 2.4.2. If (9{\)\eK and f(.)\K are continuous the map A 1—->• | | / (A) | |A 

(norm in 9{\) is lower semicontinuous. 
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Proof. Let 

K/(AU)I F€(A) = 
{Hx^Oi/2 

if (//A£, 0 > 0, Fç(\) — 0 if (//A£, £) = 0. Then /^ is lower semicontinuous 
on K and by (10) ||/(A)||A = sup^ (A) . 

Consequently if (^A)AGA and / ( . ) are measurable, the norm | | /(A)| |A is a 
measurable function of A. We denote L2(m, {^/\}) the space of equivalence 
classes, modulo fields almost everywhere 0, of square integrable fields: 

J\\fM\\l (1) / \\f(\)\\2
xdm(\)< +<x> 

with the norm defined as the square root of this expression. This is a Hilbert 
space (cf. [29]). • 

PROPOSITION 2.4.3. Let (?(\)\eA be m-measurable and such that 

(2) f{H£,Ç)dm(\)<+00 V £ e £ * 

Then there exists a Hilbert subspace 9f <—> E whose reproducing kernel is 
defined by 

(3) (Hr,,0 = J(Hxr,,t)dm(\) 

Every square integrable field f(.) is m-summable with values in E. We pose 

(4) 0 ( / ( . ) ) = ff(X)dm(X) 

The map O : L2(m, {9f\}) —+ E is continuous and the space 9f is the image of 
L2(m, {0T\}) under O i.e. 9f = 0(L2(m, {0f\})) and the restriction of O to the 
orthogonal complement of its kernel is an isometric isomorphism. 

Remark 2.4.4. If E is the strong dual of a nuclear LJ -space, which is neces­
sarily separable, it can be shown that (^A)AGA is m-measurable if H : A i—>• H\ 
is scalarly m-measurable, i.e. A \—» (H\rj^) or even A i—-> (//A£, £) is m-
measurable. The above proposition can then be deduced from Schwartz's results, 
particularly proposition 20. The general case is treated in [29]. 

Under the assumption of proposition 2.4.3 we shall say that the family {9f\)\eJK 

is m-summable. The space H is denoted 9{ = J H\dm{\). If the kernel of O 
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is (0), in which case O is an isometric isomorphism of L2(m, {0f\}) onto 9f the 
integral is said to be direct and one writes: 

/

e 
ttxdm{\). 

In this case it follows that every / £ J-C has an essentially unique decompo­
sition (vector integral in E): f = Jf(X)dm(X) w i t h / ( . ) square m-measurable. 
Moreover one then has: 

ll/ll2=/ll/(A)||WA) 

(f\g) = J(f(X)\g(X))xdm(X) 

A particular example of such a decomposition is: / / £ = J H\^dm(X). Let A C A 
be a measurable subset. Then if (9{\) is m-measurable one can analogously define 
0fA = $A9<\dm(X) the space with kernel HA(£,Q = JAH\(£,Odm(\). Since 
HA = / / , one has ^ 4 <̂-> 9f, the inclusion being an operator of norm ^ 1. It 
is clear that if the integral is direct then for any measurable set A C A, 9fA is 
a closed linear subspace of Of, tHA and ^ 4 being orthogonal subspaces if A 
and 5 are disjoint. Conversely for the integral to be direct it suffices to have 
9fA H 9-CB = (0) whenever A and B are disjoint (cf. [29]). 

Let 9{ = J 9{\dm(X) be a not necessarily direct integral. Then, if 7?̂  is the 
reproducing operator of ^ 4 in ^ , the map A \—+ RA is a semi-spectral measure, 
i.e. it takes value in the set of positive operators in 0i, is countably additive 
with respect to the strong operator topology, and is such that R\ = 7, the identity 
in H. If the integral is direct R is a spectral measure. 

Now consider the converse question. Let j :?{<—> E be a. Hilbert subspace 
and let A t—> 7?̂  be a semi-spectral measure in i # , and let HA = jR^j* be the 
reproducing operator of the subspace 9~CA corresponding to RA. Then we have: 

PROPOSITION 2.4.5. If E is a conuclear space (e.g. the strong dual of a bar­
relled nuclear space): Then under the previous assumptions one has: 

(1) There exists a Radon measure m such that m(A) = 0 =3- RA = 0, i.e. R is 
absolutely continuous with respect to m. 

(2) If R is absolutely continuous with respect to m, there exists an m-
summable family (//A)AGA of positive kernels such that HA — j A H\dm(X) for all 
Borel sets A C A. 

In particular, if R is a spectral measure one has: 9f — J 9f\dm(X). 

This is a generalization appropriate in the present context, of Maurin's nuclear 
spectral theorem [18]. For a proof we refer the reader to [18] or [29]. 
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3. Representations of *-algebras. 

3.1 Self-adjoint representations. Let 51 be a topological *-algebra. We now 
assume that there is given a strongly continuous representation of 51 on £ , i.e. 
a separately continuous bilinear map (a,x) \—> ax from 51 x E to E satisfying: 

( 1 ) (ab)x = a(bx) Va, /? G 51, V* G E 

We then define an action of 51 on E* as follows: 

(2) {ax,Z) = {x,a*ï) 

this is again a representation i.e.: 

(3) {ab)i = a(bQ Va, b G 51, V£ G £* 

and the bilinear map (a, 0 \—» a£ is separately continuous if £* is equipped 
with the weak* topology, or, 51 being barelled, if E* is equipped with the strong 
dual topology. 

Note that if £* is equipped with the weak* topology E can be viewed as 
(£*)*, the sesquilinear form being the complex conjugate of (*,£). The action 
of 51 on (£*)* then coincides with the original action of 51 on E. 

Definition 3.1.1. A Hilbert subspace 9( c—>• E will be said to be invariant if: 

(4) aH£ = Hai Va G 51, V£ G E* 

Equivalently: 

(4') H(ari,0 = H(ri,a*0 Va G 51, Vry, £ G £* 

Let D#- = / / (£*) be the corresponding dense subspace of ^ . Then D#- C £ 
is invariant under the operators a, and we define a representation 7r of 51 on D-// 
by restriction. Thus 

(5) 7r(a)if — aLp (f G D ^ , a G 51 

Since £>#- is a subspace of ^ / , we shall write, in view of (4): 

(6) 7T(a)f(0=f«) 

thus 7T is regarded as a representation of 51 by, in general unbounded, operators 
in 9{, with common invariant domain D^. 

In this connection let us recall the notion of self-adjoint representation due to 
Powers [22] and [23]. 

Definition 3.1.2. A representation n of a *-algebra 51 on a Hilbert space 9{ 
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is a mapping of 21 into linear operators defined on a common dense domain 
DT C ^ / , invariant under ir(a) for all a G 21, and such that TT is linear and 
multiplicative on D^. The representation is hermitian if TT{O*) C TT(O)* for all 
a G 21 i.e. 

(7) (7T(a)^#) = ( |̂7T(fl* W ty>, ^ / ) , 

A hermitian representation is also called a *-representation. 
One defines the closure of a *-representation TT as the representation TT defined 

on £>t = naD-^-T by putting 7r(a) = n(a), and a representation TT* on the domain 
D *̂ = naDn(ar by putting 7r*(a) = Tr(a*)*. 

One equips D *̂ with the "graph topology" i.e. the topology defined by the 
seminorms | | / | | mdpa(f) — ||7r*(a)/||. ThenD^* is a complete topological vector 
space and D^ is the closure of D^ in Dn*. Note that contrary to the assumption 
in [22] we have not stipulated the existence of a unit in 21. But if one replaced 
21 by the algebra in L (Dn) by the algebra generated by the operators ir(a) and 
the identity one obtains precisely the situation considered by Powers. 

Definition 3.1.3. A *-representation TT is said to be closed if TT — ïr, self-
adjoint if 7T = 7r*, and essentially self-adjoint if 7r = TT*. 

Definition 3.1.4. The weak commutant {TT(H)Y of the *-representation TT is 
the set of bounded operators S in Of such that 

(8) (Sir(a)(p\\l)) = {SLP\TT(O")^) V</>,Î/; G D^Va G 21 

It is a weakly closed, symmetric, complex linear manifold in L(9f). 
The next proposition is proved in [22: Lemma 4.6, p. 96]. Its proof does not 

require the existence of a unit. The result is crucial for the work below. 

PROPOSITION 3.1.5. Let TT be a self-adjoint representation with domain Dn. 
Then a bounded operator S belongs to the weak commutant {TT(H)Y if and only 
if SDn C Dn and STr(a)f — n(a)Sf for all a G 21 and f G Dn. In particular 
{7r(2I)}/ is an algebra, hence a von Neumann algebra. 

Proof Let (p,ijj e Dn = CD^a)- If 5 G {TT(2I)}' using (8) we get that 
ip »—• (7r(tf)<£>|S*i/;) = (S(p\Tr(a*)ip) is continuous. Thus S*ijj G D^ay

 a nd 
(if\TT(aTS*^) = (</?|SM<2*)V0 for all (/?. Thus Tr{a)*S*^ = S*n(a*)\l) for all 
i/j i.e. S*^ G Dn = ZV- Moreover 7r(a)*(5)* = S*Tr(a*) for all a G 21. Replacing 
S by 5* we obtain the result. 

COROLLARY 3.1.6. The weak commutant {7r(2I)}/ of an essentially self-adjoint 
representation is a von Neumann algebra. 

In fact {TT(21)}' = {TT(2I)}/. 

Note that there exist examples of weak commutants which are not algebras 
(cf. [22: p. 92]). 
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COROLLARY 3.1.7. S : Dn —• Dn is continuous with respect to the graph 
topology. 

lnfact:pa(Sf) = ||7r(*)S/|| = ||S7r(û)/|| ^ \\S\\pa(f). 

Let us return to the specific situation at hand where 9i ^ E is a Hilbert 
subspace of E, and n is defined by restricting the representation of 21 in E to 
D9{ =f{E*). 

For a G 21 we pose: 

(9) H, = {f£rt:afe?{} 

(10) 94 = p | Ma 

This is a linear subspace of 9f containing D^. 

PROPOSITION 3.1.8. One has D^ay = 94a*, the maximal domain for a*, and 

(11) ir(a)*f = a*f f G H,* 

Proof. Let <p =y*(0 belong to D#-, and/ G ^,*. Then one has 

(f\ir{a)<p) = (f\f(aO) = (f,aÇ) = ( « 7 , 0 = ( * 7 k ) 

Thus / belongs to the domain of 7r(<2)* and n(a)*f = #*/. Conversely, let / 
belong to the domain of ir(a)* and let g = ir(a)*f. Then 

(#,0 = (g\f(0) = (/I7(*0) = (fM) = («7,0 

Thus Û*/ = g belongs to 9f, i.e. f <E %*• • 

We get as an immediate consequence of the above: 

PROPOSITION 3.1.9. IT is a ^-representation of 21 : 7r(a*) = 7r(a)*\DtH-. 

A second consequence is that the domain of the representation TT* is the space 
94 and 

(12) ix\a)f = af feM 

Thus 94 equipped with its graph topology defined by the seminorms: | |/ | | , 
Pa(f) = |k/||?<3 G 21, is a complete topological vector space. Recall that the 
domain of TT is the closure of D^ in the space 94. 
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PROPOSITION 3.1.10. Let Of *-+ E be an invariant Hilbert subspace. Let 
^ ^ 5 / " be a Hilbert subspace of Of, and let T G L {Of ) be its reproduc­
ing operator. Then Ĉ c—• E is an invariant Hilbert subspace if and only if the 
operator T belongs to the weak commutant of the representation TT. 

Proof Let j : O-f ̂ ^ E be the injection. Then the reproducing operator of 9^ 
in E is the operator K = jTj*. Let T belong to the weak commutant {TT(%)Y i.e. 
assume: 

(13) (Tn(a)<p\il)) = ( 7 > | ^ 7 » Vp, ^ e % 

Then one has 

K{ari,0 = (Tf arj.fO = (Tir(a)j*r]J*0 = (Tj*riMa*)j*0 

= K(ri,a*0 

i.e. K is invariant. Conversely the invariance of K implies the equality of the 
third and fourth term, i.e. T G {7r(îl)}'. • 

Under the hypotheses of proposition 3.1.10 there exists a representation of 91 
on the dense subspace D^ of ^C defined analogously. If necessary we distinguish 
these representations by denoting them n^ and TT^ respectively. 

The following theorem has been obtained by Powers [22: Theorem 4.7, p. 97] 
in the case where TT is self-adjoint and the space Ĉ is a closed subspace of Of. 

THEOREM 3.1.11. Let Of and 0Ç be invariant Hilbert subspace s of E with 
0<C c-> Of . If ixtf is essentially self-adjoint, so is TT^. 

LEMMA 3.1.12. Let IT be a self-adjoint representation of 91 with domain Dn. 
Let S be a one-to-one self-adjoint bounded operator on Of belonging to the 
weak commutant {^(ÎI)}' of IT. Then SiD^) is a dense subspace of D^ equipped 
with its graph topology. 

Proof. For notational simplicity we assume S to be positive as well (the 
only case used below). Let F be the resolution of the identity for S, i.e. 
S = j+°°\F(d\). Let En = F[(l/n),n],Bn = J"/n(\/\)E(d\). Then Fn and 
Bn belong to the von Neumann algebra {7r(5I)}'. Let / G D f , /„ = FJ and 
gn = Bnfn- Then fn and gn belong to Dn and/* = Sgn. Thus / , G S(Dn). Also/,, 
tends t o / in Of, and ir(d)fn — Fnir(a)f tends to ir(a)f for all a G 91. Thus / 7 

converges t o / in the topological vector space D^. D 

Proof of 3.1.11. Let TT = TT^ . Then D^ as linear subspace of ^"equals Tj*(E*) 
i.e. it equals 7 ( D # ) . On the other hand we know (2.3.4) that 2£ = Txl2(0f). 
Since {7r(9I)}' = {7r(9I)}' is a von Neumann algebra T1/2 belongs to it. Thus 
the space 0\[ — T[/2(!M) is invariant under the action of 91. Let p be the 
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representation of 51 in 9\[ defined by ix{a)f — af (i.e. the restriction of the 
closure of n^ to fÂ  ). • 

LEMMA 3.1.13. p is a self-adjoint ^-representation. 

Proof, a. p is hermitian: let g, = 7 1 / 2 / , / = 1 , 2 , w i t h / G M = D^. Since 
the orthogonal projection on KerCT1/2) belongs to {7r(5I)}' and so leaves M 
invariant (3. 1.5), we may t a k e / orthogonal to K e r ^ 1 / 2 ) . Then we have 

{p(a)gX\g2)'K = (7T(a)/l | /2)tf = (/l|7T(0*)/2)tf = (gl\p(a*)g2)<J(. 

b. Let g, = Pl2fi,i = 1 , 2 , w i t h / G fW and / 2 G # orthogonal to K e r ^ 1 / 2 ) . 
Let ^2 belong to Dp* i.e. assume that for every a G 51 there exists a constant Q, 
such that 

\(p(a)g\\g2)x\ ^ Q, | |#i lk Vgi G fAt 

Then we have 

| ( ^ ) / i | / 2 ) ^ | ^ Q | | / i | k Y f i G ^ . 

