J. Austral. Math. Soc. (Series A) 28 (1979), 378-384

ON GROUP RINGS OF FINITE METABELIAN GROUPS

G. KARPILOVSKY

(Received 12 February 1979)

Communicated by H. Lausch

Abstract

It is proved that a finite metabelian group G is determined by its group ring KG where the ring K satisfies the following conditions.

- (*) K is an integral domain of characteristic 0 in which no prime dividing the order of G is invertible.
- (**) Z/mZ is a homomorphic image of K where m = exponent of G'.

It is also shown that all groups of order 2^n , n < 7 are determined by their integral group rings.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 20 C 05; secondary 16 A 26.

The aim of this paper is to prove that a finite metabelian group G is determined by its group ring KG where the ring K satisfies the following conditions

(*) K is an integral domain of characteristic 0 in which no prime dividing the order of G is invertible

(**) Z/mZ is a homomorphic image of K where m = exponent of G'

This theorem generalizes Whitcomb's result (Whitcomb (1968)) which states that a finite metabelian group is determined by its integral group ring and also a result of Sehgal (1970) who proved that a finite metabelian *p*-group is determined by its *p*-adic group ring. We present our theorem in a generalized form which covers (for the case K = Z) Obayashi's result (Obayashi (1970)) established by cohomological methods. We also prove that a 2-group which is abelian-by-dihedral of order 8 is determined by its integral group ring. The corresponding result for the case of a 2-group which is elementary abelian-by-dihedral of order 8 was proved by Obayashi (1970). Finally, we show that all groups of order 2ⁿ, $n \leq 7$, are determined by their integral group rings.

In what follows KG denotes a group ring of a group G over an associative ring K with 1, I(K,G) denotes the augmentation ideal of KG, KG = KH means that H is a normalized group basis of KG. We shall often write I(G) instead of I(K, G)when the precise situation will be clear from the content. If S is a subset of KGand Λ is an ideal of KG then $S + \Lambda = \{s + \Lambda | s \in S\}$. Finally, O_p (respectively $Z_{(p)}$ stands for the ring of *p*-adic integers (respectively *p*-integral rationals).

LEMMA 1. Let G be an arbitrary group, K an arbitrary ring with 1, M and N arbitrary subgroups of G. Then the following equalities hold $I(M) \cdot I(N) \cap I(N) = I(M \cap N) \cdot I(N).$ (1)

- $I(G) \cdot I(N) \cap I(N) = I(N)^2.$
- (2)
- $G \cap 1 + I(G) \cdot I(N) = N \cap 1 + I(N)^2.$ (3)

PROOF. By taking M = G we see that (1) \Rightarrow (2). Since $G \cap 1 + KG \cdot I(N) = N$ it follows that $G \cap 1 + I(G) \cdot I(N) = N \cap 1 + I(G) \cdot I(N) = N \cap 1 + (I(G) \cdot I(N) \cap I(N))$ and therefore (2) \Rightarrow (3). Let T be a set of all coset representatives of M with respect to $M \cap N$. If m = tn, $n \in M \cap N$, then for $n' \in N$ we have

$$(m-1)(n'-1) = (t-1)(n-1)(n'-1) + (t-1)(n'-1) + (n-1)(n'-1).$$

Since the first and the second summand belong to (t-1)I(N) and since

$$(n-1)(n'-1) \in I(M \cap N) \cdot I(N), \quad (m-1)(n'-1) \in I(M \cap N) \cdot I(N) + (t-1) \cdot I(N)$$

then

$$I(M) \cdot I(N) = I(M \cap N) \cdot I(N) + \sum_{1 \neq t \in T} (t-1) I(N).$$

Let

$$x = y + (t_1 - 1) [\alpha_{11}(n_1 - 1) + \dots + \alpha_{1s}(n_s - 1)] + \dots + (t_k - 1) [\alpha_{k1}(n_1 - 1) + \dots + \alpha_{ks}(n_s - 1)],$$

where

$$y \in I(M \cap N) \cdot I(N), \quad t_j \in T, \ n_i \in N, \quad 1 \le i \le s, \quad 1 \le j \le k.$$

If $x \in I(N)$ then

$$z = \alpha_{11} t_1(n_1 - 1) + \dots + \alpha_{1s} t_s \quad (n_s - 1) + \dots + \alpha_{ks} t_k(n_s - 1) \in I(N)$$

and since all elements of N have coefficient 0 in z, z = 0.