Thus/2 belongs to D^ay for all (2 G 51. Therefore it being self-adjoint, j \ belongs 
to M and so g2 belongs to TXI2(M) = Dp. 

Thus we have Dp* — Dp, which implies that p is self-adjoint. • 

Now D% -T(D^) = Tl/2T{/2(Dx) C TX/2(M) = fA£, since TXI2{D^) C 
Tl/2(9rf) C fW. To prove that the representation TT^, i.e. p restricted to D ^ , 
is essentially self-adjoint it is sufficient to prove: Z)^ is dense in fA£, equipped 
with its graph topology. We first prove: 

LEMMA 3.1.14. 

(1) T1'2 is a bounded operator in 9£. 
(2) T{'2 is a positive operator in 1Ç. 
(3) Tx'2 is a one-to-one on %.. 
(4) 7 1 / 2 belongs to the weak commutant of p. 

Proof. Let g = 7 1 / 2 / , / G M orthogonal to KerCT1/2). (1) Then g G Of 
so Txl2g belongs to X = Txl2(9f). Also l ^ / ^ l k = \\Tf\\% û | |7/| |#- ^ 
imi II fU = ll̂ ll IMk- (2) ^ / ^ U k = tel/W = (Tl/2f\f)x > 0. (3) 
If Txl2g = 0 , 7 / = 0, s o / G Ker(7) = K e r ^ 1 / 2 ) ; hence # = 0. (4) We have 
Tl/2(9i) = TXI2TXI2(M) C 71/2(fAf) = fAt since TXI2{M) C fW. Also 7 1 / 2 

commutes with p(#) because this is the restriction of 7r(<a) to 0\i. Therefore 7 1 / 2 

belongs to the weak commutant by proposition 3.1.5. • 

We can now terminate the proof of theorem 3.1.11: We know that D<x is dense 
in M. Now 7 1 / 2 : 9vt —-*• C\t is continuous with respect to the graph topologies 
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because Txl2 is continuous and intertwines 7r and p. Consequently 71/2(Z)^) is 
dense in T{l2(94 ) = 9\[. Therefore Txl2 : 9\i —> fA£ being continuous by lemma 
3.1.7, D ^ = TXI2TXI2{D^) is dense in Txl2(9t) for the topology induced by 
fA£ • Finally Txl2(9Ji) being dense in fA£ by lemma 3.1.12, it follows that D^ is 
dense in 9\[ • • 

Consequence 3.1.15. fA£ = Txl2{94) is the maximal domain for 7r^ and 
7T^ = p. 

In fact, every self-adjoint representation is maximal [22: p. 95]. 

3.2. Désintégration of self-adjoint representations. Now we assume that 
9f is the direct integral of invariant Hilbert subspaces: 

(l) rt = / #A<MA) 

Let // and //A denote the corresponding reproducing operators, D = H(E*) and 
D\ — H\{E*) the privileged dense subspaces, and n and TT\ the representations 
of 21 obtained as before in D and D\ respectively. 

PROPOSITION 3.2.1. Let TT be essentially self-adjoint. The following conditions 
on 94 are equivalent: 

(1) 94 equipped with its graph topology is metrizable. 
(2) There exists a countable set A C 21 such that for all a G 21 there exist 

aua2...,a„eA such that \\af\\ ^ \\f\\ + £ L i lk / l l for all f G 94. 
(3) There exists a countable set A C 21 such that for all a G 21 there exist 

a\,a2...,an G À such that \\aip\\ ^ \\(p\\ + Y^=\ IWiVW / o r ^ ^ ^ £*#• 
(4) There exists a countable subset S of 11 such that for all a G 21 there exist 

b G S and a number k ^ 0 swc/z r/ẑ r ||<z<̂ || = £(|M| + | | ^ ^ | | ) / ^ r M ¥ £ ^H-

Proof. 1 . ^ 2 . is obvious. 2. & 3. because DH is dense in 94 . 3. => 4. with 
S the set of finite sums b = Xw=i tf/**3/» w i m ai G A. 4. => 1. obvious. • 

Note that these conditions on 94 are satisfied if 21 is algebraically generated 
by a countable subset. 

More generally, assume 21 contains subalgebras X) and 3W such that X) is 
countably generated, and such that every element in 21 has a decomposition 
as finite sum a — X^d/fr,, with d, G ©,£/ G 3W. If ir(d) is bounded for all 
d G 3W, fWis still metrizable. A situation in which this occurs, is the case where 
21 is the convolution algebra of distributions with compact support on a Lie 
group G, T) is the set of distributions with support in the neutral element, and 
3W is the set of measures with compact support. Then if ix is the representation 
of 21 associated to a unitary representation of G, 7r is not bounded, 21 is not 
countably generated, but 94 is metrizable. 

https://doi.org/10.4153/CJM-1990-023-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-023-3


428 A. BELANGER AND E. G. F. THOMAS 

We do not at present know of any example where TT is essentially self-adjoint 
and where fW is not metrizable (cf. [22] and [23]). 

THEOREM 3.2.2. Assume 11 is a nuclear LJ ^-algebra. If TT is essentially 
self-adjoint, and the space *M is metrizable, TT\ is essentially self-adjoint for 
m-almost all X. 

Let us introduce some notations. Recall that M is the maximal domain for 
the representation TT in Jf. Thus d\f is the domain of the self-adjoint closure 
of 7r, i.e. D is dense in fW for the graph topology. Let 9\f\ denote the maximal 
domains in 0f\ respectively. We need to prove that <D\ is dense in W[\ for almost 
all A. 

The self-adjoint representation TT is the restriction to M of the given repre­
sentation in E. 

If B C A is a measurable subset, let 

XB = / rtxdmiX) 
JB 

be the subspace with reproducing kernel 

HB(n,0= f Hx{ri,Odm(X). 
JB 

Then 9fg is a closed subspace of 9-C. Let PB : Of —> 0-(B be the orthogonal 
projection. The invariance H\(arj^) = Hxiri^a*^) implies the invariance of the 
kernels HB. Thus by proposition 3.1.10 PB belongs to the weak commutant 
{Tr(îl)y. In particular the maximal space fW is invariant under PB. 

Let / G M and le t / = JAf(X)dm(X) be its decomposition with/(.) square 
summable. Then PBf = JBf(X)dm(X). 

LEMMA 3.2.3. The map X \—> af\ is a square summable field for all a G 11 
and 

(1) aPBf= [afxdm(X) 
JB 

Proof Since the map A" I—> ax is continuous in E, we have (1) as a vector 
integral in E. Let g = Tr(a)f = af then g = Jg(X)dm(X) with g(.) square 
integrable, and 

(2) PBg= [ g(X)dm(X). 
JB 

Since aPBf = Tt(a)PBf = PBg the expressions (1) and (2) are equal for any 
measurable set B. Therefore af{\) — g(X) for a.a.X and we get the desired 
conclusion. 
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We now want to prove that/ G fW implies that /A G M\ for almost all A. So 
let / G fW. For £ measurable in A, let Hf

B be the kernel defined on 21 x 21 by: 

Hf
B(a1b) = (PBaf\bf).1{. 

The map a »—> af G .7/ is continuous by the closed graph theorem. Thus 
OfJ is a continuous and positive kernel on 21 x 21. This defines a measure 
5 i—• H{ G (21021 )'. By proposition 2.4.5 we know that 21 being a nuclear Z/F 
space this measure has a Radon-Nikodym derivative À \—> 9i^ with values in 
the continuous and positive kernels: 

H{= [ H{dm(\). 
JB 

Now by the previous lemma we have: 

[(H{a,a)dm(\) = (Hj
Ba,a) = (PBaf\af) = f\afx\afx)dm(\). 

JB JB 

Hence 

(3) (H{a,a) = (afx\afx) 

for all À not belonging to a null set Na depending on a. D 

LEMMA 3.2.4. / G M =»/ G Mx for a.a.X. 

Proof. Let 21 o = {an} be a countable dense set of elements in 21. Applying 
the preceding reasoning for each a„ we get (H{an,an) = (anfx\aflfx) for all À 
not belonging to the null set N = UnNUn. Let a G 11 and (af) be a sequence in 
21 o such that a = \\n\f af. Then af\ = lim/a/\ for all A. The map x \—> \\x\\\ 
being lower semicontinuous on E we have for each A G A: 

\\afx\\l û\M\\acfx\\l = lJm(H{af,a[) = (Hf
xa, a) <+oo 

f ( 

for all A G A \ N. In particular/, G Mx for all A G A \ JV. 
We now prove fM̂  = fÂA for almost every A G A. Let {/?,}/e/ be a funda­

mental system of seminorms on 21. Let 21/ = (2l//7/~
1(0))'v be the Banach space 

associated with /?,. Then by the nuclearity of 21 the canonical map a \—> à from 
21 to 21, is nuclear. Thus 

(4) à = ^2a„Ln(a)à„ 
n 

where (an) G /i, {Ln} is an equicontinuous sequence in 21' and ||àw|| = Pi(an) ^ 
1. For each / G /, let <?,(/) = sup{||a/||# : /?,(a) ^ 1}. Let %• = {/ G fW : 
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qt{f) < +00}. Then fW = U / ( E / ^. In fact, if/ G fW the map a »—> \\af\\^ 
is a lower semicontinuous seminoma on 91. The space 91 being barrelled, it is 
continuous. Thus there exists /' G I and c ^ 0 such that ||<z/||# = cpi(a) for all 
a G 91 and so #/(/) = c. 

If / G Mi we have ||tf/||# = qi(f)Pi(a). Therefore the map a i—• af factors 
via a continuous linear map à \—j> àf = af defined on 21,-. Applying this to the 
expansion (4) we get 

(5) af = ] P anLn(a)aflf. 
n 

By the metrizability of fW, there exists a sequence {^} C D#- such that 
aipk —» af in Of for all A G ÎI. Then the maps a \—» <2(/̂  from 91 to .7/ are 
équicontinuous by the uniform boundedness principle. This means that there 
exists a continuous seminorm p{ on 91 and a constant M such that \\a(p^\\ ^ 
M/7/(a) Va G 91 i.e. qt(ipk) ^ M, V£. Hence 

lk ( / -^ ) | |SAf+^- ( / ) V/i and V*. 

Define the function F* : A —> [0, +00] as follows: 

Then 

(JFk{\fdm{\)\ ^ Yl \a»\ ( / K/A - antpk,x\\ldm(\y 

< ^2 \an\ \Wn(f ~ lfk)\\ < +OO 

This first of all implies that Fk{\) < +00 for all k G N except possibly for A 
belonging to a null set N. Secondly, since the right hand side goes to zero as 
k goes to 00, there exists a subsequence (still denoted Fk) going to 0 for all À 
outside a null set N' D N. This implies that 

\\afx -a(fk^x\\x ^ V / K I \Ln(a)\ \\anfx - an(pk,\\\x ^ sup \L„(a)\Fk(\) 

which goes to 0 for all a G 91 and all A G A \ N'. Hence, f\ G 0\i x for all 
A GÀ\A/ ' i.e. almost all A. Thus TTX is essentially self-adjoint for almost all A, 
which was to be proved. • 

Remark. We have used the metrizability of fW only to obtain an approxima­
tion of/ in M by a subset of D^ which is bounded in M. One would like to 
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do without the metrizability assumption but it is an unsolved question whether 
in general, TT being essentially self-adjoint, eve ry / G M belongs to the closure 
of a bounded subset of D^ . 

The analogous result for bounded representations is easier to prove. In this 
case, we do not need the nuclearity assumption on 91 and M — 9{ is automati­
cally metrizable. 

PROPOSITION 3.2.5. Let 91 be an LJ *-algebra and let TT, TT\ and m be defined 
as above. If IT is bounded then TT\ is bounded for m-almost all A. 

Proof. Since TT is bounded, there exists for each a G 91, a constant Ma = 
||7r(<2)|| such that 

\\TT{O)^H ^Ma\\v\\x VtpeDx. 

Then for each measurable set A, we have 

(6) \\aPAifU • i MaWPAtpWx V ^ G D ^ . 

Assume first that (!H\)\£\ is a continuous family, A being equal to the support 
of m. If (f =j*i for £ G E* then it follows from (6) that, 

HA(ai,aO = (PAj*a£\j*aO Û M ^ t U ) . 

Thus, for each a G 91, we have 

(7) Hx(ai,aO£M2Hx(Z,0 

for almost all À G A, hence for all À G A, and for all £ G E*. Rewriting (7) as 
follows 

\\amU ^ MuWfxtlU 

it is seen that for all A G A, the representation TT\ is bounded, and ||7TA(^)|| = 
||7r(a)|| for all A G A. In the general case the conclusion follows from the Lusin 
measurability of the family (9f\)\eA. D 

4. Invariant kernels and positive forms. 

4.1. Kernels associated to positive forms. The GNS construction. Let 91 
be a topological *-algebra (cf. 2.2) and let LU G 91' be a positive form, i.e. a 
continuous linear functional satisfying the condition: 

(1) uu(a*a)^0 Va G 91. 
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Then one defines a sesquilinear form Hu on 11 x 11 by: 

(2) Hu(q,b) = u{b*a). 

We shall identify 11 with its conjugate space by means of the involution x \—> x*. 
If E — IV equipped with the weak dual topology, 11 may be identified with £*, 
the anti-duality between E and 11 being defined by: 

(3) (f,a)=f(a*). 

With this notation (2) becomes: 

(4) Hu(a,b) = (u;,a*b). 

The algebra 11 naturally acts on its dual IV as follows: 

(5) (af,x) = (f,a*x) a.xell. 

This defines a representation of 11 on llf: 

(6) a(hf) = (ab)f 

which is separately continuous when llf is equipped with the weak (or, 11 being 
barrelled, the strong) dual topology. 

The associated representation on 11 — E* (cf. 3.1) is the natural action of 11 
on 11 by multiplication from the left (left regular representation). 

Before proceeding with the invariance properties of kernels let us point out 
that in this case there is also a natural action of 11 on 11' by multiplication from 
the right: 

(6) {fb,jc) = (f,xb*) x.bell. 

One then has the following associativity rule: 

(7) (af)b = a(fb) Ma, b e îl, V/ G 11'. 

The map (/, b) \—> fb is bilinear and separately continuous, but it is not a 
representation. 

Let 11 be the space conjugate to 21, equipped with the *-algebra structure 
which makes the conjugation x i ^ x a *-homomorphism: 

(8) àx = ax; a* — ct. 

Then the map (f,h) i-^fb* is representation of the algebra 21. 
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Example. Let G be a unimodular Lie group equipped with a Haar measure 
dg. Let CC°°(G) be the space of test functions equipped with the convolution 
product and the involution <p*(g) = (f(g~l). Then 21' = (D'(G) is the space 
of distributions on G and the left and right actions of 21 and 21' are the usual 
operators of left and right regularization of a distribution by test functions. 

If UJ is a positive functional on 21, the kernel H — H^ defined by (2) or (4) is 
associated with the reproducing operator H : 21 —-> 21' defined by: 

(9) Ha = au; 

Clearly the operator and kernel H are invariant: 

(10) aHx=Hax Va, x G 21, 

(11) H(ac,b) = H(c,a*b) Va,b,ceK. 

Let 9{v^ W be the Hilbert subspace associated with the reproducing operator 
9^ : a i—> auj. The subspace D^ (cf. 2.3) will now be denoted Dw. Thus the 
space 

(12) Du = {au:ae 21} 

is dense in <HU]. The inner product of Hjj on Z)̂  has the expression: 

(13) (auj\buj) = (auj.b); 

alternatively: 

(130 (auj\buj) = (w,a*b) = uj(b*a). 

The space D^ is obviously invariant under left multiplication by elements 
of 21. We denote TT^ the representation of 21 obtained by restricting to Du the 
representation in 21 ' i.e.: 

(14) ^uià)^ = aip, (peD^-

Then 7^ is a ^representation of 21 by, in general unbounded, operators in y% 
with common domain Dw (3.1.9). The representation (^4,/)^, 71̂ ) is called the 
GNS representation associated to the positive functional UJ. 

In the case of the example 21 = CC°°(G) = *D(G), the positive forms on 
21 are just the positive definite distributions, denoted T(G). If UJ equals 6, the 
Dirac delta, Hu is the space L?(G\ dg) which, as usual, is considered as a Hilbert 
subspace of (Df(G). 

A natural question at this point is whether every invariant operator H : 21 —•» 
2T, i.e. satisfying (10), is associated with some positive functional a; on 21, and if 
so whether this UJ is uniquely defined by the operator or kernel H. More precisely 
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we shall require to know when the correspondence UJ \—-* Hu is homeomorphism 
with respect to appropriate topologies. 

Let us merely note here that this has an obvious answer if 11 has a unit 1. 
Since 1 = 1*, UJ is determined by H: 

(15) uj(a) = H(a,\). 

Conversely if H is invariant and UJ is determined by (15), we have H(a,b) — 
H(b*a,\) = uj(b*a). 

In the case 11 = £>(G), 11 has no unit and it is in general impossible to extend 
UJ as positive functional to the algebra obtained by adjoining a unit to 11. This 
will be shown in the next section. The other sections of this chapter will be 
devoted to the correspondence UJ \—> Hu when 11 does not necessarily have a 
unit. 

Let us end this introductory section by applying section 3.1 to the GNS 
representation. 

Definitions 4. 1. 1. \. A positive functional UJ on 11 will be called self-adjoint 
if its associated ^-representation TT^ on 9f^ is essentially self-adjoint (cf. 3. 1). 

2.uj will be called bounded if Tru(a) is bounded for all a G 11 

Obviously, any bounded positive functional is a fortiori self-adjoint. Recall 
the following result [2: §37]: 

PROPOSITION 4.1.2. If UJ is a positive functional on a Banach *-algebra, then 
UJ is bounded. 

Proof. Let a; be a state on a Banach *-algebra and let (DUJ17^, 9fJ) denote, as 
usual, the GNS construction associated to UJ. For a G 11, then n^a) is bounded 
if 3Ma > 0 such that 

do) ||7a</)Hk = M J M k w ^ 

i.e. 

u(b*a*ab) = M^uj(b*b) Vb ell. 

If 11 is a Banach *-algebra with a unit, 1, we know that UJ is bounded and 
||o;|| = UJ(\). If 11 has no unit, we define for b G 21, uJh(a) '• — uj(b*ab). As 
before, let (B = 21 © C 1 be the algebra obtained from 11 by adjunction of a unit. 
Because 11 is an ideal in (B, we can define UJ(C) = uj(b*cb) for all c G fB and UJ 
is a positive functional on the algebra *B which is equal to ujh on 11 (one could 
check easily that UJ is the extension given by proposition 4.2.1 with k — uj(b*bj). 
Thus \\UJ\\ = UJ(\) — uj(b*b). Hence, 

H T T J ^ H I = uh(a*a)[/2 ^ \\a*a\\ 1 / 2 | | M k V ^ h ^ %- D 
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Remark 4.1.3. In the case of Cr°°(G), 71̂  is bounded for each UJ since it is the 
smeared version of the unitary representation of G by left translation in !HU}. 

However, even though the tensor algebra T(S (R4)) has a unit it is well-known 
that in that case not all representations of the form 7^ are given by bounded 
operators. 

PROPOSITION 4.1.4. Let UJ and UJ1 be functionals on 51 such that 0 ^ UJ' ^ UJ. 
Then if UJ is self-adjoint so is UJ' . 

Proof Let UJ" = UJ - UJ'. Then HJ = HJ' + H^"- Hence 9^' ^ Hv- This is 
therefore a direct consequence of theorem 3.1.11. D 

Remark. It is natural to think that a similar statement is valid with the word 
"self-adjoint" replaced by "bounded" but we have not proved this. 

4.2. Algebras with and without unit. Let 51 be a *-algebra without unit, 
and let $ = 51 + [ 1 ] be the algebra obtained by adjoining a unit. Recall that for 
each linear functional/, we define another one by: f*(a) : =f(a*). Iff = / * , 
we say naturally t h a t / is hermitian. The following proposition is well-known. 

PROPOSITION 4.2.1. (cf. [20: p. 187]) The necessary and sufficient conditions 
for a positive functional f on 51 to be the restriction to 11 of a positive linear 
functional on *B, are that 

(a) there exists a constant k ^ 0 such that: 

(l) \f(b)\2 < kf(b*b) VbeK. 

(b) / is hermitian. • 

If 51 has an approximate identity (ea), then in particular the products of 
elements of 51 form a total subset of 51. This is equivalent to the fact that each 
positive functional on 51 is hermitian. 

PROPOSITION 4.2.2. / / 51 is barrelled and has a bounded approximate identity 
i.e. (ea)aej is a bounded subset of 51, then every continuous positive functional 
on 51 satisfies conditon (1 ) . 

Proof For each y G 51 and a G / : \f(eab)\2 ^ f(eaea)f(b*b). Now the 
form (a, b) \—*f(ab) being separately continuous, it is hypocontinuous, and so 
bounded on a product of two bounded sets. Thus k — s\\\)af{eaea) is finite. 
Since \f(eab)\2 ^ kf{b*b), we get (1) in the limit, (cf. [20: p. 188]) • 

Example 1. Let 51 be the convolution algebra L{(G) on a locally compact 
unimodular group. Then 51 has a bounded approximate identity, and so every 
continuous positive form is hermitian and satisfies (1). 

PROPOSITION 4.2.3. Let UJ be positive and hermitian on 51. Let 9{j be the left 
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invariant Hilbert subspace of 21' whose reproducing operator is H : a \—> au. 
Then UJ G OQ if and only if UJ satisfies condition: 

(1) \uj(a)\2 ^ kuj{a*a) Va G 51. 

Proof. We pose as usual (T,a) — T(a*). Then (1) becomes, given the fact 
that a positive form is hermitian: 

(2) \(^a)\2 ^k{Haia) 

Equivalently 

(3) |(a;, a ) | ^ M\\fa\\ (M = y/k). 

If this is satisfied there exists an element h G Of, such that (UJ1 a) = (h\fa), 
which equals (jh,a). Thus UJ = h G Of. Conversely this implies (3) with M — 

IMI-
Example 2. Since £>(G) has an approximate identity every element of (P(G) 

is hermitian. In this particular case, (1) is equivalent to two further properties. 

PROPOSITION 4.2.4. Let UJ G (P. Then the following are equivalent: 
( l ) ^ G ^ , 
(2) UJ is a continuous function (i.e. UJ = 7)-, with f G C(G)). 
(3) UJ is the restriction to (D(G) of a positive linear functional on Ll(G). 

Proof (2) => 3. If UJ = Tj is a positive functional it is well known t h a t / is 
a continuous positive definite function. Thus UJ extends to a positive functional 
o n L 1 . 

(3) => 2. Conversely it is well known that a positive functional on L1 is 
associated to a positive definite continuous function. 

(2) => 1. Lt K(t,s) =f(t~ls). Then AT is the reproducing kernel of a Hilbert 
subspace Of ^-» C(G), with L , / G ^/". Now if// is the reproducing operator of 
Of as a subspace of £>', we have Hip = J (f(t)Ktdt =ip*f = (p*tj = H^tp. 
Thus 9{ = OC, and soo; = 7} G ^ . 

(1) => 2. We have for all T G Of, : (7|y> * a;) = (7 , y>). Then it is easily 
verified that T is the regular distribution associated with the function t \—> 
(T\6t * UJ). 

Example 3. Let L be any countable set. Let 11 be the set of matrices 
(<*ij)ieL, jeL* vanishing except for a finite number of terms. Let 1 be the identity 
matrix, (Sij)ieLjeL and let *B be the algebra generated by 11 and 1 in the alge­
bra of all matrices whose rows and columns have finite length. Then 11 has an 
approximate identity, namely the sequence (1A) where 1A — <5/y if ij G A, and 
0 elsewhere, A being a finite subset of L. We equip 11 with the inductive limit 
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topology 11 = U21A, A finite 21A = CAxA. Then it is a strict inductive limit. The 
approximate identity is therefore not bounded. 

Let UJ(A) — trace(A). Then uo is a positive form and LO(A*A) = \\A\\l, the 
square of the Hilbert-Schmidt norm. Now if we had (5) i.e.: \tr(A)\ ^ M||^||2 
it would follow that every Hilbert-Schmidt matrix is of trace class. This is not 
the case. Consequently the trace does not extend to a positive form on fB. 

Since 11 = C{LxL\ the anti-dual of 11 is the space of all matrices: CLxL, the 
anti-duality is: 

(A,B) = tr(AB*) = J2AuB>r 
ij 

The space H^ associated to the trace is clearly the space of all Hilbert-Schmidt 
matrices, i.e. C2(L x L). In the anti-duality between 11 and CLxL the form UJ is 
identified with the identity matrix / = (<5/;) : tr(A) — (A,/). Thus the condition 
is not satisfied because the identity matrix is not Hilbert-Schmidt. 

Conclusion. These examples show that conditon (1) is in general too restric­
tive. But the existence of an equicontinuous approximate identity is not unusual 
in an iL^T-algebra. 

4.3. The Derived Algebra. Let 11 be a topological algebra, i.e. an algebra 
equipped with a locally convex topology for which the product is separately 
continuous. We assume % to be complete, as is the case when 11 is an LCF -
space. Let p : 11 x 11 —> 11 be the map (x,_y) i—• xy. Then p induces a continuous 
linear map P — P%: 

(i) p-.nm-^ii. 

(Recall that for all matters concerning topological tensor products we refer to 
[13: Produits tensoriels topologiques]). Let (Dll — P(11®11) be the image, and 
fA£ = Ker(P). Then we have a linear bijection: 

(2) P : ll®ll/9t -*!D?l. 

We equip CD 11 with the quotient topology, i.e. with the topology for which P 
becomes a homeomorphism. 

PROPOSITION 4.3.1. (1) CD 11 is an ideal in 11 and a topological algebra in its 
own right, with continuous inclusion: 

(3) CD H ^ 11 

More precisely: if a G 11 the operators La : x —> ax, and Ra : x —> xa leave 
CD 11 invariant and are continuous in CD 11. 
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(2) If 11 is a Banach algebra (resp. a Fréchet algebra, resp. a nuclear Frécheî 
algebra) *D 91 has the same property. 

(3) //"9I is a topological *-algebra, D9I is invariant under the involution and 
a topological *-algebra in its own right. 

(4) If u : 91 —> (B is a continuous homomorphism there exists a unique 
continuous homomorphism (Du : *D 91 —> TPB such that 'Duo / \ = P,B o u <g> u. 
We have u(fD*&) C (D(B, and (Du is precisely the restriction-core striction of u 
to <D % and <D<B. 

(5) If 91 and $ are ^-algebras and u is a ^-homomorphism, (Du is a *-
homomorphism. 

(6) If U — {u} is an equicontinuous set of homorphisms 91 —> (B the set 
{(Du}ueu is equicontinuous. 

(7) Let (ea)aej be an equicontinuous approximate identity in the algebra 91. 
Then the maps Lc,a (resp. RCJ are equicontinuous in D9I, and converge point-
wise to the identity of (D 91. The family (e^aei is an equicontinuous approximate 
identity in <D1l. 

LEMMA 4.3.2. Let w : 91 —> *B be a linear map with the property that there 
exists a continuous linear map v : 91091 —> 'B&'B such that w o P = P o v. 
Then w(£>91) C CD(B and the restriction-core striction of w to (DU and (D^B is 
continuous. 

(4) 

a y a 

P 

(Da 

<B®<B 

P\ 

Moreover, if(w,)iei and (v,-)/€/ are sets of linear maps such that WJOP = Povjfor 
all / G / , (Wj)iei is equicontinuous in £(£>9I, (D<B )) if(Vj)ief is equicontinuous 
in £(91091, #<§)#). 

Proof Clearly w maps lm(P) to lm(P). Now <D 91 having the quotient topo­
logy the map w : <D 91 —-» £># is continuous if and only \iwoP is continuous. But 
woP equals Pov and so is continuous to 'D'B. Similarly if U is a neighborhood of 

njP-lw-[(U) = njVfl(P-{(U)) is a neighborhood 
(U) is a neighborhood of 0 in <D 91. D 

Oin£><£, P-I(riiwj-\U)) 
of 0 in 91(g) 91 and so Pl/w; 

Proof of 43A. (1) axy = P(ax ® y). Thus if La : 91 —• 91 is the operator 
of left translation we have, L„P(A (g> y) = ^(L^r ® y), and so by continuity 
LaP = P o (L„ ® / ) . It follows that the operator La leaves £>9I invariant and is 
continuous. Similarly Ra corresponds to / <S>Ra. 

(2) If 91 is a Fréchet space the separately continuous linear maps on 
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91 x 91 are continuous, and the separately equicontinuous sets of bilinear maps 
are equicontinuous. Thus 91(8)91 = 9I09I. Consequently 91(8)91 and ll®ll/9t 
are Banach, resp, Fréchet resp. nuclear Fréchet spaces. 

(3) Let / : x —> A* be the involution and a : 91(8)71 —» 71(8)31 be the ex­
change map: a(x (8> v) = v 8D .v. Since (AT)* = V*A* we have / o P — P o GO 

(I C8 / ) . It follows that the R-linear operator / leaves <D 11 invariant, and that 
it is continuous. 

(4) We have u(xy) = u(x)u(y). By continuity uoP = P o(u<g>u). This implies 
that w(£>71) C (DB and that the restriction-corestriction <Du of // to Œ)l\ and 
(DB is continuous. 

(5) This is obvious because the involutions in T> 71 and d>B are the restrictions 
to (D71 and (DB of the involutions in 11 and (B respectively. 

(6) Similarly {"Dwj^y is equicontinuous if and only if the set {<DuoP}ueU is 
equicontinuous. But this set is {Po(u®u)}lieU and this is equicontinuous because 
the set {u<S>u}ueu *s equicontinuous [13: Produits tensoriels topologiques, Prop. 
13, p. 73]. 