But $\{t_1(n_1-1), \dots, t_s(n_s-1)\}$ is a linearly independent set and therefore

$$\alpha_{11}=\ldots=\alpha_{1s}=\ldots=\alpha_{ss}=0.$$

Hence $x = y \in I(M \cap N) \cdot I(N)$, proving the lemma.

Let A be an abelian group of exponent n and let K = Z/mZ where $m \equiv 0 \pmod{n}$. As in the case K = Z the formula

$$f\left(\sum_{a\in A} (\alpha_a \cdot 1)(a-1)\right) = \prod_{a\in A} a^{\alpha_a}(\alpha_a \in Z)$$

defines a homomorphism of I(A) onto A with kernel $I(A)^2$. From this follows: $A \cap 1 + I(A)^2 = 1$ and $A \cong I(A)/I(A)^2$. Moreover, since

$$f\left(\sum_{a\in A} (\alpha_a \cdot 1)(a-1)\right) = f\left(\prod_{a\in A} a^{\alpha_n} - 1\right)$$

the following congruence holds

(4)
$$\sum_{a\in A} (\alpha_a \cdot 1)(a-1) \equiv \prod_{a\in A} a^{\alpha_a} - 1 \pmod{I(A)^2} (\alpha_a \in Z)).$$

In general if G is a group and n is the exponent of G/G' then

(5) $G/G' \cong I(K,G)/I^2(K,G)$

- and
- $G \cap 1 + I^2(K, G) = G',$

where K = Z/mZ and $m \equiv 0 \pmod{n}$.

LEMMA 2. Let A be a subgroup G and let K = Z/mZ where

 $m \equiv 0 \pmod{n}$, n = exponent of A/A'.

Then the following properties hold

(7)
$$KG \cdot I(A)/I(G) \cdot I(A) \cong A/A^{\vee}$$

and

(8) If A is abelian and $x \equiv g \pmod{KG \cdot I(A)}$ for some $g \in G$, then there exists a unique element $g_x = ga (a \in A)$ such that $x \equiv g_x \pmod{I(G) \cdot I(A)}$.

PROOF. It follows from KG = K + I(G) that $KG \cdot I(A) = I(A) + I(G) \cdot I(A)$ and the application of (2) and (5) yields

$$KG \cdot I(A)/I(G) \cdot I(A) \cong I(A)/I(A) \cap I(G) \cdot I(A) = I(A)/I(A)^2 \cong A/A',$$

proving (7). Finally, $x \equiv g \pmod{KG \cdot I(A)}$ implies $x \equiv g + t \pmod{I(G) \cdot I(A)}$ for some $t = \sum_{s \in A} (\alpha_s \cdot 1)(s-1) \in I(A)$.

Therefore $x \equiv g + (a-1) = (1-g)(a-1) + ga = g_x \pmod{I(G) \cdot I(A)}$ where

$$a=\prod_{s\in A}s^{\alpha_s}$$

Since $G \cap 1 + I(G) \cdot I(A) = A \cap 1 + I(A)^2 = 1$ the element g_x is unique, proving the lemma.

Let $\alpha \to \overline{\alpha}$ be a ring homomorphism from K onto \overline{K} with kernel Λ and let G be an arbitrary group. Then the mapping $\phi: KG \to \overline{K}G$ defined by

$$\phi\left(\sum_{g} \alpha_{g} g\right) = \sum_{g} \bar{\alpha}_{g} g$$

determines the epimorphism of rings KG and $\overline{K}G$ with Ker $\phi = \Lambda G$.