(7) As in the proof of (1) we have Lc,aP = Po(LCa<g>I). The maps LVn®l being 
equicontinuous in 91(g)91, it follows that the operators LCa are equicontinuous on 
(DU. Since LCa(xy) — P(eax <S> y) and the canonical map (A,V) »—> x <g> y is 
separately continuous, it follows that Lea(xy) tends to AT in (Dll. The products 
being total in £>7I (because the elements x®y are total in 91(8)31) the pointwise 
convergence (and even uniform convergence on compact sets) follows from the 
equicontinuity. To prove the last statement it is sufficient to show that the family 
(e2

a)a is an equicontinuous approximate identity in 91. The operators L2
l>a = (L; ) 

are equicontinuous. It is sufficient to prove that they converge pointwise to the 
identity in L(ll). Let p be a continuous seminorm on 91. Then there exists a 
continuous seminorm q on 91 such that p{eax) ^ q(x) for all v G 9Ï. Hence 
p(eae0.x-x) ^ p(eae$x - eax) +p(eax - x) ^ q(e0x - x) + p(eax - x) which is 
arbitrary small for a, (3 larger than some index «Q, in particular for a = (3 = oc(). 

D 

As we first remarked in the introduction, we are particularly interested in 
algebras 91 for which Z)?I = 91. 

Definition 4.3.3. A self-derivative algebra is a topological algebra 91 such 
that (Dll = 91, as topological algebras. 

Equivalently the map P : 7l(8>7I/lA£ —-> 91 is a linear topological isomorphism, 
or P : 71(8)71 —» 91 is surjective and open. 

Remark 4.3.4. Let 91 be a Fréchet algebra. Then 91091 = 71(8)71, and every 
element t G 9I09Ï has a series expansion t — Yin EN ^>'a» ® ^n with (A„) G ( ', 
and (qu) and (/?„) bounded in 91. [13: Produits tensoriels topologiques, Thm. 1, 
p. 51]. In this case D 91 is the set of elements a G 91 which can be written as a 
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convergent sum: 

(5) a = Y2 A„tf,A, 
neN 

with (an)„£N and (bn)ne^ bounded in 11 and (A„)//eN G / 1 . If 91 is a Banach 
algebra it is simpler to write (5) as: 

(5') a = ^2anbn 

/ /GN 

where ]P/;eN Ik/II IIM < +OG-

Thus D % = 91 if and only if every element a in 91 has a series expansion 
as in (5) or (5'). In that case, *D 11 and 11 being Fréchet spaces, the equality 
<Dll — 91 is a linear topological isomorphism by the open mapping theorem. 

If 91 = lim£„ is a nuclear L*J space, strict inductive limit of closed Fréchet 

subspaces En, 9IcS>9l = \\mEfl®En is a strict inductive limit of tensor products 

of Fréchet spaces and every / G ll&ll — UnE„<è)En has a series expansion 
as before. The open mapping theorem is also valid in this case [13: Produits 
tensoriels topologiques, Thm. B, p. 17] and so 11 is self-derivative iff every 
element a e 11 has an expansion as in (5). 

This shows that self-derivative algebras are algebras in which the product 
does not 'regularise': products and sums of products are not better than any 
other element in the algebra. 

Examples. 

(1) Convolution group algebras. Consider the convolution algebra C(T) of 
continuous functions on the circle equipped with the sup norm, it is a cummuta-
tive Banach algebra. Let ll(T) be the algebra of continuous functions with abso­
lutely convergent Fourier series equipped with its usual topology: the topology 
for which the Fourier transform is an isomorphism with I '(Z). It is a convolu­
tion subalgebra of the convolution algebra C (T) (the pointwise product of two 
I ' sequences being in f '). The space L2(T) is also a convolution algebra, con­
taining C(T) as a dense subalgebra: (T(T)^-> L2(T). The convolution product 
of two L2-functions is continuous. In fact Lr is not self-derivative. Even C(T) 
is not self-derivative. We have precisely: 

£>L2(T) = 9ï(T). 'DC(T) = ^i(T), £>9l(T) = 9l(T). 

the equalities being linear topological isomorphism. 
Similar results apply to more general compact abelian groups. 
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Proof. We restrict ourselves to the case of the torus T. Then 0(t) = I '(Z). 
We know that the product (v?, VO ,_> ^ * ^ is continuous from L2(T) x L2(T) 
to 2I(T), and so a fortiori it is continuous from C(T) x C(T) to 2I(T). 
Thus £>C(T)C—> ^ / ^ ( T ) 0 - » 3I(T) the inclusions being continuous. Now ev­
ery element tp G 2I(T) can be written p = £ w e Z A,^,,, where (X,,)nez £ 
/"J(Z) and ^,,(0) = E '̂"61. The series converges in the algebra 2l(T). Since 
^« * ŵ — en has norm 1 in 2I(T) we can interpret this as </? = />(^) where 
V? = £ W G Z A « ^ ® ^ ^ 2I(T)<g)2I(T). Thus £>2I(T) = 2l(T). In particular 
21 (T) = £ > 2 I ( T ) ^ <DC(T)^-> <VL2(T) which proves the equalities. These are 
topological isomorphisms by the open mapping theorem. • 

(2) Unital algebras. Every topological algebra with a left or right unit is 
self-derivative. 

If 1 is a right unit we have a — a\ — P(a 0 1), so P is surjective. To show 
that P is open, or equivalently that P is an isomorphism, let Q(a) = a ® \ and 
let 7T : 21021 —* 2I<8>2l/fA£ be the canonical map. Then P(Q(a)) = a and so 
PoQ = POTTOQ = / the identity on 21. Thus P has TTOQ as continuous inverse. 
A similar argument applies to a left unit. 

(3) O convolution algebras. Let G be a locally compact group. Then the 
convolution algebra 0(G) is self-derivative. 

Proof. It is well known that 0(G)®0(G) = 0(G x G). We have to identify 
the m a p P :0(G xG)—>0(G). For p^ e L ' ( G ) we have P(p ® t/;) = y*^. 
Thus almost everywhere P(<p ® ip)(y) — j p(x)ijj(x~ly)dx. Generally therefore, 
we have, for every K £ 0(G x G), P(K)(y) — JK(x1x~ly)dx almost every­
where. In fact by the left invariance of the Haar measure j dy J \K(x,x [y)\dx = 
j j \K(x,y)\dxdy so this map is well defined and continuous, and has the right 
value on p 0 ijj. To prove that T)0 = O we have to show that P is surjec­
tive. L e t / G 0(G). Let p G L !(G) be a function with J p(x)dx = 1. Then, if 
K(x,y) = (/?(x)/Cry), K belongs to 0(G x G) and PK = / . • 

(4) The algebra Co(T). Let 7 be a locally compact space. Then the algebra 
G)(T) of continuous functions vanishing at infinity, with pointwise defined prod­
uct, is self-derivative. In fact every non negative element is a square, and so 
every element is a sum of at most four squares. 

(5) C*-algebras. More generally, if % is a not necessarily unital C*-algebra, 
every non-negative element is a square, and every element can be written as a 
sum of at most four squares. Thus 21 is its own derivative algebra. 

(6) The group algebras. Let G be a locally compact abelian group and G 
the dual group. Then the group algebra 21(5), with pointwise multiplication 
and with the topology making the Fourier transform from 21(G) to 0(G) an 
isomorphism, is self-derivative. This is an immediate consequence of example 
(3). If G is compact the result is obvious because 21(G) has a unit. 
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Question. If G is a non cummutative locally compact group one can still 
define the group algebra 11(G), for instance as the set of convolution products 
of L2 functions (cf. [10: p. 218]). Is (D11(G) = 11(G)? 

(7) The algebra C(°°(G). Let G be a Lie group. Then the convolution algebra 
CC°°(C) composed of infinitely differentiable functions with compact support is 
self-derivative. 

Since CC
00(G)®Q00(G) = CC°°(G x G) this can be proved in the same way as 

in the case of 0(G). It suffices to choose the auxilary function <p in C(°°(G). 
Since C(°°(G) is a strict inductive limit of a sequence of the closed subspaces 
Q°°(G) of functions with support in K, this shows that every <p G C(°°(G) has 
a series expansion: 

(6) V? = X 1 A ' ' ^ ' 7 * ^ 

where the sequences ((fn) and (^n) are bounded in CC°°(G) and (Xn) G Ix. 
In fact, the theorem of Dixmier and Malliavin [8] shows that every <p G 

C°°(G) has a finite expansion y = ^ = i <P» * Vv with N ^ 2dim{G). 

(8) Trace class and Hilbert Schmidt operators. Let !H be a Hilbert space, 
and let L\(9i) be the Banach algebra of trace class operators. Then L\(9{ ) is 
self-derivative. 

Let A G L\ (Oi ) be self-adjoint. Then we have the spectral expansion 

(7) A = J2X»P,n 
n 

the Pn being finite dimensional orthogonal projections, and (A/?) being a sequence 
such that J2n \^n\rank(Pn) < +°°- Thus the series converges absolutely in the 
space L\(0i). Since the P„ are idempotent this is an expansion as in (5'). If A is 
not self-adjoint one can use a polar decomposition A = VS, with S a self-adjoint 
trace class operator, and we get a decomposition A = ^2n \„VPnPn = ^2nAnBn 

as in (5f). 
Now consider the algebra Li(9~[) of Hilbert Schmidt operators. Then 

<DL2(?{) = L\(rt\ In fact, if A = Y,nA*Bn w i t h E J K I b l K l b < +oo, 
the index indicating the Hilbert-Schmidt norm, we have A G L\(9{). Thus 
(DLi(9{)'L-^ L\('J-(). Conversely every trace class operator factors as a product 
of Hilbert Schmidt operators, so this inclusion is a surjection. 

Similarly, if we consider the spaces [ l and 12 with pointwise multiplication, 
we have <Dl2 = I ', and <Dtl = Ix. 

In this case Ix and 12 can be identified with the closed subspaces of L\(!H) 
and LiCtt) composed of diagonal operators (with respect to some countable 
orthonormal basis). 

Higher derivatives. Now let 

5l(()) = ll,ll{n) = T>%{n~l) if n ^ 1, and %(oo) = f)ll("\ 
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the last space being equipped with the weakest topology for which the inclusions 
in the algebras 2I(/?) are continuous. In other words 2l(00) is the projective limit 
of the spaces 2I(,?) : 2I(00) = lim5I(w). One then has: 

( i ) 2 i ( 0 0 ) --> n i n ) --> n { " - [ ) ^ . . . ^ Î I ( 1 ) ^ Î I 

Note that if 2I(/,) = 2I("+I) one also has 2I(,?) = ll{k) for all k ^ n. Let us remark 
also that if 21 is a Fréchet algebra so are the algebras 2I(/7) and 9I(00). 

In all the above examples we had either 2I(1) = 21, or 9I(2) = 2I(I). It is easy 
however to give examples of algebras where all the derivatives are different. 

(9) The algebra C[n){T). Let 21 = C('7)(T) denote the convolution algebra 
of all n times continuously differentiable functions on T. Then (D(C(n)(T)) C 
C{2n)(T) and 2I(00) - C (00)(T) the space of Schwartz test functions. Note that 
2I(oo) is a nuclear space although all the ll(n) are Banach spaces. 

In fact, we have more generally: 

PROPOSITION 4.3.5. If 11 is a Banach algebra then 2I(oo) = lim2l(//) is a nuclear 

space if and only z/V«, 3m > n such that the natural inclusion ofll(m) into ll{n) 

is absolutely summing (see [21: p. 36] for the definition of such maps). 
Since the composition of two absolutely summing operators gives a nuclear 

operator we have that this condition is equivalent to the existence for each n of 
an m such that the inclusion of 2I(w) into ll{n) is nuclear. 

(10) The tensor algebra. Let T(E) be the tensor algebra over the locally 
convex space E (see 2.2). More generally let Tn(E) be the locally convex direct 
sum of the completed tensor products E®k, with k ^ n. Then T(E) = C (BT\(E). 
Clearly the subspaces Tn(E) are closed ideals in T{E). Since T(E) is unital 
<DT(E) = T(E). On the other hand, 7,(£) is not unital, and <DTX(E) = T2(E). 
More generally: <DTn(E) C T2n(E). Thus if 21 = T\(E) the inclusions (1) are all 
strict, and 2I(00) = (0). 

In contrast to this we have the following: 

PROPOSITION 4.3.6. Let 11 be a Eréchet algebra. 
(1) If the products xy form a total subset of 11 then ll(n) is a dense subspace 

of 2I('7~1) for all n, and 2I(oo) is dense in 11. 
(2) ll{n) is an ideal in 11 for all n S oo. //' a G 21, La and Ra are continuous 

in ll{n) for all n. 
(3) If (ea) is an equicontinuous approximate unit in 21, LCa is an equicontin-

uous approximation of I in L(ll{n)) for all n ^ oo. 
(4) If moreover (ea) C llioo\(ea) is an equicontinuous approximation of the 

identity in ll{n) for all n ^ oo. 
(5) //2I is a separable Eréchet algebra having an equicontinuous approximate 

unit, there exists a sequential approximate unit (< )̂//eN> vv/Y/z e^ G 2I(00) \/k. 
Consequently this is an approximate unit for ll{n) for all n ^ oo. 
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Proof. (1) By hypothesis 5I(1) = £>5I is dense in 51. It follows that 5I(1)®5I(1) 

has dense image in 51(8)91 and thus 5I(2) = £>5I(1) is dense in 5I(1). Similarly 
5t("} is dense in 5I(W-1). Now the fact that 5I(oo) is dense in 51, and in all the 
algebras 5I(/,) is a consequence of the abstract Mittag Leffler theorem [5: Chap. 
2, §3, no. 5]. 

(2) For finite n, we do an induction on n. Assume that La is continuous on 
5I(//). Then the relation LaP — P(La ®/) and lemma 4.3.2 give the continuity of 
La on 5I("+1). For n = oo, note first that an intersection of ideals is an ideal. Now 
La : 5i(00) -> 5I(00) is continuous, because La : 5I(oo) -> 5I(/7) is continuous for all 
n since it is the composition of the injection 5I(00) <--> 5I(W) with La : 5I(/,) —> %{n). 
The proof for right multiplication is entirely analogous. 

(3) We prove it again by induction on n. Assume that LCa is an equicontinuous 
approximation of / in £(5I(/?)). Again using the relation LCaP = P(Lc,a 0 / ) and 
lemma 4.3.2 we get the desired conclusion. The argument for 5I(00) parallels the 
argument used in 2. 

(4) Obvious by 3. 
(5) Let {pn} be an increasing sequence of seminorms defining the topology 

of 51. Let H — {LCa} be an equicontinuous approximation of the identity in 
L(ll). 51 being separable, H and its closure are metrizable. Hence there exists 
a sequence en G 51 such that L€a converges to /. Let en G 5I(oo) be such that 
Pn(ën — en) ^ \/n. By 4. (en) is an approximate unit in 5I(0O) and in 5I(,/) \/n G N. 
• 

It is well-known that C*-algebras and Ll(G) do have bounded approximate 
identities and that the convolution algebra CC°°(G), for a Lie group G, has an 
equicontinuous approximate identity. In (\, with pointwise multiplication, the se­
quence Yl'!=\ ei ^ o e s m e trick. Similarly, L\(9-() has an equicontinuous approxi­
mate identity composed of finite rank projections. 

THEOREM 4.3.7. If 51 is a nuclear Fréchet algebra with an equicontinuous 
approximate identity then 5I(oo) has the following properties: 

(i) 5l(00) is a nuclear Fréchet algebra. 
(ii) £>(5I(oo)) = 5t(oo), i.e. 5I(oo) is self-derivative. 
(iii) 5I(00) has an equicontinuous approximate identity. 

Proof, (i) £>(5ï) = 5l(è5I/Ker(f>) is a nuclear and Fréchet space. Hence 
5I(") = £>(5i("™n) is also nuclear and Fréchet. Thus 5I(00) as the projective 
limit of nuclear and Fréchet spaces is itself nuclear and Fréchet by [12 Espaces 
nucléaires; p. 48]. (iii) and the remainder of (i) are consequences of 4.3.6. 

(ii) Let 

TT/IJI+I : 9I(M+I)<8)9X(II+1) —> UI(/,)<§>îl(/f) 

and 

TT/I+1 : 5I(0O)^5I(0O) -> 5I(/?+1)Ô5I("+1) 
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be the maps induced by the inclusions./,, : 2({oo) <-> 9I{/,) and 9I(,,)^-> 5I ( / ,-n . 
Then these form a projective system: 7r„ = TT„JI+\ O 7T//+I. It follows that there 
exists a continuous linear map: 

TT : ?I(00)<8>?1(00) -> lim5ï(,,)<g>5l(w) D 
// 

LEMMA 4.3.8. 77?^ w<z/? 7r /S a linear topological isomorphism. 

Proof. Since 2I(/7) is nuclear the e and 7r tensor product topologies coincide on 
%{n) <g) 5I(,,) : ÎI(,,)0^!!I(,/) = 5I(I,)(8)65I(W). Similarly ?I(0o)(g)^?I(0O) = 9I(00)(g)f9.I(00). 
To show that 7r is an isomorphism we show that a typical continuous semi-
norm p on ïï(oo)(8)îï(00) is of the form q o 7r, where g is a continuous semi-
norm on the projective limit. Given the definition of the projective limit this 
means that there exists n such that p is equal to q„ o TT„ where q„ is a con­
tinuous seminorm on !H(/,)(g)9I(//). Now the topology of 9I(00)(g)69I(00) being the 
topology of bi-equicontinuous convergence, the typical seminorm is of the form 
PAM(0 — sup{|r(^7 77>| : £ £ /l and 7/ G # } where A and £ are equicontinuous 
subsets of 9I (00). Now 9I(00) being the projective limit of the spaces ll{n) there 
exist an index n and a continuous seminorm /?„ on ll(n) such that the elements of 
A are in absolute value majorized by pn ojn, i.e. A is the image under the injec­
tion 2I(//) °-^ 9I(oo) of an equicontinuous set An in 9I(//). Similarly B comes from 
an equicontinuous set Bm in a space 9I (w). Replacing if need be n and m by the 
largest of the two, we may assume m = n. It then follows that PAS = PA„.B„ ojrn-
This implies in particular that the map TT is one to one and that it is an isomor­
phism onto its image. Next we observe that TT has a dense image. In fact llioo) 

being dense in 5I(W), the image of 9I(00)(g)9I(00) is dense in ll^&W'K This being 
the case for all n, 9I(OO)09I(OO) has a dense image in the projective limit. Now 
the image being isomorphic to 9I(/,)(§)^(//\ hence complete and so closed. This 
proves the lemma. • 

The proof of the theorem is complicated by the fact that we do not know 
whether the maps TT„J1+\ and TT„ are injective. (Contrary to the situation in lemma 
2.1.3 we are not dealing here with topological vector space homomorphisms). 

To discuss this more easily consider generally a projective sequence (E„. IT,UI+\ ) 
of Fréchet spaces such that the maps TTIU1+\ have dense range. Let E = limE,, 

be the projective limit, TT„ : E —> En the canonical map. Let there be given 
continuous linear maps u„ : E„ —* F to a locally convex space Z7, such that 
u„+\ — u„ o TTIUI+\ for all n. Let u : E —> E be the continuous linear map 

such that u o TT„ — u„. Let N„ (resp. N) be the kernel of u„ (resp. u). Then 
TT/^+KN/H-I) C Nn, and TT„(N) C Nn. Thus there are maps 7r„.„+i : En+\/Nn+\ —> 
En/Nn and TT,, : £//V —• En/Nn obtained by passing to the quotients. Obviously 
(En/Nnj 7r„,„+i) is a projective system and TT„ = 7r,v/+i o7r//+1 for all n. Thus there 
exists a continuous linear map p : £//V —• Y\mEn/Nn such that the composition 

of p with the canonical map YimEn/Nn —> En/Nn is equal to TT,,. 
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LEMMA 4.3.9. //' Im^, ,) Pi Nn is dense in Nn, then the map p is a linear 
topological isomorphism. 

Proof. Since E is a Fréchet space the space E/N is a Fréchet space (in 
particular, complete). Thus as in the previous lemma it suffices to prove that p 
is an isomorphism onto its image, and that the image is dense. Since the maps 
7r////+i have dense range, p has a dense range (cf. [5: Chap. 2, §3, no. 5]). Thus it 
suffices to prove that a typical continuous seminorm on E/N is for some n the 
composition of a continuous seminorm on En/Nn with the map ixn. Let A \—> x 
denote the canonical map E —> E/N or from En to E„/Nn. The topology of E/N 
is defined by the quotient seminorms p defined by p(x) = infve/v+.v/?(v) where 
p describes a fundamental directed system of continuous seminorm on E. Then 
there exists n G N such that p = p„o TT„, where pn is a continuous seminorm on 
Eu. Since u(x) = un{i\n{x)), we have: x G N <=> itn(x) G Nn. Thus 

p(x) = inf {p(y) : y eN + x} = inf {pn(irn(y)) : 7r„(v) G Nn + 7r„(.v)} 

= M{p„(z) : z eNn + 7Tn(x)} 

where the last equality makes use of the assumption. But this means that 

/Hi") = Pn(\n„(x)\) = p„(ir„(x)) 

Thus/? = pnojrn and this ends the proof of this lemma (the assumption 'Fréchet' 
was only used to prove that E/N is complete). • 

We continue with the same framework. Let Un : En/Nn —> E be the map 
obtained by passing to the quotient. Then Im(w„) = Im(w„). Since un+\ — un o 
7TfUI+\ and u — u„ o ir„, we obviously have: 

Im(w) C Im(w//+i) C \m(un) C E. 

LEMMA 4.3.10. \m{u) = f\ \m(un). 

Proof. It is sufficient to prove that n„ lm(un) is included in Im(w). Let v G E 
belong to the intersection. Then there exist unique elements xn G E„/Nn such 
that y = ùn(x„). Since ùn(ivlul+\(xn+\) = M„+ICVW+I) = y we havei,, = 7r„,„+i(.Y//+i), 
i.e. (À / ;) / /GN belongs to \\u\En/Nn. Thus by the previous lemma there exists an 

// 
element x G E/N such that ^ (À) = xn for all n. If A G E represents A, we have 
W(A') = un(irn(x)) = û„(xn) — y. Since y G Im(w) this proves the lemma. 

For n ^ oo let us denote Pn the map ^I(/,)(g)^I(//) —> % characterized by the fact 
that Pn(x0y) — AV. By lemma 1 we can apply the previous results to the spaces 
E = ?l(00)<g)?I(00), E„ = ^(,,)(g)%(//), F = 11 and to the maps un = Pn. Obviously 
P/l+i = P,, o7r//J/+i and Poo = Pno7rn for all n. If Nn = ker(P/;) C ïï(/,)ê^I(,;) and 
Â  = Ker(Poo), there only remains to check that Im(7r/;) H Nn is dense in Nn. In 
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order to check this, a closer look at the elements of N and N„ will be needed. 
In the next lemma 21 can be taken to be a general topological algebra. 

LEMMA 4.3.11. If 11 is an algebra with an equicontinuous approximate iden­
tity then ker(P) = s~pâH{xy 0 z — x 0 .yz : x,_y, z G 21}. 

Proof. Let {^a} be an equicontinuous approximate identity in 21. Let us 
denote by K the closed subspace spâ~n{xy (g> z — x ® yz : x , j ,z G 21}. 
If t G ker(F) then let t = lim* i2iei(k)xik) ® # } with /(A:) finite. Then 
z* = Z^/G/(A)X/AMA) = P(^k)) tends to zero as /: goes to infinity. For each 
a, define 

iel(k) 

Then clearly #> G K for all A: and a. Now let La : 21(g) 21 —• 21(g) 21 be defined 
by La(a 0 b) = <?a<2 0 /?. La is well-defined, linear and equicontinuous in a 
by the universal property of 0 [13: Produits tensoriels topologiques, p. 73]. 
But 4*} = La(t

{k)) - ea 0 z* where of course f(*> = X)/e/(*) ̂  ® 3?P) a n d 

L«(x 0 j ) = £ax (8) >' tends to x 0 _y. By equicontinuity the maps La extends to 
the whole of 2I02Ï and that we still have t = \ima La(t). Thus / G AT. • 

This preceding lemma will also be of use later but it enables us now to prove 
that we are in a situation where we can apply lemma 4.3.9 and 4.3.10. 

LEMMA 4.3.12. 7rn(N) is dense in Nn. 

Proof. Use theorem 4.3.1 part 7 in order to apply lemma 4.3.11 to 2I(/7) and get 
that yV„ is generated by the elements of the form xy<g)z— x0_yz for x, j , z G 2I(,7). 
2I(oo) being dense in 2I('?) it implies that any element of the form xy 0 z — x 0 yz 
for x, y and z G 2I(^ can be approximated by xaya (g za — xa (g _yaza with 
•*«, J«, ^a £ ^(oo)- But x a j a g) za - xa 0 j a z a G N for all a. 

Now we can apply lemma 4.3.10 in order to get; 

Im(Poo) = f j l m ^ ) i.e. D2I(oo) = p|£>2I(/l) - P|2I(/7+1) = 2I(oo). 

The identity £> 2I(oo) = 2I(oo) is a linear topological isomorphism by the open 
mapping theorem. This ends the proof of the theorem. • 

A degenerate example. Let 21 be a Fréchet space (e.g. finite dimensional) and 
define xy — 0 for all x, y G 21. 

(1) Then Ker P = 2I02I while xy 0 z - x 0 yz = 0 for all x, j , z. Thus 
Ker P is not generated by the elementary expressions. 
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(2) Any bilinear kernel H satisfies / / (ZA, y) = H(x, zy)(= 0) but no kernel 
^ 0 is of the form H(x, y) = uj(xy). 

Taking the product of this algebra with a reasonable algebra (e.g. with unit) 
one obtains intermediate situations less drastically degenerate. 

4.4. Correspondance theorem. Let 11 be an Z/F -algebra and let P : 
21® 21 —• £>(2I) be as in the last section. L e t / G (£>2I)' and let H be de­
fined by the equation: 

(1) H{x, y)=f(xy). 

Then H is a separately continuous bilinear form on 21 x 21. We may view / / as 
an element of (21 (8)21/. Then we have 

(2) H=foP = 'Pf 

The map /* being a surjective homomorphism the transpose 'P : £>(2I)' —• 
(2I02I)' is a homomorphism with respect to the weak* topologies. If H G 
(2I02I)' satisfies (2) we have Ker(//) D Ker(P). Since the quotient map P : 
21021/Ker(P) —• £>(2I) is an isomorphism onto, we get conversely that if// is 
0 on Ker(P) there exists a un ique / G 2)(21/ such that H =f oP. 

PROPOSITION 4.4.1. The map f »—> H = / o P is a hijective correspondance 
between £>(2I)' and Ker(/>)° = {// G (21021/ : Ker(//) D Ker(/>)}. 77ZLV ZS aw 
isomorphism with respect to the weak* topology on 2) (21/ tfwd r/?^ topology 
induced hy the weak* topology 6>/'(2I(02I)/. 

Let us recall that a bilinear map H on 21 x 21 is called invariant if 

(3) H {ah, c) = H (a, he) Ma, /?, c G 21. 

Let /?jnv(2I) be the space of all separately continuous and invariant bilinear 
forms with the topology induced by the weak* topology of (21021/. If K = 
~spà~n{xy®z—x<g)yz :x, y, z G 21} as before, then obviously H G Z?jnv(2I) iff//, 
as a continuous linear map on 21(8)21, is such that /C C Ker(//). Since /C C 
Ker(F), H =f o /> G # i n v W

 f o r a11 / G £> W - Conversely, if each invariant 
H corresponds to a n / in îD(2ï)/ via (2), we have Ker(P) = /C by the Hahn-
Banach theorem. D 

PROPOSITION 4.4.2. Ker(P) = s~pa~n{xy 0 z — x 0 yz : JC, >', z G 21} iff r/îé* 
map f \—+ H =foP is an isomorphism of £>(2I)' onto #jn v(2I) . 

As we have seen in lemma 4.3.11, the condition KQT(P) = K is satisfied 
whenever 21 has an equicontinuous approximate identity. 
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COROLLARY 4.4.3. If 21 is a self-derivative topological algebra with an 
equicontinuous approximate identity, then the correspondance f \—+foP is 
an isomorphism between 21 ' and Z?mv(2I). 

Remarks AAA. (1) The case of 21 unital is of course trivial since the corre­
spondance is given right away by the formula: H (a, 1) = f(a). 

(2) If 21 is an Lf -algebra with an ex. approximate identity, we get a converse 
to the corollary: 2T is isomorphic to $ i n v(2I) iff ID(51) = 21. Indeed, if rP : 
21' —> (21021/ Ker(F))' is an isomorphism onto then P : 21021/ Ker(P) —• 21 is a 
weak isomorphism onto by [12: Cor. de la Prop. 27, p. 109]. But 21021/Ker(/>) 
and 21 are both barrelled, hence they have their Mackey topology and F is a 
homorphism by [12: Cor. 3, p. 112]. This proves that in this case 21 is self-
derivative. 

In order to use the results of this chapter in the context of *-algebras, it will 
be sufficient to adapt the notations. 

Note first that if a; is a positive functional on 21 then the map Hu defined by: 

(3) //„(<*, b) = (u>, a*b) 

for a, b G 21, is a non-negative, hermitian, separately continuous sesquilinear 
form on 21 x 21. The invariance of Hu is now expressed by the following relation: 

(4) Hu(ca, b) = Hu(a, c*b) Va, b, c e 21. 

Such a map was called a left invariant kernel (3.1.1) and the space of all such 
maps, denoted Hermi

l
nv(2I), is endowed with the topology induced by the weak* 

topology of (2l02iy. 
The analogue of the map P is now defined on 21 0 21 by P\a 0 b) = b*a. 

P and Pf correspond to each other via the R-linear isomorphism a 0 b \—> 
b* 0 a and hence they define the same "derivative". Note also that K becomes 
span{ca 0 b — a 0 c*b : a, b, c G 21}. 

We can restate Corollary 4.4.3 as the first part of the following theorem: 

THEOREM 4.4.5. 7/21 is a self-derivative Lf *-algebra with an equicontinuous 
approximate identity, then the map u \—> H^ is a homeomorphism between 2T+ 

and Herm^nv(2l). 

COROLLARY 4.4.6. If 21 is moreover a nuclear space a subset £1 C 51+ is 
bounded if and only if the corresponding kernels are bounded with respect to 
the topology of pointwise convergence on 21 x 21. 