LEMMA 3. Let G be a group and let K be a ring. Then KG = KH implies $\overline{K}G = \overline{K}\phi(H)$ and $\phi(H) \cong H$. Therefore if A and N (respectively B and T) are subgroups of G (respectively of H) such that

$$KG \cdot I(A) = KG \cdot I(B)$$
 and $N + KG \cdot I(A) = T + KG \cdot I(A)$

then

$$\overline{K}G \cdot I(\overline{K}, A) = \overline{K}G \cdot I(\overline{K}, \phi(B))$$
 and $N + \overline{K}G \cdot I(\overline{K}, A) = \phi(T) + \overline{K}G \cdot I(\overline{K}, A)$.

PROOF. All we have to do is to prove that there exists an isomorphism λ of group rings $\overline{K}H$ and $\overline{K}G$ such that $\lambda(H) = \phi(H)$. Clearly, KG = KH implies $\Lambda G = \Lambda H$. Consider the mappings

$$\overline{K}H \xrightarrow{\lambda_1} KH / \Lambda H = KG / \Lambda G \xrightarrow{\lambda_2} \overline{K}G$$

where

$$\lambda_1\left(\sum_{h\in H} \bar{\alpha}_h \cdot h\right) = \sum_{h\in H} \alpha_h \cdot h + \Lambda H \quad \text{and} \quad \lambda_2\left(\sum \alpha_g g + \Lambda G\right) = \sum_{g\in G} \bar{\alpha}_g g.$$

Then λ_1 and λ_2 are ring isomorphisms and therefore $\lambda_2 \lambda_1$ is also a ring isomorphism. It is easy to see that $\lambda_2 \lambda_1$ is also a \overline{K} -module isomorphism and that $(\lambda_2 \lambda_1)(h) = \phi(h)$ for any $h \in H$, proving the lemma.

Let R be the ring of algebraic integers of a number field and let $u = \sum_{g} \alpha_{g} g$ be a unit of finite order in RG. It is well known (Berman (1955)) that if $\alpha_{1} \neq 0$ then $u = \alpha_{1} \cdot 1$. From this follows that every central unit of finite order in RG is trivial. The following extension of this result belongs to Saksonov (1971).

LEMMA 4. Let K be an integral domain of characteristic 0 in which no prime dividing the order of G is invertible. If $u^m = 1$ where $u = \sum_g \alpha_g g \in KG$ and if $\alpha_1 \neq 0$ then $u = \alpha_1 \cdot 1$. In particular, all central units of finite order in KG are trivial.

PROOF. Consider the regular representation of the group ring $\Phi(\varepsilon) G$, where Φ is the quotient field of K and ε a primitive *m*th root of unity. Then

$$\operatorname{tr}(u) = \alpha_1 \cdot |G| = \varepsilon_1 + \ldots \varepsilon_{|G|},$$

where $\varepsilon_i^m = 1$ and $\varepsilon_i \in \Phi(\varepsilon)$, i = 1, 2, ..., |G|. Therefore $\alpha_1 = |G|^{-1}(\varepsilon_1 + ... \varepsilon_{|G|})$. All we have to do is to prove that α_1 is an algebraic integer. By looking at the tr (u^r) where (r, m) = 1 we see that the set $\{\beta_1 = \alpha_1, \beta_2, ..., \beta_t\}$ of all Q-conjugates to α_1 , belongs to K and therefore $Z[\beta_1, ..., \beta_t] \leq K$.

Suppose that α_1 is not an algebraic integer. Then there exists an elementary symmetric function f of t variables such that $f(\beta_1, ..., \beta_t)$ is not a rational integer. On the other hand, for some $l \in \mathbb{Z}$ and some $k, l \leq k \leq t$, $f(\beta_1, ..., \beta_t) = |G|^{-k} l$ and therefore $f(\beta_1, ..., \beta_t) = (a/b) \in \mathbb{Z}[\beta_1, ..., \beta_t]$ where $a, b \in \mathbb{Z}$, (a, b) = 1, b > 1

G. Karpilovsky

and every prime divisor p of b also divides |G|. This shows that $(a/p) \in \mathbb{Z}[\beta_1, ..., \beta_t]$. Since (a, p) = 1 there exist $c, d \in \mathbb{Z}$ such that ac+dp = 1 whence

$$\frac{1}{p} = \frac{ac + dp}{\rho} = \frac{a}{p} \cdot c + d \in \mathbb{Z}[\beta_1, \dots, \beta_t] \leq K,$$

which is a contradiction. This proves the lemma.