Proof Note that 21 being barrelled it is equivalent for a set Q in 21' to be 
bounded with respect to the weak* topology or with respect to the strong dual 
topology (uniform convergence on bounded sets). Given the isomorphism the 
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boundedness of Q is equivalent to the boundedness of {H^J^Q in the space 
(ll&liy equipped with the weak* topology. This obviously implies: 

(5) sup |//w(a, b)\ < +00 V0, b G 21. 

Conversely assume condition (5) is fulfilled. Then if Ai, A 2 C 21 are abso­
lutely convex bounded sets, the principle of uniform boundedness, applied to 
the Banach spaces ÎI^. whose unit ball is A/, implies that 

(6) sup sup{//^(tf, b) : a e A\, b e A2} < +00 
cued 

LEMMA. On (21(§)2iy the strong dual topology (uniform convergence on 
bounded sets) coincides with the topology of uniform convergence on sets 
A\ (g) A2, with Af C 21 bounded. 

Proof Let (Hn)neN be a sequence of Fréchet spaces such that 21 = lim2I,?. 
n 

Then by the nuclearity of 21, 21(g) 21 is the strict inductive limit of the spaces 
2I„(g)2I,2 (2.1.2) and so every bounded subset A of 21cg)21 is contained in one of 
the spaces 5IW(§)?IW. Thus it is contained in the closed absolutely convex hull of a 
set Ai (8) A2, with Az- bounded in 21 „ and therefore in 21 [12: Espaces Nucléaires, 
§3 no 1, prop. 12]. Conversely, if the sets A, C 11 are bounded, they are bounded 
in some space 2I„, and so Ai 0 A2 is bounded in 2Iw(g)Aw and in 2I(g)2I. This 
proves the lemma. • 

As a consequence of the lemma we get that (6) and therefore (5) imply the 
boundedness of the kernels in (21(8)21)̂ , and so in (lX(g)ll)f equipped with the 
weak* topology. The map *P : ll'+ —> Hermm (21) being an isomorphism the 
corresponding set of linear forms in 2T is bounded. (The positivity of the kernels 
was not needed for this argument). • 

Let us note finally that the result holds without the nuclearity assumption if 
21 is Fréchet algebra. 

5. Entire elements. 

5.1. Vector-valued holomorphic functions. Let £ be a quasi-complete lo­
cally convex space over C. Let £1 C C be an open subset of C. A continuous 
function/ : Q —> E is holomorphic if for every disc D in £1 and z G D one has; 

m / Y Ï 1 f f® s, 
0 ) / ( Z ) = W r C ^ C 

where F = dD. 
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Note that the quasi-completeness of E is required to make sure that the Cauchy 
integral makes sense a priori, for any continuous function with values in E. 

It is well-known that this definition is equivalent to the existence of a deriva­
tive for / at each point of Q or equivalently that there exists a neighborhood 
around each point of Q on which / has an absolutely convergent Taylor series 
expansion. 

PROPOSITION 5.1.1. Let E and F be q.c. locally convex spaces with E contin­
uously embedded in F. Let j be the injection 

(1) j.E^F 

and such that E has a fundamental system of neighborhoods which are closed 
in the relative topology of F. If f : £1 —> E is a locally bounded function such 
that j of is holomorphic, then f is holomorphic. 

Proof. The condition on E and F is equivalent to the following: There ex­
ists a fundamental family of continuous seminorms p on E, which are lower 
semicontinuous for the topology of F, i.e. 

(2) pC*) = sup|(*, r/)|, 

where r? describes the set {n G F' : |(jt, r/)| ^ p(x) Wx G E.}. Thus, in 
particular, we can view p as a lower semicontinuous function on F, which is 
finite on E. 

L e t / = j of. Then we have in F: 

Thus 

(̂ •'> = à/r(^')"<-
Therefore, if D = D(R) is a disc of radius R contained in Q, and M = 
s uPzeD/K/(z)) = supzGD/?(/(z)), we have for z G D(R/2), using (2): 

(4) K ^ ) ) £ " , = ( | ; ) ( ! ) 2 . 

Now again in F we have, for «, v G £>(/?), / (v)— / (« ) = fuf'(z)dz, the integral 
being taken along the line segment connecting M and v. Applying 77 and taking 
the supremum as before we get 

(5) p{f{u)-f(v))^Mx\u-vl 
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which proves that/ is continuous. This being so, the Cauchy integral for/ makes 
sense, and we have 

.„, i /" no ,, i . r no „ 
if 00 = 7T-- / 7 dC = T~~-J / 7 dC 

and soy being one-to-one we have (1). D 

The following example shows that some assumption is needed on / for the 
proposition to be true. 

Counterexample. Let E — c(N) be the space of converging sequences with 
the sup norm. Let F : C —* E be a function, F(z) = (fn(z))neN s u c n t n a t 

every fn is holomorphic. Then F need not be holomorphic. In fact, lim being 
a continuous linear form on c(N), the function z i—> limw_+00/w(z) would then 
be holomorphic, whereas it is known that the limit of a pointwise convergent 
sequence of holomorphic functions need not be holomorphic. 

5.2. Exponentially bounded one-parameter groups and entire elements. 
Let E be a locally convex space. The space of all continuous linear operators 
on E with values in E will be denoted L(E). If an element L in L(E) has a 
continuous inverse, then L is called an automorphism of E. 

Definition 5.2.1. Let T : R X £ —> E be a. map such that; 
(i)Vf GR, rt=iit,.)e£(E). 
(ii) V/j, t2 G R, rtl+h_ = rh orh and r0 = Id. 
(iii) r is jointly continuous. 

Then {rt} is called a continuous one-parameter group of automorphisms of E. 
Note that whenever E is barrelled, we have by [6: chap. 8, §2, proposition 1 ] 

that iii) is equivalent to iii7) r is separately continuous. 
Now let us assume that {rt} is a continuous one-parameter group at automor­

phisms of E. 

Definition 5.2.2. If x G E is such that the map t \—>rt(x) is the restriction to 
R of an entire function (necessarily unique) then x is called an entire vector of 
E with respect to r. The set of all entire vectors is denoted ET. 

For x G ET, let z J—> rz{x) G E denote the entire function extending the 
map t i—• rt(x). If x, _y G £T and À, i/ G C then by the principle of analytic 
continuation, TZ(XX + i/y) = ATZ(X) + vrz(y). It is also immediate that if x G 
Er, ru(x) G £V for all u G C and rz+w(x) — rz o TU(X). This proves that ET is a 
subspace of £ which is invariant under the action of rz for all complex numbers 

Now, given x G ET let/ =fx denote the entire function / : C -—> E; z i—>• TZ(A). 

This function / has the further property that; 

(1) r , ( / (z ) )=/ (z + 0 VrGR. 
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Let Hol(C : E) denote the space of all entire functions with values in E endowed 
with the topology of uniform convergence on compact sets and let Holinv(C : E) 
denote the closed subspace of Hol(C : E) composed of those functions/ having 
the invariance property (1). Given/ G Holinv(C : £), /(0) is an entire element 
determining/ completely on C by 

(2) / (z ) = r=(/(0)). 

PROPOSITION 5.2.3. The map x \—• fx is a linear bijection between ET and 
Holinv(C : E). 

Proof. Equip Er with the topology making this bijection a homeomorphism. 
Explicitely, ET is equipped with the seminorms PK(X) — supzGA:/7(Tr(x)) where 
K is a compact subset of C and p is a continuous seminorm on E. Clearly, one 
has a continuous injection ET^> E. D 

Definition 5.2A. Let w ^ 0. {rt} is said to be exponentially bounded, of 
bound ^ w, if for every continuous seminorm p on £, the map x \—• q(x) — 
suVteRP(Ttx)e-vv''' defines another continuous seminorm on E. Equivalently, if 
there exists a continuous seminorm q on E such that p(rtx) ^ ew^q(x) for all t 
and x. 

Remarks 5.2.5. (1) Recall that if E is a Banach space, then any continuous 
one-parameter group is exponentially bounded [9: Cor. 5, p. 619]. 

(2) If E is barrelled, then {77} is exponentially bounded of bound ^ 
w iff supte^p(rtx)e~w^ < +oo for each continuous seminorm p and for all 
x eE. 

PROPOSITION 5.2.6. (1) If E is a Eréchet space then so is ET. 
(2) If E is an L*J -space and if {77} is exponentially bounded then ET is also 

an Lf -space. 
(3) If E is a nuclear space then so is ET. 

Proof. (1) If E is Fréchet then so is Hol(C : E) and its closed subspace ET. 
(2) (Note that a closed subspace of an X^f-space need not be an X^F-space). 

For any x G E, the boundedness of the function e~w][t\p{Tt{x)) implies that 
e~w^rt(x) takes all its values in En for a certain n which, in turn, implies that 
rt(x) G En Vt G R. In particular, the same is true for x G ET. But if /" G E°, the 
annihilator of En in E', then the function z \—• (rz(x), I ) is entire and 0 on R, 
hence identically 0 on C which means that TZ(X) G En Vz G C. Therefore if 

Holinv(C : En) := {/ G Holinv(C : E) : / (C) C En} 

then ET ̂  Holinv(C : E) which is equal to limHolinv(C : En). But Holinv(C : E„) 
n 

is a closed subspace of the Fréchet space Hol(C : E„) = Hol(C)®En. Thus 
Holinv(C : En) is a Fréchet space and ET is an X^F-space. 
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(3) If E is nuclear then each subspace En is nuclear. Then Hol(C)cè£„ (the 
tensor product of two nuclear spaces) is nuclear and so is the inductive limit 
Hol(C : E). Therefore its subspace ET is nuclear as well. • 

Let us assume all throughout this section that E is the strict inductive limit 
of a sequence of Fréchet spaces {En}ne^ and that {r>}r(ER is a continuous and 
exponentially bounded one-parameter group of automorphisms of E. 

PROPOSITION 5.2.7. (1) {rt} is a continuous and exponentially bounded one-
parameter group of automorphisms of ET with the same bound. 

(2) (ET)T — ET as topological vector spaces. 

Proof. (1) First note that rt acts on ET = Hol inv(C : E) as translation by t i.e. 
Tt(f(z)) =f(z + t). If {fa} is a net converging t o / in ET, then the translates offa 

converge to the translate off uniformly on compact sets thus proving that r, acts 
continuously on ET. r is moreover continuous in t because continuous functions 
are equicontinuous on compact sets. Moreover, if x G ET1 AT is a compact subset 
of C and p is a continuous seminorm on E, then there exists q, a continuous 
seminorm on E such that p{jz{rtx)) ^ p(rt(Tzx)) ^ ew^q{rz{x)) for all t in R 
and z in K. Taking the sup on each side we get PK^X) ^ ew^qK(x). 

(2) By définition (ET)T<-^> ET. If x G £ T then/v : C —> ET
 c-> E is holomorphic 

in E. f is locally bounded since we have for every u E / / , a compact subset 
of C, PK(TUX) ^ PK+H(X). Applying proposition 5.1.1 we get that x G (ET)T and 
the equality between the two spaces is an isomorphism by the open mapping 
theorem. 

THEOREM 5.2.8. (1) If {rt} is exponentially bounded then Er is dense in E. 
(2) If F C ET is r-invariant and dense in E then F is dense in ET. 

Without the assumption in 1. ET may reduce to (0). 

Example. Let £>(R) be the space of Schwartz test functions on R. Let 
7>(V>)(-*") = ^C* + 0 f ° r all *•> t G R and for all test functions i/j. Then \jj is 
an entire vector for r iff ip is the restriction to R of an entire function. But t/> 
has compact support hence 0 is the only entire vector of *D (R). One can check 
of course that in this case, r is not exponentially bounded. Thus some growth 
condition has to be assumed in order to get enough entire vectors. 

To prove this theorem, we introduce the following space. Define 5 to be the 
space of all holomorphic functions <p : C —-> C having the property that 

p\,h{ip)= sup{é>A|/||v?(r + /7)|} < + o o 
/eR 

for all A and b positive. 

PROPOSITION 5.2.9. (1) The space S with the seminorms {px,b}x,h^o Is a nu­

clear Fréchet space containing the Gaussian functions gn(t) = (n/7ry/2e~flf~. 
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(2) For every Lp G S and z G C, the function <pz : u \—-> (̂ (w — z) belongs to 

S. Moreover z \—> tpz is holomorphic i.e. every vector in S is holomorphic with 

respect to the group of real-translations. 

Proof. (1) The only non-trivial thing to prove is the nuclearity of S and since 
we make no use of this property here we will omit it. 

(2) Let (p G S and z G C. Define <p2 : = (p(u — z) for every u G C. If \z\ ^ r 
then p\ih(<pz) ^ eXrpx^+riy) which shows that <pz G S and that the map z i—• ĉ z 

from C to S is locally bounded. Applying 5.1.1 we get that z i—> <̂ z is an entire 
functions with values in S. • 

PROPOSITION 5.2.10. (1) For every ip € S and x G F , r^x : = JR (p(t)rt(x)dt 
exists in E. Moreover for all x G F , r^(x) G FT w/Y/z r^ix) = r ^ ( x ) dwd // 
X G FT, TZT^(X) = T^TZ(X). 

(2) TTze ma/7 (<£,x) i—>T^(J:) w continuous from SxE to ET. 
(3) For x £ E (resp. x G FT) r ^ x i—> x in E (resp. in ET). 

Proof (1) Since {rt} has an exponential bound less than w ^ 0, there 
exists for each continuous seminorm p on F a continuous seminorm </ such 
that /J(T,(JC)) ^ e w | ^ ( x ) for every f G R and x G F . If ^ G 5 , we get that 
p{<p{tyrt(x)) ^ \<p(t)\ew^q(x) = e^p^^qix). Thus 

pir^x)) ^ 2pw+lio((p)q(x). 

This proves the first statement and the continuity of the map (<p,x) t—» r^{x) 
from SxE to F . Note that TZT^(X) = ^ ( x ) for all z G R. But the map z \—-» T<^_(-X) 

from C to F is holomorphic since it is the composition of a continuous map and 
a holomorphic one (5.2.9). Thus r^(x) G FT and TZT^(A) = r ^ (x ) for all z G C. 

(2) Let ( / ? G 5 , x G F , z G C and p be a continuous seminorm on F . Note 
that 

P(TZT^{X)) =P(T<P=(X)) ^ 2/?H,+lio(^-)(/(x). 

If p,(x) := sup|z|^r/7(TzC\-))then/7A.(r^(x)) ^ 2é>''(H'+1V-+v(v:?)<700- Which proves 
the continuity of the map ((f,x) »—>• r^(x) from SxE to F r . 

(3) The proof is based on the two well-known facts: 
(i) JR gn(t)dt = 1 for all n G N and 

(ii) lim„_+oo f |><5 gn(t)e
x^dt = 0 for any 6 > 0 and A > 0. 

First, let us take an x in FT. Let K be a compact subset on C. Note that 

P(TZ(T<PM) ~ *)) = / P(T=(rt(x)-x))<pn(t)dt 
JR 
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for all z in K and for all n G N. Given e > 0, use the continuity of rt on ET 

(5.2.7) to get 6 > 0 such that \t\ < 6 implies supzeK p(Tz(rt(x)-x)) ^ e/2. Using 
i), we then get 

f p(Tz(Tt(x)-x))<pn(t)dt£e/2. 

Now since {rt} is exponentially bounded with bound ^ w, there exists a semi-
norm q on E such that p(rt(x) ^ ^ ' ^ ( J C ) . Let M = suprG/^(/? + q)(rzx) then for 
all zeK, 

/ p(r z(r , ( jc)-Jc))(^w(0A^ / p(TtTz(x))ifn(t)dt 
J\t\>6 J\t\>6 

+ / p(Tz{x))ipn{t)dt 
J\t\>b 

^ [ q(T;(x))ewWipn(t)dt 
J\t\>b 

+ / p(Tz(x))ifn(t)dt 
J\t\>8 

£2M( [ ewW<pn(t)dt). 
\J\t\>è J 

Using (ii) we get N G N such that for all n ^ N and for all z G K, 

[ p(Tz(Tt(x)-x))<f„(t)dt^e/2 
J\t\>è 

Thus given e > 0 there exists n^ N, such that PK(j^n(x) ~ x) = e- This proves 
the case x G ET while the case x G E is proved applying the same reasoning 
with AT = {0}. • 

Proof of 5.2.8. (1) Follows from 5.2.10 part 3. 
(2) Replacing F by its closure in F r , we may and do assume that F is closed 

in ET. If x G ET then rtx G F r for every t G R. Since r is exponentially bounded 
on ET (5.2.7), Jrt(x)ip(t)dt exists as a vector integral in ET for each ^ G S by 
5.2.10. If x G F, we see that T^(JC) = Jrt(x)ip(t)dt G F since F is assumed 
closed and r-invariant. If x G ET let {x a} C F be a net such that xa —> x in 
E. By 5.2.10 part 2 this implies that r^ixa) —»• ^ ( x ) in FT for all ip G 5 . In 
particular, it means that r^{x) G F and since T ^ ( X ) —>• x in F r when H —-> oo, 
this implies that JC G F . Thus F = FT as was to be proved. • 

5.3. One-parameter groups of *-automorphisms. Let us return to the con­
text of LJ *-algebras. Let 11 be an LJ *-algebra. Now we further assume that 
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each 7> is a *-automorphism of 51 (as a *-algebra). We denote 5IT the set of all 
the entire elements of 51. 

PROPOSITION 5.3.1. (\) 11T is a r-invariant *-subalgebra of 51. Moreover, 

Tz(ab) = rz(a)Tz(b) and rz(a*) = (T,(a))*. 
(2) 5IT Z5 a« XïF ^-algebra. 
(3) {77} ZS « continuous one-parameter group of ^-automorphisms on 5IT. 

Moreover r acting on 5ÏT is exponentially bounded with the same bound as r 
acting on 51. 

(4) (5l r) r = 5IT as topological ^-algebras. 

Proof. (1) Given « and b in 5IT, the functions z i—> rz{a)rz(b) and z i—-> (T>(<2))* 
are holomorphic and equal to rz(ab) and rz(a*) resp. for all z G R. Thus they 
are equal for all z and (1) follows. 

(2) This is a particular case of 5.2.6. 
(3) and (4) follow from (1) and 5.2.7. • 

Example 1. Let "H be a finite dimensional Hilbert space. Let {77} be a con­
tinuous one-parameter group of *-automorphisms of L {Oi ). Then by [7: p. 243] 
we get that {77} is implemented by a continuous group of unitary operators on 
H, hence there exists a self-adjoint operator h on 9-( such that 

Tf(a) = ^ ^ - ' 7 A \JaeL{9f). 

But then all elements are entire and rz(a) — elzhae~lzh Vz G C. 

Example 2. Let 51 — Cin be the 2TT periodic functions on R with the usual 
product and the sup norm. Let rtf(x) =f(x-\-t) i.e. r is the group of translations 
on R. Then 5lT is the space of all holomorphic functions on C with the property 
tha t / (x + iy) G Cin m x for all _yGR. Note that 5IT with its natural topology is 
nuclear even though 5Ï is a Banach space. 

Example 3. Let 51 = 5 ( R ) the Schwartz space of rapidly decreasing functions 
on R. Let 77 be translation as in example 2. Then r has polynomial growth i.e. 
for each continuous seminorm p on 51, there exists a continuous seminorm q 
and n G N such that 

p(rt(a)) ^ (1 + M)Vtf) Vf G R, a G 51. 

a fortiori r has exponential bound ^ w for every w > 0. 

Example 4. Let ^ be a Hilbert space and let / / be a self-adjoint operator 
defined on a dense domain in 9f. Let Z) be the space of the analytic vectors for 
H, i.e. 

D= \v e t t w e D(Hn) V/ iGN and j jT J & J L ! < +00 Vr > 0 . 
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D is a core for H and hence H\D is also self-adjoint. Thus we will let D be the 
domain of H. Let Ut = eltH Mt G R. {Ut} defines a one-parameter group of 
isometries on H. If v G D then 

makes sense for any z G C. If A G L(D) then define the following group action: 
Az = az(A) — UZAU-Z. Let 21 be the set of all those A's such that the seminorms 
PK(A) = sup„GA: ||AZ|| < +00 for all K compact in C. It can be shown that 21 is 
stable under the product and the * operation and moreover that 21 is an algebra 
for which these two operations are continuous. 21 is actually a Fréchet algebra 
continuously embedded in L(D). It is possible moreover to show that a l M G 11 
are entire. If 11Q = {A G L(9f)\ the map t i—> or,(A) is || ||-continuous} then 11 
is a *-subalgebra of the closed algebra 210 in L(J{). In fact 21 = 2I0,T. 

Let us end this section with the following result about the relation between 
the derived algebra and the entire elements. 

PROPOSITION 5.3.2. Let 11 be a topological algebra (resp. *-algebra). Let 
(T>)/GR be a one-parameter group of automorphisms (resp. ^-automorphisms) 
of 11 of exponential bound ^ w. Then (ÛTt form a one-parameter group of 
automorphisms of exponential bound ^ w on (D(1X). 

Proof In fact by the parts 3. and 4. of 4.2.1 {£>T>} forms a one-parameter 
group of automorphisms, resp. * automorphisms of (Dll. Now the exponen­
tial bound means that the linear operators e~w^Wt are equicontinuous. But we 
have e~w^(Drt — (De~w^tWt and so these operators are again equicontinuous in 
£>2I. • 

6. Central and KMS functionals. Throughout this section, 21 will denote 
an Lf * -algebra with an equicontinuous approximate identity. Let {rt} be a 
continuous and exponentially bounded group of *-automorphisms of 21. The 
second definition below is due to Kubo [16], Martin and Schwinger [19]. 

Definitions 6.1.1. Let UJ be a positive functional on 21 invariant under the action 
of a continuous one-parameter group of *-automorphisms {rf} i.e. uj{rt{a)) = 
cu(a) for all f G R and a G 21. 

(1) UJ is called a central functional (also called abelian or tracial functional) 
if 

(1) (u,ab) = (u;,ba) Va, b G 21. 

(2) Let j3 G R. Then UJ is said to satisfy the (r, /?)-KMS condition (for short, 
UJ is a (T, /3)-KMS functional) if 

(2) (UJ, OTipib)) = (UJ, ba) Mb G 2Ir and Ma G 21. 
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Remark. If rt equals the identity on ÎI for d\\ t G R then all the elements of 
the algebra are entire and (1) and (2) are identical. Then the KMS functionals 
with respect to the trivial group are the central ones. This observation motivates 
our treatment of central functionals as a particular case of the more general 
KMS functionals. 

If /3 ^ 0 and the action of the group r is bounded then it is known that 
condition (2) implies the invariance of the functional. Similarly, 

PROPOSITION 6.1.2. If (3 ^ 0 and suppose that the group r has polynomial 
growth (see example 3, §5.2) i.e. for each continuous seminorm p on 11, there 
exists a continuous seminorm q and n G N such that 

(3) p(rt(a)) ^ (1 + \t\)nq(a) Vf G R, a G 21. 

If UJ is a functional on % satisfying (2) then u is r-invariant. 

Proof. Since 5lT is dense (5.2.8) and T> and u are continuous it is sufficient 
to prove that uj(rta) = uj(q) for all t G R and a G 9IT. Let a G 3lr and define the 
entire function F(z) : = UJ(TZO). Let p be a continuous seminorm on % such that 
\uj(a)\ ^ p{a). Let q be as in (3) and let M : = s u p 0 ^ 7 ^ qir^a). Then \/t G R 
and V7 G [0, /?], we have 

(4) \F(t + /7)| = MT,(T / 7 <I) ) | ^ p(rf(r/7fl)) ^ (1 + k | )^ ( r / 7 ^) ^ Af (1 + \t\)n. 

Let us also define the functions Fa(z) : = uj(Tz(a)ea) and Ga(z) : = uj{ear2a). 
Since {^a} is an approximate identity they both converge pointwise to F. The 
KMS condition implies that Ga(z + i/3) : = uj{eaTi^{r2a) = uj{rz{a)ea) — Fa(z). 
Passing to the limit we get F(z + i(3) = / ( z ) Vz G C. But (4) and the periodicity 
of F now gives us that |F(z)|| ^ M (I + \Re(z)\)n for all z G C. Thus the function 
F is a polynomial and since it is periodic it is constant. • 

Clearly the KMS functionals for a fixed a fixed r and a fixed (3 form a weak* 
closed and convex subcone of the positive cone in 21'. 

Example I. Let K be a compact set. Let {rt} be a group of * -automorphisms 
of C(K). Then rt is implemented by a group {ht} of homeomorphisms of /^ 
i.e. Tt(f(x)) = f(ht(x)). Suppose that there exists a n i G ^ such that ht(x) = x 
for all t G R. Then the evaluation at J C , ^ G C{K)' is a (r, /3)-KMS for every 
/ 3GR. 

Example 2. Let ^4 denote then «-dimensional Hilbert space, and £(9-0), the 
von Neumann algebra of all linear operators on ^4 . It is well-known that the 
trace is the unique (up to a constant) abelian functional on L (Hi)- Recall that 
if {rt} is a continuous group of *-automorphisms then 

rz(a) = eizhae-lzh Vz G C and Ma G L(Hi)> 
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where h G L(9ti) is self-adjoint. Suppose then that UJ is a (r, /3)-KMS functional 
for a certain 3 G R. Again, a simple calculation shows that uj'(a) — uj(e^ha) 
now defines an abelian functional. Therefore uj{a) = tr{e"^ha) is the unique 
( T , / ? ) - K M S functional on £ ( % ) . Now if 51 C £ ( ^ £ ) is a *-subalgebra with a 
non-trivial projection p in its center and if elth belongs to 51 for all t G R (i.e. 
{T>} is inner) then we get two other KMS functionals UJ\ and UJ2 defined by 
uj{(a) = tr(e~Phap) and uj2(a) = tr(e^ha(\ - / ? ) ) . 

Example 3. We can also combine the two last examples as follows. Recall 
that if 511 and 512 are two Banach *-algebras then 511(8)7^2 is also a Banach *-
algebra with product defined as follows: If u = Xw=i ai®bt and v = J^Li cj®dj 
then wv = ^ -ÛJCJ 0 fr/dy. (Actually, it is the unique Banach algebra which 
extends the product (a ® b)(c ® d) = ac®bd. For more details see [2: p. 235]). 
Let 111 = C(/Q, r,1 and uj\ — 8X be as in the first example, and let 512 = L(?d) 
with ?f and o^O?) = tr{e~^ha) be as in the second. Then one checks easily that 
uj\ ®v2 is a (r1 (g)?2, /?)-KMS functional on CiK^^iHi). 

Let us now define the action of rt on 11' simply by the adjoint action; 

(5) {rt{u),a) = {u,T-t(a)) V / G R . 

PROPOSITION 6.1.3. For every UJ G 51 ' a/?<i v̂<?ry a G 51, 

(6) 7>(flu;) = r, (0)77 (a;), 

and 

(6') rr(cja) = Tt(uj)Tt(a). 

If UJ is T-invariant then rt{uj) — UJ for all t G R tf/id (6) becomes; rt(auj) = rt{a)uj 
while (6') az« «6>w /?£ r^ad; rt(uja) — ujrt(a). 

We will now assume for simplicity that 51 = 5IT in the following propositions. 
Later we will drop this assumption and apply these results to the subalgebra 5IT 

(which equals (5IT)T) and to the restriction of UJ G 51' to 5Ir. 
Then 

(7) {rz(oj)1a) = (uj,r^(a)) Vz G C 

is the analytic extension of the dual action defined above and each UJ G 5T 
becomes an entire element for this group action. 

LEMMA 6.1.4. If UJ G IV and a G 51 r/ẑ /7 

(8) 7%(tfu;) = T^ÛOT-OJ) 
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and 

(80 T : W = T : MT : W. 

Thus, if uu is invariant rz(ou) = ou for all z G C and (8) and (8') become; 
rz{aou) — rz(a)ou and rz(uja) = ourz(a). 

PROPOSITION 6.1.5. The following statements are equivalent: 

(1) LU is a (r, /?)-KMS functional. 
(2) ojT-jp(a) — aou Wa G 51. 

(3) Tip/2(a)u = (JT-ip/2(a) \fa G 51. 

/V00/. CJ is a (r, /?)-KMS functional iff (a;, br^{a*)) = (ou, tf*/?) V<3, 6 G 
51. But (CJ, bTip(a*)) = (uT-ipia), b) and (a;, a*ft) = (au;, /?). While (2) and 
(3) correspond replacing <2 by T±jp/2(a). D 

In the case of central functionals it reduces to: 

COROLLARY 6.1.6. ou is abelian if and only if auj — ouaMa G 51. 

For a? G 5Ï', let ou* G 51' be defined as before by the formula; (a;*, a) : = 

(a;, a*). 

LEMMA 6.1.7. (1) / / a ; G 51' f/œw rz(a;)* = rz{ou*). 

(2) If ou G 51' and a G 51 f/îe« (acj)* = a;*a*. 77zws, //"a; zs hermitian, we have 
(aou)* = cjtf*. 

Define the following anti-automorphism on 21, 

(9) K(a) : = Tip/2(a*) Va G 51. 

In fact « is an involution on 51 i.e. «:2 equals the identity on 51. Recall that the 
adjoint of an antilinear map is defined by (K*OU, a) = (ou, KO). Let us denote / 
the adjoint of «. One checks directly that 

(10) K*OU=JoU = T-l(3/2(oU*) V ^ G 5 l ' . 

/ is also involutive and anti-linear. Note that in the case where ou is central, 
J ou = ou*. The last two propositions can now be restated as follows; 

PROPOSITION 6.1.8. IfH^ is the reproducing operator of ou then ou is a (r, /?)-
KMS functional if and only if JH^K — Hu. Equivalently, ou is a (r, /3)-KMS 
functional if and only if JH^ — HJ i-e- J restricted to Of^ defines an anti-
unitary operator. 
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Proof. In view of proposition 2.3.4, we only need to prove the first assertion. 
For all a G 51, 

JH^ia) = JHuiTippia*)) = J(Ti0/2(a*)u;) 

= T-ii3/2{(Tii3/2(a*)u)*} 

= T-jp/2{uT-il3/2(a)} 

= LJT-ip(a) 

This equals H^a = au if and only if u; is a (r, /?)-KMS by proposition 6.1.5. 
Note that / leaves D^ invariant. Let us denote by / , the anti-unitary operator 

obtained by restricting / to 9^. As usual, let TTL0(a)f = af for / G Du be the 
GNS representation of 51, associated to u. 