COROLLARY. Let $N \Delta G$ and let π : $KG \rightarrow K(G/N)$ be the canonical homomorphism where K is as in Lemma 4. If KG = KH then

$$K(G/N) = K\pi(H)$$
 and $KG \cdot I(N) = KH \cdot I(N^*)$,

where $N^* = H \cap 1 + KG \cdot I(N)$.

PROOF. It suffices to show that $\pi(H)$ is a group basis for K(G/N). Indeed, in this case π can be regarded as the extension of the epimorphism $H \to \pi(H)$ by K-linearity, hence Ker $\pi = KG \cdot I(N) = KH \cdot I(N^*)$.

Let $\sum_{x \in H} \alpha_x \cdot x = 0 (\alpha_x \in K)$ and let $\alpha_h \neq 0$ for some $h \in \pi(H)$. Then

$$\alpha_h \cdot h = -\sum_{x \neq h} \alpha_x \cdot x$$

and therefore there exists $y \neq h$ such that the coefficient of 1 in yh^{-1} is nonzero. But in this case $yh^{-1} = \alpha \cdot 1$ ($\alpha \in K$) and since H is normalized, y = h-contradiction. This proves the corollary.

THEOREM. Let A be an abelian normal subgroup of a finite group G and let KG = KH where the ring K satisfies (*) and (**) for n = exponent of A. If N/A (respectively M/A^* where $A^* = H \cap 1 + KG \cdot I(A)$) is the centre of G/A (respectively H/A^*) then there exists an isomorphism of M onto N carrying A^* onto A.

PROOF. We shall prove even a more general result, namely if N and M are subgroups of G and H respectively such that

$$N \ge A$$
, $M \ge A^*$ and $N + KG \cdot I(A) = M + KG \cdot I(A)$

then there exists an isomorphism of M onto N carrying A^* onto A. It follows from the corollary of Lemma 4 that $KG \cdot I(A) = KG \cdot I(A^*)$ and hence $|A| = |A^*|$.

By applying Lemma 3 we may assume that K = Z/mZ where *m* is a multiple of both the exponent of *A* and the exponent of *A*^{*}. Multiplying both sides of the equality $KG \cdot I(A) = KG \cdot I(A^*)$ by I(G) = I(H) we obtain $I(G) \cdot I(A) = I(H) \cdot I(A^*)$. It follows from (7) that $A \cong A^*/(A^*)'$. Since $|A| = |A^*|$ then $A \cong A^*$ and therefore the application of (3) and (6) yields $H \cap 1 + I(H) \cdot I(A^*) = 1$. Let

$$\pi\colon KG\to K(G/A)$$

be the canonical homomorphism. Since $N + KG \cdot I(A) = M + KG \cdot I(A)$ then

$$\pi(N) = \pi(M)$$

and therefore $|N/A| = |M/A^*|$. Hence |M| = |N|. The same equality also implies that for every $h \in M$ there exists $g \in N$ such that $h \equiv g \pmod{KG \cdot I(A)}$. By (8) there exists a unique $g_h \in N$ such that $h \equiv g_h \pmod{I(G) \cdot I(A)}$.

Therefore the mapping $f: h \to g_h$ defines a homomorphism of M into N. Since |M| = |N| and since Ker $f \leq H \cap 1 + I(H) \cdot I(A^*) = 1$, f is actually an isomorphism of M onto N. Let $b \in A^*$. Then $b-1 \in \text{Ker } \pi = KG \cdot I(A) = I(A) + I(G) \cdot I(A)$ and it follows from (4) that $b-1 \equiv a-1 \pmod{I(G) \cdot I(A)}$ for some $a \in A$. Hence $b \equiv a \pmod{I(G) \cdot I(A)}$ and f(b) = a. Thus it remains only to prove that N and M satisfy $N + KG \cdot I(A) = M + KG \cdot I(A)$. It follows from the corollary of Lemma 4 that $K(G/A) = K\pi(H)$. Since $\pi(N)$ (respectively $\pi(M)$) is the centre of G/A (respectively H/A^*) the application of Lemma 4 yields $\pi(N) = \pi(M)$. Hence $N + KG \cdot I(A) = M + KG \cdot I(A)$, proving the theorem.