Let us define the following representation, denoted pw, of 8 in £{0^); 

(11) Pu,(à)f.=fT-w/2(a*) V A G I 

In the central case, pu becomes simply; 

(110 P„&)f=fa* V â e ! . 

Note that the action of pu on 51 defined by (3) in 3.1 gives; 

(11") Pu(à)b = brim(a*) = bnia) 

for every a and b belonging to 51. • 

PROPOSITION 6.1.9. Pu(a) = Jj<^{a)J_ Ma G 51. 

The proof is again straightforward. Now recall from section 4.1 that if u; is a 
self-adjoint functional on 51 then ^(51)' and hence 

(12) pw(S); = /7rw(«)'/ 

are both von Neumann algebras. 
Define 

(13) ^ : = ^(5I) 'npw(5ï) ' . 

Of course, 3W is another von Neumann algebra. Denote the positive cone of Wl 

by m+ i.e. m+ = {r G aw : T 2; o}. n 

Now let us return to the general situation and drop the assumption 51 = 5lr. 
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LEMMA 6.1.10 Let UJ G llf. Let DT : = {au : a G llT} and let nT : = KJ\DT be 

the representation TT^ restricted to DT. Then 

(i4) irT(%Ty = ^ ( î i y . 

Similarly, we have 

(15) pT(%)' = Pu(%)'. 

Thus 

(16) 2W = 7TT(ÎIT)' n PT{%)' = ^ ( î i / n Pa,(fl)'. 

Proof. Suppose (14) verified, then (15) and (16) follow since 

PujV%)' - ITTU(%)'1 = 77rT(ÎIT)7 = pT{%)'. 

Let us prove (14). S G 7rT(9Iry if and only if 

(17) (S<Ku(a)<p\il>) = (S<p\Tru(a*)xl>) 

for all (p, ip G D r and all # G ÎÏT. Let b, c G 5IT be such that (p = j*(b) and 
i/> =j*(c). Then (17) becomes 

(18) (yS/^, c) = (jSfb, a*c) 

for all <3, /? and c in 9Ir. But each side of the equality in (18) is separately 
continuous in #, /? and c. Thus the equality extend to every a, b and c in 21. 
This implies that (17) holds for every 99, 1/; G Dw and every <2 G 51 and it proves 
(14). • 

Let us recall that f3 G R is fixed and that {rt}t^ is a continuous one-parameter 
group of *-automorphisms of % with exponential bound. Let V denote the cone 
of all positive (r, /3)-KMS functionals. Given UJ G T let r(u;) = {a;' G T : 3X G 
R+ such that UJ' Û \UJ}. Y(UJ) is called Û\Q face generated by UJ in the cone Y. 

THEOREM 6.1.11. Let 11 be a se If-derivative LJ ^-algebra having an equicon-
tinuous approximate identity. Let UJ G 11' be a self-adjoint (r, /3)-KMS functional. 
Then Y(UJ) is linearly isomorphic to Wl+. Moreover, ifT G ïïft+ one hasJTJ_ = T. 

Proof. Let UJ and UJ' be two functionals on 11 such that 0 S UJ' Û UJ. Then 
9{j' °-> ^4C—>(ÎÏT)'. Let us denote by T the reproducing operator of ?C> as a 
Hilbert subspace of J%. 9-b> being invariant we get by proposition 3.1.10 that 
T G 7Ta;(ÎIT)/. Now let us assume that UJ and UJ' are KMS functionals. Then 
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JHv = Hv and jrC* = Hv1- Thus JjHj = #£,/. But this is equivalent by 2.3.4 
to Jjr = T i.e. JTJ_ = T. Hence T G 7^(21)7 = p^S) ' . Thus T G 3«+. 

Conversely let 7 G 3W+. Then in particular T G 7^(2^)'+ = 7 (̂21)'+. Let 
Ĉ c—• ^4 °~* 2T he the 7^-invariant Hilbert subspace of ^H having T as a re­

producing operator in OT^. Let AT denote the reproducing operator of 3C in 2T'• 
Since 21 = ID (21) and 21 has an equicontinuous approximate identity, we can 
apply theorem 4.4.5 in order to get an element UJ' G 21'+ such that Ka = au' for 
all a G 21. Now 7 G p^C®)'- Applying 3.1.10 with the representation pu this time 
we get that Of^' is invariant under p^. Thus pw(â)//w/(/?) = H^'iPuji^b). Hence 
Pu(a)(buj') = (pu{a)b)u)' i.e., buj'r^^^ia") = bTip/2(a*)uJf. Since the products 
are dense in 21, this implies o/r-^O?*) = Tjp/2(a*)ujf for all (3 G 91. Therefore 
uo' is a KMS functional by proposition 6.1.5. D 

THEOREM 6.1.12. Let H be a self-derivative Lf *-algebra with an equicontin­
uous approximate identity. Then the face generated by a self-adjoint (r, /3)-KMS 
functional in the cone of all (r, /?)-KMS functional is a lattice. 

Proof. From the last assertion of 6.1.11, we have J_AJ_ = A also for A G 3JI 
self-adjoint. Thus for a general A = A\ + iA2 G Wl we have by the antilinearity 
of J_ that TA/ = Ai - iA2 = A*. Then A*£* = X4#/ = £M* which implies 
that SM is commutative and hence a lattice (actually, SM is a lattice iff 3W is 
commutative [27: Theorem 1, p. 227J). • 

COROLLARY 6.1.13. If 11 is a se If-derivative Banach ^-algebra then the cone 
of all (r, /?)-KMS junctionals is a lattice cone. In particular, if 11 has a unit 
then the (r, /?)-KMS states form a simplex. 

Proof. Since positive functionals on Banach *-algebras are bounded (4.1.2), 
the first statement is a particular case of 6.1.12. The second assertion comes 
from the fact that the evaluation of a functional at the unit defines a hyperplane 
section of the positive cone. Thus the (r, /3)-KMS states form a base of the 
lattice cone of all (r, /3)-KMS functionals. • 

This last result is due to Ruelle [24: Theorem 5.1.6] in the case of C*-algebras 
with a unit. 

7. Existence and uniqueness of an integral representation for self-adjoint 
KMS functionals on nuclear *-algebras. We will prove in this chapter the 
theorem announced in the introduction on the existence and uniqueness of an 
integral representation for KMS functionals on nuclear *-algebras. 

Let 21 be a nuclear Z/F *-algebra. Let 21+ be the closed convex cone of positive 
functionals on 21. 

Let Q, be a Suslin section of 2I'+ i.e. a Suslin subset which meets each ray in 
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precisely one point ^ 0. If 91 has a unit 1, we naturally define £1 to be the set 
of states: 

(i) Q = {w e ?i'+: w(i) = 1}. 

In the general case one may be obliged to choose £1 in some arbitrary fashion. 
Since it is known that 91' is a Suslin space [26: Cor. 1. p. 115], the cone 91+ 

is a Suslin cone and as such has a Suslin section £1 [28: Thm 1.19]. None of 
the results essentially depend on this choice however. Using conical integrals 
instead of Radon measures, one can avoid any choice ([28]). 

Let T C 91+ be any closed convex subcone. If uu belongs to T, the set TD(UJ—T) 
is the interval between 0 and uu with respect to the order relation defined by T, 
and T(UJ) = U^oF H (Xuu — T) is the face generated by uu in T. The set ext(F) 
of extreme generators of T is the subset of those elements uu for which T(uu) is 
the half line R+ uu. 

PROPOSITION 7.1.1. Let Hi be a self-derivative nuclear Lf *-algebra having 
an equicontinuous approximate identity. Let T be a closed convex cone in 21+. 

(1) The cone T is generated by its extreme rays i.e. 

(2) r = cd ext(T). 

Let S = Çl H exuT). 
(2) For every element wGT there exists a Radon measure m on S such that 

(3) (j = / ujdm(uj). 

The measure is uniquely determined by u if and only if the face T(uf) is a lattice 
with respect to its proper order (i.e. the order induced by F). 

Proof Corollary 4.4.6 shows that the order intervals m (a; — T), uu G T, are 
bounded subsets of the topological vector space 91;. The theorem now results 
from theorems 5.5, 5.8, 1.18 and 1.19 of [28]. 

Let {rt}teR be a continuous and exponentially bounded one-parameter group 
of *-automorphisms of ÎI. Let (3 be any real number. Let Tp be the cone of 
positive and invariant KMS functionals and let 

(4) S = ext(I» H Q 

be the corresponding normalized set of extreme KMS functionals. If 91 has a 
unit and £1 is defined by (1) S is the set of extreme /3-KMS states. 

Recall that a functional uu is said to be self-adjoint if the corresponding GNS 
representation 7rw is essentially self-adjoint in the sense of Powers (4.1.1). Also 
uu is said to be bounded if the operators ir^a) are bounded for all a G 91. 

https://doi.org/10.4153/CJM-1990-023-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-023-3


466 A. BELANGER AND E. G. F. THOMAS 

THEOREM 7.1.2. Let 91 be a self-derivative nuclear Lf *-algebra with an 
equicontinuous approximate identity. Let {rt}te^ be a continuous and exponen­
tially bounded one-parameter group of ^-automorphisms ofH. Let f3 be any real 
number, and let Fp be the corresponding cone of KMS functional. Ifuj G T^ is 
se If-adjoint there exists a unique Radon measure m on S with the property (3). 

This decomposition is orthogonal in as much as the integral 

(5) K= H,dm(uj) 

is direct. The GNS representation ir^ is the integral of the representations TT^: 

(6) 7r̂  = / fKudm{uJ) 

i.e. the vector 

(7) / = J f(u})dm(u;y, J Wfi^fdmiu) < +cx> 

belongs to the maximal domain ofir^ if and only if m-almost all the components 
f{uj) belong to the maximal domains of the corresponding representations and 

(8) I \\af(uj)\\2dm(uj) <+oo \/a G î l . 

If the maximal domain of -KU is metrizable in the graph topology, almost all 
the representations ix^ are essentially self-adjoint. If UJ is bounded the extreme 
functional UJ are almost all bounded. 

Proof. Let T = Fp. By theorem 6.1.12 the face T(UJ) is lattice isomorphic to 
the positive part of the commutative von Neumann algebra: 

(9) m^irMnpM. 

The order intervals of F being bounded (4.3.6) the existence and uniqueness of 
the measure m representing UJ is a consequence of theorems 5.1 and 5.8 in [28], 
S being an admissible section of exuT) (cf. 1.18, 1.19 loc. cit.). 

Next we prove that the integral Of = Js OCdm(uj) is direct. We have to prove 
that if Ai and A2 are disjoint Borel subsets of S, the spaces 9iAi = JA Hjdm(uj) 
are disjoint, i.e. !HA] Pi 9-CAl = (0). Let 7, be the reproducing operator of 0iAi in 
9{ — O^j. Let M+(m) be the face generated by m in the cone of non negative 
Radon measures on S. The correspondance between M+(m) and 2K+ being a 
linear bijection, the fact that the measures \\xm and \A2m are mutually singular 
implies that inf(7i, T2) — 0 in the lattice 23?+. Let E\ and E2 be the spectral 
measures associated to T\ and T2. Let P{ — £/(0, +00). Then since Pt =f(Tj), 
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wi th / = l(o,+oo) vanishing at 0, inf(Pu P2) = 0 in 3W+. Thus P{ + P2 = 
sup(Fi, Pi) = / , i.e. P\ ^ / — P2, which implies that Pi and P2 project on 
orthogonal subspaces. Since 0fAj — lm(T}/2) C Im(P,), / = 1, 2, the spaces 
^4, and tHAl are disjoint. 

Let M be the maximal domain for the representation 7rw and let fTŴ  be 
the maximal domains for the 71̂ . Let / = Jf(uj)dm(uj) belong to M. Then 
by lemma 3.2.4 we have f(uj) G $C for ra-almost all u. Moreover \\af\\2 — 
j \\af((jj)\\2dm(uj) < +00 for all a G 21. Conversely, if f(u) G 9^ for m-almost 
all u and J ||a/*(a;)||2dra(û;) < +00 for all # G 21, a/ = J af(uj)dm(u;) belongs 
to # for all a G 21, i .e./ G M. 

If f7W is metrizable, theorem 3.2.2 implies that 71̂  essentially self-adjoint for 
almost all u. The last assertion follows from proposition 3.2.5. D 

COROLLARY 7.1.3. The decomposition (5) is precisely the diagonalization of 
the commutative von Neumann algebra %R, defined in (9). Explicitly: For p G 
L°°(m) let T^ he the operator defined as follows: 

(10) V = / <p(u)f(u)dm(u>)\ f \\f(uj)\\2dm(cj) < +00 

/ being defined by (7). Then the map ip \—> T^ is a ^-isomorphism between 
L°°(m) and 2tt. 

Proof. We have established linear bijections between the following cones: 
3W+ and T(uf), T(ÇJ) and M+(m), and obviously M+(m) and L°°(m)+. It suffices 
to prove that the resulting correspondance between L°°(m)+ and 2W+ is the map 
p \-^Tif. Let; : ^ 4 ^ 2f and j ^ : H^^ 91' be the canonical injections. Let 
(p G L°°(ra)+, and let a/ be the KMS functional corresponding to pm. Then we 
have 

(Hy/a, b) = (HUJa,b)(p(u;)dm(uj)= / (Ûa\j„b)(p(Lj)dm(u) 

= J(TXa\mdm(uj) = (T^fa\fb) = (JT^fa, b) 

Thus T^ is the reproducing operator of H±' in ^Ç. In particular by 6.1.11 T^ 
belongs to 3W+. This proves that the map ip »—• 7^ is a linear bijection between 
L°°(ra) and 2W. The integral being direct, formula (10) shows that it is a *-
isomorphism. D 

COROLLARY 7.1.4. Let 21 be a self-derivative nuclear Lf *-algebra with an 
equicontinuous approximate identity. Let T be the cone of positive central func­
tional on 21, let Q, be a Suslin section of F and let S — ext(F) n Q. If u G T is 
self-adjoint there exists a unique Radon measure m on 5 such that 

(11) UJ — \ ujdm(uj) 
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Moreover this decomposition is orthogonal. The other statements in the theorem 
also remain valid. 

In fact this is a particular case of the preceding theorem, where rt is the 
identity on 11 for all i G R. 

Remark 7.1.5. It may happen that 11 is neither self-derivative nor nuclear, 
but that the infinite derivative H{oo) is both. In that case one may be able to 
apply the theorem or its corollary to 9I(oo). For instance if 11 = CC

X(G) is the 
convolution algebra of functions of class C[ with compact support on a uni-
modular Lie group G, the algebra ll{oo) is equal (at least algebraically) to the 
space of Schwartz test functions C(°°(G), which is self-derivative, nuclear, and 
has an approximate identity. If we apply corollary 7.1.4 to the convolution alge­
bra CC°°(G), taking into account remark 4.1.3, we recover the Bochner-Schwartz 
theorem for unimodular Lie groups (cf. [30]). 
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