COROLLARY 1. Let G be a finite metabelian group and let the ring K satisfy (*) and (**). Then G is determined by its group ring KG.

PROOF. Take A = G'. Then N = G and M = H. Now apply the theorem.

The following proposition was suggested to me by Dr K. R. Pearson.

COROLLARY 2. Let G be a finite metabelian group and let $K = S^{-1}Z$ be the ring of fractions of Z with respect to S, where $S = \{a \in Z | (a, |G|) = 1\}$. Then the group ring KG determines G.

PROOF. All we have to do is to check that K satisfies (*) and (**). It is obvious that K satisfies (*) and that the mapping $S^{-1}Z \to Z/mZ$ defined by $(a/b) \to \overline{a}(\overline{b})^{-1}$ where m = exponent of G' and $\overline{a} = a + mZ$ is a ring epimorphism, proving the corollary.

Berman and Rossa (1966) and Whitcomb (1968) gave an example of two group bases in ZD_4 which are not conjugate in $U(ZD_4)$ but are conjugate in $U(0_2 D_4)$. (In fact they are conjugate in $U(Z_{(2)} D_4)$). On the other hand, Weller (1972) proved that there are only two nonconjugate classes of group bases in $U(ZD_4)$.

COROLLARY 3. Let G be a 2-group with abelian normal subgroup A such that $G/A \cong D_4$. Then G is determined by its integral group ring.

PROOF. Let ZG = ZH and let $\pi: ZG \to Z(G/A)$ be the canonical homomorphism. Then $Z\pi(G) = Z\pi(H)$, $0_2\pi(G) = 0_2\pi(H)$ and there exists a unit $u \in 0_2 G$ such that

G. Karpilovsky

[7]

 $u^{-1}\pi(H)u = \pi(G)$. Since $0_2 G$ is a local ring there exists a unit $t \in 0_2 G$ such that $\pi(t) = u$ and therefore $\pi(t^{-1} Ht) = \pi(G)$. Thus if $\tilde{H} = t^{-1} Ht$ then $0_2 G = 0_2 \tilde{H}$ and $G + 0_2 G \cdot I(A) = \tilde{H} + 0_2 G \cdot I(A)$. It follows from the proof of the theorem that in this case $G \cong \tilde{H}$, proving the corollary.

COROLLARY 4. Let $|G| = 2^n$, $n \leq 7$. Then the group G is determined by its integral group ring.

PROOF. Every group of order 2^n $n \le 6$, is metabelian and group of order 2^7 has a normal abelian subgroup A of index 8 (Miller, Blichfeldt and Dickson (1961)). Suppose that G is not metabelian. It follows from Berman (1955) that we can restrict ourself to the case when $G/A \cong D_4$. Now apply Corollary 3.

References

- S. D. Berman (1955), 'On the equation $x^m = 1$ in an integral group ring', Ukrain. Mat. Z. 7, 253-261.
- S. D. Berman and A. R. Rossa (1966), 'Integral group rings of finite and periodic groups', Algebra and Math. Logic, Izdat Kiev, Univ. Kiev, 44-53.
- G. A. Miller, H. F. Blichfeldt and L. E. Dickson (1961), *Theory and applications of finite groups* (Dover Publications, New York).
- T. Obayashi (1970), 'Integral group rings of finite groups', Osaka J. Math., 253-256.
- A. I. Saksonov (1971), 'Group rings of finite groups I', Publ. Math. Debrecen, 18, 187-209.
- S. K. Sehgal (1970), 'Isomorphism of p-adic group rings', J. Number Theory 2, 500-508.
- W. R. Weller (1972), The units of the integral group ring ZD_4 (Thesis, Pennsylvania State University).
- A. Whitcomb (1968), The group ring problem (PhD Thesis, University of Chicago).

Department of Mathematics La Trobe University Bundoora 3083 Australia

384